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The study of charge, heat and spin transport in Em.do&minmm is of &rmMHmﬁh.nE
and practical interest. The presence of ferromagnetic and/or mcvmnmoz cw ing
electrodes adds new functionalities to the device and at the same ﬁ:bm. allows
the observation of the interplay between various E..‘E%.Uo&\ effects like e.g.
Kondo effect and Andreev scattering. Here we shall consider ﬁ@bom%mﬁmmwmﬂomw.
taining quantum dot (or a molecule) coupled to two or three mﬁ.mw.sm eads
and analyze their local and non-local transport properties. The @m:.Em nMEw,
lations are induced in the quantum dot coupled to a superconducting leas : via
the proximity effect. For subgap voltages one o_ummwi.ww the E_OEW_QW ﬁ@bmw
port by means of direct and crossed Andreev Hmmmnﬂcdmu évmammmmﬁ _m Mmchm
single particle electronic transfer is suppressed. The interactions oa elec HOH

on the dot, leading to such phenomena as e.g. the Coulomb _.u_onrm @wmméﬁ.,m M
modify the currents flowing in the system. Non-local mm.moﬁm in three m.uwnwd

device have also been discussed and the experiments which could detect them

have been proposed.
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1. Introduction

The study of transport via quantum dots or single molecules is important
because it is a playground for many particle theories' and the systems show
new functionalities for future electronic applications. ;
The variety of novel phenomena is expected in hybrid msﬁgﬁmm in
which one or more electrodes are ferromagnetic or mswmwoo:nﬂ.ﬁnﬁdm. Such
structures have been proposed as building blocks of devices with bmé. func-
tionalities for potentially important applications (single electron imﬁmﬂmﬁoﬁ.m“
opto- and spintronic devices, etc.). They may be a mﬁ.vE,om ow. pie w%mw
current,?~* entangled electrons® for quantum computing applications
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or thermoelectric heat into electricity converters, refrigerators, etc. The
novel functionalities of the devices with quantum dots include their usage
as building blocks of qubits’® for quantum information purposes.

Here we shall consider the system composed of small central region,
conveniently called quantum dot (QD) in the following, coupled to exter-
nal electrodes. The electrodes may be normal metals or superconductors.
The presence of various types of electrodes allows the study of interplay of
different processes e.g. the interplay between Coulomb blockade or Kondo
effect'! and Andreev tunneling,'? the proximity induced Andreev states in
a quantum dot, etc.

It has to be stressed that with the existing experimental techniques one
is able to study nanostructures under well controlled conditions. One of
the best examples is the discovery and precise measurements of the single
impurity Kondo effect. In nanostructures it manifests itself by increased
conductance through a quantum dot coupled to two normal electrodes. Dis-
covered in the thirties'? of the last century as the low temperature increase
of the resistance of noble metals with magnetic impurities, the effect has
been named after Jun Kondo'* who proposed its first explanation. The
phenomenon has been predicted theoretically!®!® to exist, and was later
measured,'”~?! in quantum dots coupled to external metallic electrodes.
In the nanostructures it has been possible to precisely measure the tem-
perature dependence of the Kondo conductance over the full temperature
range and compare the data with existing theories. The obtained agree-
ment in the limit of linear transport i.e. weak bias voltages is remarkably
good. More recent important results have been the scaling properties of
the nonequlibrium Kondo effect.?2

In the next section (2) we shall discuss some theoretical issues related to
the studies of transport properties of quantum dot nanostructures. We start
with modeling of such systems and description of the techniques developed
to calculate transport and kinetic coefficients. We discuss there inter alia
the necessary conditions the diffusive systems have to fulfil in order to show
large values of the Seebeck coefficient. The results for the simple models of
interacting quantum dot between two normal metallic electrodes are worked
out exactly in the weak coupling regime in section (3). The rest of the paper
is devoted to the discussion of more complicated examples including three
terminal system with two normal and one superconducting lead. We end
up with brief summary (Section 4).
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2. Theoretical issues
2.1. Hamiltonian of the quantum dot coupled to electrodes

It is the standard practice to model the system by the Anderson Hamil-
tonian using the tunneling approximation for the coupling of the central
region to the external electrodes. The Anderson Hamiltonian of the single
impurity®? can be written in the form

mumﬂb+mm9+mu.u (1)

where the first term describes the gquantum dot, the second electrons in the
leads and the third is responsible for the tunneling of electrons between the
leads and the QD. In the most general case discussed here summation o
runs over two normal (N) metals and superconductor (S). For two normal
metallic electrodes we shall use notation L for left and R for right electrode.
The Hamiltonian of the single level QD reads
.Tﬂ@b = Mmau&.%&.qn_'qq.jjé ’ ﬁwu
o

where €4 is the single-particle energy level. Tts spin dependence result from
the external magnetic field £40 = €a+ gopteB/2, 9t =1, 9, = —1. Here df,
(dy) denotes creation (annihilation) operator of the dot electron with spin
o, Ng = didy, and U is the Coulomb interaction between two electrons on
the QD. It is assumed that the normal metal electrodes are non-interacting

H, = Mmﬁwuﬁwmﬂqn@wq s ﬁwv

k.o

where nw..a (Cako) denotes creation (annihilation) of an electron S#W%E

o and momentum k in the electrode a = F or {L, R}. For a ferromagnetic
(F) electrode the single particle energies depend on the spin, otherwise this

dependence is neglected €aks = Eak-
If present, the third superconducting (S) electrode is described in the

BCS approximation as
Hg = M m_m.xﬁwwsn,wwq + MU ADOW\WA.QWE + D*ﬁmi.nmlweu 5 (4)
k.o k
with an isotropic energy gap A. The tunneling between QD and the exter-
nal leads is given by the term

‘mvﬁ B M AA\QQ.—QWQ&Q G H\M&WQQXQV ) Amv

ak,o
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s%mmm NQ Is the hopping integral between QD and the a-th lead
i ﬁw memﬁ_m_,oos&coﬁﬁm gap A is the largest energy scale, so one can
e limit A — oo and effectively eliminate superconducting degrees

O%. HH@QQCE H Em D.EC._E& ﬁc mv ( __m ﬁwm v _ _m.: m— onlan e

Hp = esdld, +U - L
nyny — —dfd — =2
4 5 o 1y = 5 did] — —=d,dy. (6)
%wM ﬁb%mﬁm Mcmgsa this transformation is the following. Due to the prox
imity effect the Cooper pair wave function ¢ i . _ :
i > on ‘leaks’ into the quant
induces pair correlation in it. This i iy
> ; is is true for finite and infini
latter case the i ot i
problem gets much simpli
. ; plified at the expense of neglecti
. i ct
all single particle tunneling processes into/from the mzbmwoosmcoﬁow "

Figure 1.
g The system composed of quantum dot {(QD) tunnel coupled to two external

leads: the left characterized by th and th
ze the chemical potenti r
g : y 3 potential xj , temperature T' igh
W hese parameters p , Tr. The effective couplings mp.um denoted by I'p, I e g
R Yy L'p,l'R.

2.2. Master equation and transition rates

M”M,mmw w%m wﬁozm coupling regimes of transport are defined according to the
ength of the coupling to the leads. If th i
. ; e couplings are weak (all I',,’s
being small) the char i ik
J ge fluctuation on the dot is su
of the dot is well defined b i et of s B
y the diagonal matrix elements of i
matrix. In such a case the ili i e sbmenri ]
: probability P, of finding a i
. o : quanturn dot occupied
MM.M_\ Mm mmmﬁomﬂo:m (n=0,1,2 for a single level QD) completely ormamoﬁmammm@ﬁmmw
of the system. The equation for time dependence of the probabilities

is known as Master equation and reads!

dp,
@ =T 2L W Pat 3 WanP, ™
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Sroﬂm%:émE%:wmwroimﬁm:wobgg ?ogwmﬁmﬁmq:ﬁoﬁ.ﬂww@
rates are typically calculated with help of Fermi golden rule and de-
pend on the parameters of the leads, the quantum dot and the couplings
(Ty, TR, L, i €4, U, T, T'r). We are interested in the stationary state,
i.e. when the average current in the nanostructure does not depend on
time. The stationarity condition ﬁw = () leads to the system of equations
for the probabilities

0= |M§\33mu3 I Mﬂ\q«*;wﬁi Amv

which is solved together with the probability normalization condition
SoubPn=1

For the simplest case with one electron transfers as described by tunnel-
ing Hamiltonian (5) the electrons move one by one from or to the quantum
dot. The possible states of the single level dot n uniquely depend on the
number of electrons on it n = 0,1,2. The transitions change this number
by 1. Consider electrons moving onto a dot from left electrode as contribut-
ing positively to the current. The current via the left junction can thus be

calculated as

I = ImMU (Wi~ Wii1om) Prs (9)

where —e is the electron charge. The second term in brackets describes
process in the L junction in which the quantum dot state with n+1 electrons
changes to the state with n electrons. It describes electron hopping from
the dot to the left lead thus the minus sign. Similarly one calculates the
currents across the right junction. Charge conservation implies I, +Ig = 0.

The transition rates Wk, WE _ both contributing to Wmn = Wk, +
WZR . are caleulated from the Fermi golden rule*

Wiy =20 1< flHalin > PWe,8(Biy ~ Bp)- (10
infm

Symbols E,(FE,,) denote total energies of the system before and after tun-
neling process. Summation goes over those initial states i, and final states
fm of the system which result in the states n and m. The initial configura-
tions are weighted by the thermal distribution function W;,,. They lead to
the Fermi distribution function fr(e) = 1/(exp((e — pr)/ksTr) + 1) for a
process in which an electron tunnels onto the dot. For the inverse process
of tunneling from the dot to left lead the probability (1 — fL(¢)) of having
empty state at the energy € in the lead L enters the calculated rate.
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Let us calculate the rate W} for a model system at hand. To this end
ﬁmw.m the initial states of the whole system as a product |4 .VH |0} _LmH.W_ Ho
.di:% means no electrons on the dot and the full mmgnsmﬁwmom gm t .mm
in the left electrode. The first term in the He part of the mmém:ow:hm ’ Mv
does not contribute as d,|0)g = 0. The total initial energy of the s mMM \ .v
ﬂmﬁoﬂma by E; = Ej and is a sum of single particle energies cm @M ﬁE m
in the left lead. The second term in tunneling Hamiltonian V*d! " s

o g

nonzero contribution only if the final state | fin) = d} cxc|in) o GIVES
L _ 2w s 4 .
W= "5 xM {inlCle H [in)|*Wico 6(Eo — (Eo + €4 — £)). (11)

ﬁw._m summation over the initial states of the system runs over k vectors and
ww_wm o of the left leads electrons. There is only single final state defined
Yy 6(ga — €x). Introducing the Hamiltonian (5) into Eq. (11) one gets

2w
Wi = 2% L2
10="7 MU_SS_ M Ar\q_&man\q_quﬁmgﬁloﬁ&_aq&w_o&&mw = gy,

k'#k
Noting that 4(0|d,d} |0}y = 1 and )
frle) = ) (ole cwolka) Wi, (13)
K £k’
one gets
E\h — Mlﬁ‘ M d\.h 2
0=~ 2 [Vieo|*8(ex — £4) fL(ex). (14)

Changing the summation over k in the last equation into the integration
over energy and assuming that the effective coupling

A IALICEN (15)

does not depend on energy e one finally gets Wi = LT1 f1(cq). In a simil
way one calculates all oth iti ol St antis
"y At other transition rates. After solving master equations
or Hﬁ m. Hu.wowuwg:?mm the current in each of the electrodes is calculated

3 t is HEwo@mba to stress that the Coulomb interactions are treated in
n E.m@oﬁ way in the master equation approach. Moreover, having all ex-

pressions m.z, the transition rates and currents in an analytic form it is a

matter of simple calculation to find closed expressions for the linear kinetic

coefficients. The examples of such i i
. h calculations will be i i
(3.1) for two situations. roted n section
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2.3. Calculation of the currents

The Landauer-Biittiker approach uses the scattering formalism of quantum
mechanics. The idea is to calculate the transmission coefficient T(FE) via an
obstacle in one dimensional (1d) system. In one dimension the wave vector
k has a single component and we denote it simply by k in the following.
The calculation of the current in this case is particularly simple. Consider
an electron of charge —e, wave vector k and velocity v(k) to the left of the
scattering center. Approaching the scattering center (an obstacle) electron
will be partially back-reflected and partially transmitted with the proba-
bility T'(e(k)). Tt is a matter of simple quantum mechanical calculations to
find both reflection and transmission coefficients.
The electrical current carried by the electron moving to the right is
given by summing —ev(k) over all wave vectors and spins and taking into
account the transmission probability T'(e(k)) and the probability that the
state of energy (k) is occupied
I, = —ey_ v(k)T(e(k) fr(e(k)). (16)

ko
The current flowing from the right is calculated in a similar way taking into
account that to the right of the scattering center the distribution function
is fr(e(k)). Total current is the difference between left and right terms.

Landauer-Biittiker expressions for the charge and heat currents read"*®
2e .
P r deT(e)[fr(e) — fr(e)]
2
Ig = 5 \mﬁm — WT(e)[frle) — frle)l- {17)

The factor 2 takes spin degree of freedom into account. To obtain equa-
tion (17) it is enough to notice that in one dimension the transition from
summation over wave vectors to integration over energy is simple because
the density of states 8k/de(k) up to a constant equals the inverse of the
velocity v(k) = (1/h)(8e(k)/dk) and both these terms cancel in Equation
(16). This cancellation is a property of one dimensional system.

Once the energy dependent transmission coefficient is known it is an easy
task to calculate the currents and kinetic coeflicients. At zero temperature
and for energy and spin independent transmission 7'(F) = To one gets
I = —(2¢/R)Tolur — pr) = (2¢2/h)ToV. Here V is the voltage bias. The
conductance is thus given by G = (2e2/h)Ty. For a system with N perfectly
conducting channels Ty = N the conductance is found to be quantized in

agreement with experiments.*”
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2.4. Kinetic coefficients in the linear regime

We i i

.Pwvwwm WHEMMMQ In fransport properties of the structure shown in Fig. 1
1on of the voltage between L and R ele g i

: ctrod

in the flow of charge current. Surel o S L2

v cach elect i
leads and the dot carries not onl enoney b Tween the

v charge but also energy and spin. It means

that in general one has to consider charge I, spin I, and heat I, flow I
] Q . An

the 1i ..
e linear limit charge and heat currents are usually written in terms of

thermodynamic forces X, — —
o 1= (ur—pgr)/T and X, = (T —Tg)/T? ~ or/T?

I'=5h=LuXi+ LisX,

N@ =Jo= Lo X + Los X5, Aumv
If the forces are chosen to give positive entropy (8) production
a8
5= M.Ubﬂp. >0, (19)
]

EM: the Onsager symmetry relations are fulfilled Li3(B) = L (—B)
w MM@ .mw denotes the external magnetic field. Phenomenological wam m
aﬁowm owmim Mﬁm M‘&mﬁmmw to ,Eﬁix elements of the matrix L. The oo:a:oﬁ.w“m
- ﬁmﬁwmm.owm\nnﬂn /T)L11, thermopower § — —(kp/eT)(L12/L1;) and
R mor . ance K = det(L)/ G,:N”h:v. Less attention is usually
e noM_ mmpcmwwﬂmﬁwoi U%ﬁbmﬁw which is the Peltier coefficient II. It
; o€ proportionalit é
flowing in the system in response to <OMQMM&MMMW “HMMMMMMMMMM%MN m!ﬁ%

conditions
I = A M@v _ Ln
T S o (20)

and is directly related to the Seebeck coefficient §
The combination of transport coefficients

o G
Y /T’ (21)
Qﬂwmoﬁﬁwrmagom_moﬂﬁn figure opn merit, is a single dimensionless number
nally used for characterizing the usefulness of a given material
mﬂd.o:b,m m.m a heat to electric power converter. This is beca ' Mﬁm .
oretical estimation of the maximal efficiency Nmaz Of the Emﬂwwm qwhﬂu@m.

expressed by Carnot efficiency ne and the above number Z7T as

e VITFI-1
maz = T)C .
VZT 4141 (22)
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2.5. Remarks on the thermoelectric power

ted
In the Fermi liquid theory electrical and thermal conductances @Mu HMM. Hob )
HH . - \H
to each other via Wiedemann-Franz ratio &/ AQ‘HW which mﬁM, t mmz,m ol
: ; |
liquids equals to the Lorenz number Lo = ©2k% \.Awm ) éw.mamw mummﬁ are tie
Roltzmann constant and electric charge, respectively. This s _QH that the
mﬁmwﬁ obeying the Wiedemann-Franz law is a useful thermoelectric p
m% . .
if i i high.
srator if its Seebeck coeflicient is B
mowﬂ, Mm thus important to know what are the conditions for _mam.m <@hﬂmm
st ; )
f the thermopower S. The general analysis of the factors M@Moﬂmsmw Hwo
s \ : ahan and boto®™™ w
. been performed by M il
values of the thermopower has e e ol b
shape rt distribution is found to
luded that “A delta-shaped transpo : . e
MMW Nwmﬁﬁcmhmnain properties.” We shall here give slightly .Hmmm mmﬁMEﬁ. M
till w:mﬁcoﬁ?@ areuments. To this end we write the electrical conductivity
sti g

—00

in the form

In the Boltzmann or Kubo-Greenwood approach to conductivity the func-
tion o(g) reads >
o(e) = MU vz (K)7(k)d(e — ex),

k

in st k
here 7(k) is the transport relaxation rate for electrons in state k _MEQ ,ﬁw me
’ - . H‘
4 their velocity. For a simple parabolic band structure this may be w
is . For .

as the product of energy dependent quantities i.e.
25
a(e) = N(e)vz(e)7(e), (25)
it is i all the

with N(g) denoting the density of states. Now it is cmm.rb Mc H.MMM L
famous, even though approximate, low ﬁmﬁ%mumﬁ:ﬁ.a&mﬁos moH e e
Eoﬁo&mw known as Mott-Cutler (MC) formula, which gives 5 In ter
conductivity at the Fermi energy o(er)

ﬁmwm H h&o‘ﬂmvv . (26)
Smo=—3 7 o\ e /.,

The derivation of the formula?® bases on the low temperature Sommerfeld
e

ansion. . .
mxcgzmﬁsm the expression (25) evaluated at € = £F into @9. we Mmmmﬁ i
for nonzero S one needs that at least one of the factors: density o . zamq
. L i i d on energy in

i laxation time do depen

average velocity or transport re ; . . oty
gwm.b%% of Fermi energy. If the resulting function strongly varies with
vici >

121

Fermi energy one gets the large value for S. The slopes of each of the
parameters with respect to change of e r add to give Sys¢ as a sum of three
terms, each of which may have different sign, It thus follows that e.g. the
existence of the peak in the density of states close to the Fermi level of
the material may indicate large thermopower. At the same time even if
N(ep) is constant the thermopower may still take non-zero value due to
the velocity or relaxation time varying in the vicinity of Fermi energy.

In the nanostructures transport is ballistic and the resulting conduc-
tance G depends on the density of states only. This means that the slope
of the density of states at the Fermi energy is the main
Seebeck coefficient §. On the other hand one has to
Mott-Cutler?® formula is not exact expression for §.

factor determining
remember that the

3. Results

Here we present results for a few simple cases. We start with a quantum
dot system between two normal metal electrodes. This model has been
proposed as a system with very large thermoelectric figure of merit.3° The
details related to the currents flowing in the system and Seebeck coefficient
are discussed in some detail and compared to the molecular system which
supports attractive interactions on the dot. More general system with three
external terminals has been discussed in Section 3.2. The system
in the Fig. 4 consists of a quantum dot and three terminals, one
being a BCS superconductor in the large A limit.

, shown
of them

3.1. Two terminal transport - normal electrodes

Here we shall discuss conductances and thermopowers in the geometry of
Fig. 1 assuming first that the central region is just an interacting quantum
dot. We calculate the charge and heat currents using master equations.

In the linear response regime 17, — T = 6T — 0 and ML — pp =
—eV — 0 the Fermi functions are expanded in power series of §T and el
Assuming symrmetric temperature and bias distribution MrLr)y = u+eV/2
and Tr gy = T+ 6T we find transport coefficients [,

i7 and the conductance
and thermopower defined earlier. This leads to the

following expressions®°
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for the conductance G and Geebeck coefficient S

&4 v _eg4 mH+Q
2¢2 2T I'r e T 1+ eFaT (e*87T ++w: (27)
e rr7 v
B _fd mm+|% 1 \mﬂ.ﬁmxl%ﬂ +2)]
h TL+TR o r(emaT +1)(e*sT +1)[1+e
& € +‘Q o |nnw|.
- %ri@ﬁflﬂ uﬁ r (P +1) 5
e BHES e
oo H.Tmﬂmﬁ?lﬁﬂ +2)

conductance of the system is a ?boﬂon of
y the universal function Gl U1 =
ermopower is given by other uni-
d by temperature S(eq,U, =

It is interesting to note that the
gq/kpT and U/kgT and wm m.“Zos b
Faleq/TU/T)/T. In a m:Erﬁ way th
versal function of the same variables scale

Fg(eq/T, 1713

G[2e*/h]; Slke/e]

15 2
2 15 -1 05 0 05
¢ E (2e+U)/2T,

ce of the conductance G and thermopower Son nrm_mwﬁm <MMMNWM
i jically coup qu
rcy point for the symmetrica
" QmMMMWH Wﬂm 050'r,. Left panel illustrates results moH. the
Gimilar dependence of the same kinetic momm..._nﬂmﬂmw
ith effective negative U = —4T'p, is shown in

6 -4 2

0
(2e4+UN2TL

Figure 2. The dependen
measured with respect to t
dot g = 'y, = 1 for temperat
quantum dot with positive U = 4I'r.. ;
(G and 5) for a molecular central region w.

the right panel.

ay arise interesting

i ists molecule, there m
If the central region consists of a ; g

ich the effective interaction between electron :
< 0. This is due to the coupling of electrons to <M
brational degrees of freedom3 which renormalizes hopping @E@B@Mﬁ an
m.. H - - - -
.Mﬁmwmoﬂos energy U. The effective system - after m:BEmﬁwﬁ of t odmwww
: : . i s that for a qua
1 i :onal degrees of freedom - is the same as .
D e o 1 i ind its transport properties as
i i . The physics behind its D
dot but with negative U. T : O B 1
i i i h et al.. however, is completely 1
discussed 3! in detail by Koc , : .
mmsmrw particle tunneling is suppressed and two particle ?,o.ommmmm %OHHMMME -
To capture these processes it is enough to vaMoHE wnvimmmw- awmoigum
s ; .
i i ling Hamiltonian®" contains term ]
formation. The effective tunne : e
direct tunneling between two electrodes and those promoting two partic

situation in wh
dot is negative: U
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events in which two electrons are created or annihilated on the molecule at
the expense of one or both electrodes

1 1
Hp = m‘&ﬁm& + bﬁcg,_s = M ._“\v;\\/,.w _Hliﬁwr Chxk'o +
%\ Exkc —é&a "7

Eﬁm\yrvﬁﬁ&.ﬁqaqmw—aqnyﬁn‘ iy ,.\\.wuno.ﬁ\/_.w..q_;&m.v 4 mﬁ%

+ > WV M(eagdrdcl,, whia +He], (29)
AN KK/
where M(e) = [e —g4] ™! — [c — ey — Ui,

Treating the system as weakly coupled and using master equation ap-

proach one derives expressions for conductance® ¢ um and thermopower32

Sy of such a molecular system for symmetric couplings I'y, = I'g = T.
They read3!:32

2¢? Bz f(=z) £(@)
Q = — 2 L _HE =
= bl ? vamgm& i iy ey SL (30)
_ _ kB M?*(0)5%?/4sinh
G G 8 (31)

The parameter £ = 2e; + U denotes distance from the degeneracy point,
B=1/kgpT.

Figure 2 shows the dependence of the conductance and thermopower of
the two studied systems on the gate voltage. In both panels we measure the
energies in unit of I'y, and from the particle-hole symmetry point 2e,+ 1/ =
0. The Seebeck coefficient of both systems vanish at that point as a result
of symmetry. On the other hand conductance of the system with positive
U has a minimum, while that of negative U is maximal in that point. For
positive U the single particle transitions gowvia g4 and g4+ levels. At these
points conductance has maxima and a minimum in between. On the other
hand close to the degeneracy point z = 0 the transport through a molecular
system (negative U) is dominated by the pair tunneling processes.3 The
peak of width T is centered at 2 = 0. It is accompanied by the broad
contribution from single particle co-tunneling processes. As a result (7 and
S depend not only on the ratios U/kpT and £4/kpT but also on U and Ed.
This leads to non-trivial e dependence of conductance and more importantly
Seebeck coefficient. At low temperatures the pair tunneling shows up as a
relatively narrow peak on the broad background. As a result thermopower
is positive for negative values of  as it is evident from Mott-Cutler formula,
(26), vanishes at the particle hole symmetric point and changes sign for
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z > 0 in agreement with change of the slope of the conductance vs. £4.
At some values of |z| the slope is maximal and this leads to the maximal
value of S. For larger |z| the slope gets smaller and thermopower vanishes
The width of the pair contribution to G increases with temperature and its
slope monotonically changes.

Applying magnetic field splits the energy levels of a quantum dot and
may lead to the spin dependent currents I+ and I and the spin dependent
conductances G4, G. The probability that the spin down electron occupies
an empty dot is in the presence of the magnetic field much larger then for
spin up electron. As a result the conductance of spin up electrons currents
flowing wvia resonant level g4 is small and wvice versa for second electron
on the dot with opposite spin.®® Its resonance level with large probability
equals £; + U and with much smaller probability 4 + U. This is reflected
in different amplitudes of the conductance. The gate voltage dependence
of the conductances G+ and & is shown in the Fig. 3.

2.5
Gy —
2 G e
£15
o,
S q
(O]
0.5
0

2 15 A -0.5 0 0.5 1
eg/TL

Figure 3. The gate dependence of the conductances G4 and G| for the symmetrically
coupled quantum dot I'g = I'y, = 1 for the temperature T = 0.1'y and magnetic field
upB = 0.2T',. Note the small spin up conductance around the resonant level €. For
these values of the gate voltage the probability of finding single spin up electron on the
quantum dot is much lower then that for spin down.

3.2. Three terminal transport - hybrid structure

As mentioned in the Introduction the hybrid devices consisting of normal,
magnetic and/or superconducting electrodes have been found to show new
functionalities®* not encountered in simple systems. Such structures include
inter alia planar systems #3936 or devices containing quantum dots. The
later systems consisting of a quantum dot tunnel coupled to two or more
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Figure 4. The system composed of quantum dot (QD) tunnel coupled to three external
_mwh_m_ the left characterized by the chemical potential py,, temperature 77, and the right
with these parameters ugp, Tg as previously and third electrode is a BCS mEumaoodn_:nwmoﬂ
The effective couplings are denoted by I'1,I'r and T'g. .

electrodes, one of which is superconducting have been intensively studied
theoretically*37=% and experimentally.5¥=6% The research on the trans-
port through quantum dots in systems with superconducting electrodes has
been reviewed®® recently.

In three terminal setup shown in the Fig. 4 the currents fulfill Kirchhoff’s
law It +1p +Ig = 0, which reflect conservation of charge. The conservation
of energy requires similar equation for the heat currents mn@ + mm., + ﬁ% =
Thus we have two independent fluxes. If we assume that the S electrode
is a reference one with Ts = T and s = w, while Trry =T+ 0T (r)
and prg) = p+ eVy(g) then the phenomenological equations (18) may
conveniently be generalized for the currents I Ay and T %u F@ flowing in L
and R electrodes. The third current is calculated from conservation law,

For the numerical examples shown below we have used the model6®
analyzed earlier by Michalek et al. The model describes the quantum dot
in contact with three electrodes: ane superconducting and two normal. The
superconducting electrode has a BCS like gap parameter A, constant over
the Fermi surface. It has also been assumed that A is the highest energy
scale in the problem. Accordingly the limit A — oo has been taken. This
approximation is suitable for the studies of sub-gap transport. In that limit
the coupling between the superconducting electrode and the quantum dot

I's plays the role of effective order parameter induced on the quantum dot
via proximity effect.
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3.2.1. Symmetries of linear response coefficients

It is convenient to use the thermodynamic forces in a close analogy to X

and X introduced in the two terminal transport. In order not to confuse
voltage and thermal bias we change the notation®” and write % = XY,
8Tp — xT, &Y — XV and Wumh% = X7 Accordingly we denote the currents

T2 T
flowing in the left and right electrodes as I7 = Iy, ﬁ% = b@“ % = Iz and
19 =12,

In the linear response regime the general relation between the currents

I and thermodynamic forces inducing them X is written as

b@ L1, Lag, Lz, Ly Xy
I > Lo, Laa, Lag, Lag x7

—LX = ’ i . 32
Iy L31,L3a, Lz, L3y Xy (32)
¥ L1, Lag, Las, Lag .Nm:

This equation is the basis of general analysis of the three terminal system.
In the absence of magnetic field and other time reversal symmetry break-
ing factors the matrix of kinetic coeflicients is symmetric L;; = Lj;. The
currents in the system and elements of the matrix L;; have been calculated
with help of non-equilibrium Green function technique.?%

—Lh”—..&,_ "_Jmmﬂ_.-mu. v

0.4 =Lor=boi=lss
-0.6 La=Lsz o

-8 -6 -4 .Mmomnm&mm
L

Figure 5. The matrix of kinetic coefficients plotted ws. on-dot energy level g4 for the
symmetrically coupled quantum dot I'p = 'y, = 1 and for weak I's = 0.5I';, coupling
to the superconducting lead (left panel) and strong coupling I'g = 5I'z, (right panel) .
Only 6 coefficients out of 16 are independent in the linear regime.

The dependence of all the kinetic coefficients L;; on the position of the
on-dot energy level g4 (or gate bias) for symmetric coupling to the left

and right electrode I'y, = I'g is shown in Fig. 5 for weak I'g = 0.5I';, (left
panel) and strong I's = BI'p coupling to the superconducting electrode
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MEm.E @m.bmc. The matrix, in agreement with the Onsager relations. is
,NMBEQEO e Lj; as the time reversal symmetry is preserved. Note Wrm
change of the shape of the curves L3 = L3; in the strong coupling limit

3.2.2. Non-local effects - induced voltages and temperatures

In three-terminal system the current effectively flows in two branches. Thi .
m.:oém study of local and non-local effects, as e.g. the current moémb‘ .. i_m
right branch of the system in response to the voltage bias in the _mﬂs .
One defines the floating electrodes as that in which the current Qom_ o:mﬂ.
mo,a.. Here we shall consider more general definition. We require ﬁ.rm; wm MM
floating mﬁmoﬁom.m, assumed to be the right (R) one both charge msmwmmﬁm
Mcﬁmﬂm vanish rm.h. . I3 =0 mbm.m Hm_ = 0. In the linear regime this allows
0 write the condition for the induced changes of the chemical potenti 1
S = eVg and temperature 075 as potens

bw Ly, L9, Las, Lyy =43
Ir _ Loy, Log, Lag, Loy mﬁw
0 L3y, L3p, L3y, Lay eVa (33)
0 La1, Lap, Lz, Lag %WW

Hrm current flowing in one of the branches of three terminal system

induce voltages and temperature gradients in other branch .HEM o 8 nots

local effect, which we analyze here in some detajl. . TR
Solution of the system of equations (33) reads

m
S

Mmﬁl Li1, 119, L13, L4 I

gl

ke _ | L21, Loz, Log, Loy Iy

ml%m L3y, L3y, L3z, L3y 0 ’ (34)
T Ly1,Lyg, Lyz, Lyy 0

This mwﬁow.m calculation of Vi and 8Ty, for arbitrary V, and 67T;. After an
easy algebra one finds the induced voltages and ch i .
B mop e g changes in the temperature

vy -1
hwmnhw% bw?hmm

T
T ==
T2 Lz, Ly L4y, Las

(35)

=
-

|

h.g
B3|
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and from equation (34) the corresponding currents in the left electrode

Iz L1, Ly2

= = = 36

m% Loy, Lag (36)
1

L3, Laa \ { Lss, Las L31, L3z e

Loz, Los ) \ Las, Laa Ly1, Lao e )

The second term in square brackets comes from the feedback voltages and
temperature gradients and is responsible for the modification of the currents
with respect to those obtained from the equation (32) with both electrodes
biased. The modifications are the direct consequence of the floating char-
acter of the R electrode.

The amplitude and sign of the voltages induced in the floating electrode
depend on the gate voltage €4 and the strength of the coupling to the
superconducting electrode I'g. Consider first the dot with ¢4 close to 0
and large value of I's. Application of voltage bias to the left electrode Vz
induces different processes. First of them is the tunneling of an electron
from the left Fermi level of left electrode onto the quantum dot. The
electron on the dot may then tunnel onto the right lead. This process
slightly increases the voltage on the right electrode Vg. Electron residing
on dot can not tunnel directly onto superconducting electrode as there are
no states available at the Fermi energy. But it may attract another electron
with different spin from one of the leads, form a Cooper pair and tunnel
into the superconductor. This process (known as direct Andreev reflection)
does not change the voltage bias of the right electrode Vz. However, the
process in which electron on the dot attracts another electron from the
right electrode, forms a Cooper pair and tunnels into the superconductor
decreases the voltage Vg, For relatively large I's the crossed process may
strongly renormalize voltage Vg and change its sign with respect to Vg.
The last process is known as crossed Andreev reflection. The importance
of crossed Andreev processes increases with I's. The tunneling of electrons
between two normal electrodes always competes with Andreev reflections.
As a result the curves in the left panel of the Fig. 6 show a minimum close
to g4 = 0 for all values of I's. Similar arguments apply for other value of
£4. The tunneling electrons carry not only charge but also energy. In the
process they modify the occupation probabilities and electron energy in the
electrodes. The resulting change of the temperature in the right electrode
due to bias voltage V;, is shown in the right panel of the figure. In the
linear response all currents in the system are vanishingly small. However
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m,ﬁz.am 6. The ratio of the voltage Vg induced in the right electrode to the voltage
applied to the left one Vp, (left panel) and the ratio of the induced temperature n_gmbm
kg mmu_.w\mHSU (right panel) plotted vs. on-dot energy level £, for the non-interacting U/ lwm
symmetrically coupled I'r = T';, = 1 quantum dot. Various curves in the left ﬁm.zmm
corrrespond to I'g = 1,2,3, 4,57z from top to bottom curve, while those in the ri r‘w
panel correspond to the same order around eq/T'L = —6. ¢

the current in the left electrode of the system with floating right electrode
may be written as

BY o (ML (S
i) " \er o )\ %) o

%wm &m.mwm. ?Ew I7 defined in equation (32) valid for both electrodes biased.
: m.mmmmﬂzm kinetic coefficients hmﬂ 7 describe the charge and heat currents
owing in the left branch of the hybrid system with the right electrode
grounded. They differ from the coefficients Li; for 1,5 = 1,2 defined in
(32) %cm to the feedback effects. The local linear conductance is given
,UW (¢/h)Li1. On the other hand the effective conductance related to the
charge flow in the left electrode when the righ i is gi
ght one is grounded is b
LY, GofF = (e2/n) LS4 with : e
hﬂcﬁ — T (L13Lag — L14L43) L1 + (L14Ls3 — Li3L34) Ly
L3gLsg — L3qLas .
>ooo.wmm:m€ we may define the local Seebeck coefficients S and §¢/f by
requiring vanishing of the respective currents

(38)

mnlm@lv _ (39)
8Tp/1sg Tl
1= () o

0Tt/ feo  TLT (0)

In Fig. 7 the comparisons of both conductances and thermopowers have
been presented. The smaller values of the effective conductance G¢/f and
decreased amplitude of the thermoelectric power S/ for all positions of the

| ==
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on-dot energy level g, are related to the modifications of kinetic coefficients
(like that in the equation (38)) due to back-action of the floating electrode.
Despite the decrease of the effective conductance and thermopower, the

N i
1.5
T
205}
2D
£ e
305
© -l
15

o

-10 -5 gdTL 5 10

Figure 7. The conductances & and Geff (thick lines) and ﬁwmwaowoémwmﬂmn.ﬂ and H,Hm_“q sM
(lines with symbols) ws. on-dot energy level g4 for the symmetrically Q_uEMw Mcwﬂmm Om
dot T =Tg = 1Ty, and for T/I'L, = 1. The .Em.ﬂmd.r. shows the MWWHEGW ec H_Hn W s of
merit for the two cases. An order of magnitude increase of ZT' is directly relate
strongly reduced effective thermal conductivity.

thermoelectric figure of merit defined with effective mw@mmam:ﬁm.w takes on
much large values than that of the original system. This _umrmﬁ.oﬁ shown
in the inset to the Fig. 7, is traced back to the strong Emzoiow of the
effective thermal conductance s in the system with one floating electrode.

4. Summary and conclusions

We have reviewed a number of issues relevant in the studies of transport
properties of nanostructures containing quantum dots. The necessary con-
ditions which the systems have to fulfill in order to show DOb.mmH.o. ﬂwE.m &
the Seebeck coefficient have been discussed. In the weak tunneling limit
master equation technique is adequate and it provides exact Qmﬁﬁmﬁ &
the Coulomb on-dot interaction U. Two terminal quantum dot with posi-
tive U is characterized by very large figure of merit*¢ ZT. On H.wm oﬂmw hand
this parameter for a molecule characterized by smmm\m?m effective U is rather
small®? despite the large value of the thermoelectric power S. The .&o@ms,
dence of G and S of two models on the gate voltage is completely %m.ma.;
due to the fact that transport is dominated by single particle properties in
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the positive U case, while two-particle transitions play the most important
role in the model with attractive interaction on the molecule.

Three terminal system consisting of a quantum dot tunnel coupled to
two normal and one superconducting electrode has been studied using
Keldysh non-equilibrium Green function technique. In the linear regime
the transport coefficients L;j fulfill Onsager symmetry relations. The ex-
istence of the feedback effects in the system with one floating electrode is
an important result of our preliminary analysis of charge and heat trans-
port presented in Section 3.2.2. The feedback effect suppresses effective
transport coefficients (see Fig. 7) due to self-consistent modification of the
thermodynamic forces. The effect which is present in any multi-terminal
setup remains to be detected experimentally. One possible way of its de-
tection would be the precise measurements of the temperature changes in
both normal electrodes, when one of them is subject to the external volt-
age. The effect should also be observable in three terminal system with all
normal electrodes. The predicted numerical changes of Vi /V7, and 6Tk /Vr
(Fig. (6)), however, would be different.
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