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Polarization of the Majorana 
quasiparticles in the Rashba chain
Maciej M. Maśka  1 & Tadeusz Domański2

We demonstrate that the selective equal–spin Andreev reflection (SESAR) spectroscopy can be used in 
STM experiments to distinguish the zero–energy Majorana quasiparticles from the ordinary fermionic 
states of the Rashba chain. Such technique, designed for probing the p–wave superconductivity, could 
be applied to the intersite pairing of equal–spin electrons in the chain of magnetic Fe atoms deposited 
on the superconducting Pb substrate. Our calculations of the effective pairing amplitude for individual 
spin components imply the magnetically polarized Andreev conductance, which can be used to ‘filter’ 
the Majorana quasiparticles from the ordinary in–gap states, although the pure spin current (i.e., 
perfect polarization) is impossible.

The topologically nontrivial superconducting state of one–dimensional (1D) chains1 allows for a unique phe-
nomenon of the selective equal–spin Andreev reflection (SESAR). This polarized Andreev spectroscopy has been 
proposed by J. J. He et al.2 as a useful tool for probing the Majorana states. SESAR measurements have indeed 
provided evidence for the zero–energy modes in vortices of the p–wave superconducting Bi2Te3/NbSe2 hetero-
structures3,4. Similar ideas have been also considered for the Josephson–type junctions5,6 and ferromagnet–super-
conductor interfaces with the spin–orbit coupling7,8. In this work we demonstrate that SESAR spectroscopy can 
test inherent polarization of the Majorana quasiparticles appearing at the edges of the Rashba chain. The parallel 
and perpendicular components of magnetically polarized Majorana states has initially been pointed out by D. 
Sticlet et al.9 and their signatures have been recently studied by a number of authors10–13. In this paper we show 
that magnetic polarization is detectable in STM experiments owing to SESAR processes, which in the subgap 
regime could distinguish the Majorana quasiparticles out the ordinary Shiba in-gap states. We provide micro-
scopic arguments explaining such polarization and confront our predictions with the experimental data obtained 
for Fe atom chain deposited on the surface of Pb superconductor by the STM technique with use of the magnet-
ically polarized tip14.

The underlying idea of SESAR for the aforementioned configuration is displayed in Fig. 1. This STM–type 
setup has been previously used by several experimental groups15–17, however, ignoring the magnetic polarization. 
Recently A. Yazdani and coworkers14 have measured the spin–resolved tunneling current and revealed substantial 
polarization of the zero–bias conductance in regions, where the Majorana quasiparticles exist. This fact can be 
interpreted within the popular microscopic model, taking into account the Rashba and Zeeman interactions in 
addition to the proximity–induced pairing which can realistically capture a topography of the Majorana fermi-
ons9,18–20. Using this model we have recently emphasized21, that amplitude of the intersite pairing (between iden-
tical spin electrons) differs several times for ↑ and ↓ sectors, respectively. Obviously, such effect should give rise to 
noticeable polarization of the Majorana quasiparticles near the chain edges. In practice, the low–energy features 
can be detected only by the anomalous Andreev spectroscopy, as discussed in detail in ref.18. Since efficiency of 
the particle to hole conversion for the spin–polarized Andreev spectroscopy depends on the anomalous propaga-
tor σ σ ω+ + +d d;i i i, 1, 0

, one should expect its non–vanishing value at ω = 0 nearby the chain edges. In what fol-
lows we show, that this is really the case. We also argue, that SESAR could distinguish the Majorana from the 
ordinary fermionic quasiparticles.

Results
Microscopic model. Nanoscopic chain of the magnetic Fe atoms deposited on the s–wave conventional 
superconductor and probed by the polarized STM tip (relevant to the experimental situation14) can be described 
by the Hamiltonian9,18–20 = + + + +− −

ˆ ˆ ˆ ˆ ˆ ˆH H V H V Htip tip chain chain chain S S. We treat the STM tip Ĥtip as a free 
fermion gas and focus on quasiparticle states of the atomic chain appearing deep inside the superconducting gap. 
Under such circumstances the superconducting reservoir would be responsible for the proximity induced on-site 
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pairing + + →−
ˆ ˆ ˆ ˆH V H Hchain chain S S chain

prox
 (for technical details see, e.g., Appendix A in ref.21). In what follwos, we 

impose the constant couplings ΓN and ΓS to the STM tip and superconducting substrate, respectively (see Fig. 1).
The low–energy Hamiltonian is effectively given by19

∑ μδ= − + + +
σ

σ σ
ˆ ˆ ˆ ˆ ˆ ˆ†

H t d d H H H( ) ,
(1)i j

ij i j i jchain
prox

, ,
, , , prox Rashba Zeeman

where σ
ˆ †
di ,

( )
 annihilates (creates) an electron with spin σ at site i, tij is the hopping integral and μ is the chemical 

potential. The proximity effect, responsible for the on–site (trivial) pairing, can be modeled as20

= Δ +↑ ↓ ↓ ↑
ˆ ˆ ˆ ˆ ˆ† †( )H d d d d

(2)i i i iprox , , , ,

with the pairing potential Δ = ΓS/2. In this scenario the intersite p–wave pairing is driven by the Rashba and the 
Zeeman interactions
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We assume the magnetic field to be aligned along ẑ–axis and impose the spin–orbit vector α = (0, 0, α).

Spin–polarized Majorana quasiparticles. In Fig. 2 we present spatial dependence of the off–diagonal 
spectral function  ω = −σ π σ σ ω+ + +

ˆ ˆd d( ) Im ;i i i i
1

, 1, 0
 obtained at zero energy for different spins ↑ and ↓, respec-

tively. This anomalous spectral function is very instructive, because its sign exhibits intrinsic polarization of the 
Majorana modes (previously emphasized in ref.9) whereas its absolute value can be probed by the SESAR spec-
troscopy (see the next paragraph). Concerning the magnitude, we clearly notice a quantitative difference (almost 
5 times) between the spin ↑ and ↓ inter–site pairings. As regards the intrinsic polarization we observe that 
Fiσ(ω = 0) changes its phase by π between opposite sides of the Rashba chain and furthermore each of the spin 
sectors is characterized by opposite polarizations. This aspect resembles the results reported for the interface of 
ferromagnet/superconductor bilayers22. Such feature can be regarded as a hallmark of the finite–size systems, 
because otherwise (i.e., in thermodynamic limit L → ∞) the off–diagonal spectral function would identically 
vanish at zero energy for both pairing channels.

Figure 3 illustrates the spatial profiles of the spin–polarized (diagonal) spectral function ρiσ(ω). As expected, 
we notice quantitative differences between the Majorana states appearing in ↑ and ↓ spin sectors, whereas their 
overall profiles seem to be pretty similar. Different magnitudes of these spin–polarized Majorana quasiparticles 
would show up in the SESAR measurements.

Figure 1. Schematic idea of SESAR. This polarized Andreev spectroscopy can probe the intersite pairing 
(represented by the dashed ellipse) of electrons on Fe atoms (red color) deposited on the s–wave bulk 
superconductor (gray) by using the magnetically polarized STM tip (green color).
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The polarized Andreev transport. By applying a bias voltage V between the STM tip and the supercon-
ducting reservoir one would induce the nonequilibrium charge transport. Deep in a subgap regime (i.e., for 

ΔV e/ ) such current is contributed solely by the Andreev scattering, when electrons from the STM tip are 
converted into the pairs, reflecting holes back to the STM tip. This process can be treated within the Landauer–
Büttiker formalism.

We can express the nonmagnetic (γ = 0) and magnetically polarized (γ = σ) Andreev currents by the following 
formula

∫ ω ω ω ω= − − +γ γI V e
h

d T f eV f eV( ) ( ) [ ( ) ( )], (5)i i

where f(x) = [1 + exp(x/kBT)] stands for the Fermi–Dirac distribution function. These Andreev channels are char-
acterized by various (dimensionless) transmittances, that can be expressed via the local and non–local anomalous 
Green’s functions, respectively

ω = Γ +↑ ↓ ↓ ↑
ˆ ˆ ˆ ˆT d d d d( ) ( ; ; ), (6)i N i i i i

0 2 2 2

ω = Γ + .σ
σ σ σ σ+ −

ˆ ˆ ˆ ˆT d d d d( ) ( ; ; ) (7)i N i i i i
2

1
2

1
2

Exceptionally, for the edge sites i = 1 and i = L the spin polarized transmittance is ω = Γσ
σ σ

ˆ ˆT d d( ) ;N1
2

1 2
2
 

and ω = Γσ
σ σ−

ˆ ˆT d d( ) ;L N L L
2

1
2
. Derivation of formula (6) is presented in section Methods. These off-diagonal 

Green’s functions can be computed numerically from the Bogoliubov–de Gennes treatment of the Rashba chain 
(1). Obviously, in experiments with the unpolarized STM tip15,16 the total current contains all three components, 
i.e. = ∑γ

γI V I V( ) ( )i i .

Figure 2. Intrinsic polarization of Majorana quasiparticles. The off–diagonal spectral function Fiσ(ω) obtained 
at zero energy (ω = 0) for the inter–site pairing of σ spin electrons, using Δ = 0.2 t, α = 0.15 t, μ = −2.1 t, and 
gμBB/2 = 0.27 t.

Figure 3. Topography of the polarized quasiparticles. The spin–up (A) and spin–down (B) (diagonal) spectral 
functions ρiσ(ω) determined at low energies which reveal, that the zero–energy (Majorana) quasiparticles are 
strongly polarized.
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Figure 4 shows the energy–dependent transmittances ωγT ( )i  obtained for the non–polarized (γ = 0) and spin–
polarized (γ = σ) Andreev channels. The difference between unpolarized and polarized transmittances is espe-
cially visible in the insets, where ω ω≡ ∑γ γT T( ) ( )i i  is plotted. In the case of T0(ω) the ordinary (finite-energy) 
Shiba states are are showing up (panel A), whereas in the polarized transmittances T↑,↓(ω) the Majorana quasipar-
ticle plays the clearly dominat role (panels B and C).

The corresponding conductances are presented in Fig. 5. We notice that the differential conductance of the 
nonmagnetic Andreev reflections dominates well inside the Rashba chain at energies coinciding with the fermion 
Andreev/Shiba states. The SESAR, on the other hand, is efficient mainly near the Majorana modes whose spatial 
extent covers roughly 10 sites near the Rashba chain edges. In distinction to ref.2, we observe that the spin–polar-
ized currents are present for both spins (↑ and ↓) but with significantly different magnitudes. Our results are rele-
vant to the recent experimental data reported by the Princeton group14. We have checked that the spin–polarized 
Majorana quasiparticles are robust upon varying the model parameters, although some additional subtle effects 
may be observed, for instance the quantum oscillations18.

The results presented in Fig. 5 correspond to the topological regime. By varying the model parameters so 
that the system is driven to the topologically trivial phase, the zero-energy Majorana peak vanishes and the total 
transmittance in the spin-polarized channels is strongly suppressed. Such evolution from the topologically trivial 
to nontrivial state is presented in Fig. 6. Note that the polarized transmittance T↑ (ω) vanishes almost completely 
outside the topological regime. In the topological regime the unpolarized transmittance of the Majorana peak 
is much smaller than the transmittance of the ordinary in-gap states that develop when the system enters the 
topological regime. On the other hand, the polarized transmittance of the Majorana peak is much larger than the 
ordinary in-gap states.

In summary, we emphasize that the net spin current = −↑ ↓I V I V I V( ) ( ) ( )i i i
spin , attainable from the SESAR 

spectroscopy, is expected to acquire meaningful values of the spatially–resolved conductance 
= ∂ ∂G V I V V( ) ( )/i i

spin spin  only near the Majorana quasiparticles (what can be inferred by inspecting Fig. 5). 
SESAR can hence filter the Majorana from the ordinary Andreev/Shiba quasiparticles (which always exist in the 
Rashba chain). This unique virtue of SESAR would be valuable for spotting the Majorana quasiparticles and 
investigating their topography.

Figure 4. Subgap transmittances. The spatially resolved transmittances ωγT ( )i  obtained at low energies 
ω Δ( ) for the nonmagnetic γ = 0 (panel (A)) and the spin–polarized Andreev reflections γ = ↑ (panel (B)) 

and γ = ↓ (panel (C)). The insets display the transmittances summed over all lattice sites.

Figure 5. Subgap conductances. False color plots of the differential conductance γdI V dV( )/i  of the ordinary 
(γ = 0, panel (A)) and the spin–resolved (γ = ↑, panel (B) and γ = ↓, panel (C)) Andreev transport channels 
obtained at temperature T = 5 · 10−4 t. The conductance is expressed in units 4e2/h. Plots (B) and (C) look very 
similar, but notice a strong difference in their scales.
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Discussion
We have studied the selective equal–spin Andreev spectroscopy (SESAR) which can empirically detect the polar-
ized Majorana quasiparticles appearing at the edges of the Rashba chain. We have shown that different amplitudes 
of the inter–site equal–spin pairing imply the magnetic polarization of the Majorana states and yields the spin–
dependent Andreev transport with substantially distinct probabilities in each spin components. Our theoretical 
results qualitatively agree with the recent finding by A. Yazdani14, who reported the spin–polarized features in the 
subgap spectroscopy. Even though the pure spin current (discussed in ref.2) is impossible – the spin current con-
ductance G V( )i

spin  could nevertheless filter the Majorana quasiparticles from the ordinary Andreev/Shiba states. 
Our quantitative estimations clearly show also that the non–polarized and spin–polarized Andreev conductances 
are much smaller than the unitary limit value 2e2/h as has been indeed observed by the STM15,16,23 and by the 
tunneling measurements via heterojunctions24.

Methods
Our calculations have been performed for the Rashba chain, comprising L = 70 atoms. In most of the numer-
ical calculations (except Fig. 6) we have used the following model parameters: magnitude of the induced pair-
ing Δ = 0.2 t, the spin–orbit coupling α = 0.15 t, the chemical potential μ = −2.1 t, and the external magnetic 
field gμBB/2 = 0.27 t. Such a choice of parameters locates the system strictly in a topological regime21. The spin–
resolved spectral functions, presented in Fig. 3, have been calculated using the following definition

ρ ω
π

= − 〈〈 〉〉σ σ σ ω+ Γ
ˆ ˆ †
d d( ) 1 Im ; , (8)i i i i, , /2N

where ΓN is the coupling to the STM tip (assumed to be ΓN = 0.01 t) and the Green function has been calculated 
numerically from ω ω= − −ˆ ˆG H( ) ( 1 )chain

prox 1. For L–site–long chain, the Hamiltonian Ĥchain
prox

 given by Eq. (1), is 
4 L × 4 L complex matrix and the currents in Eq. (5) have been calculated with a help of 8–point Gauss 
quadrature.

Let us outline a brief scheme for computing the charge tunneling current induced through i-th site of the 
chain coupled between the STM tip (N electrode) and the superconducting substrate (S electrode), for simplicity 
neglecting the inter-site hopping tij = 0. Using the Heisenberg equation we can express such current as


= − = − = 



−

ˆ ˆ ˆ ˆI V e d
dt

N e d
dt

N ie N V( ) , ,
(9)i tip tip itip tip

where e stands for elementary charge, = ∑σ σ σ
ˆ ˆ ˆ†N c ck k ktip , , ,  counts a number of electrons in STM tip, and 

= ∑ + . .σ σ σ−
ˆ ˆ ˆ

†
V V d c( h c )i ik k ktip , , ,  denotes the hybridization of i-th site with itinerant electrons of the tip. Since we 
are interested in the spin-resolved spectroscopy let us exprees (9) as Ii(V) = Ii↑(V) + Ii↓(V), where

 ∑=σ σ σ
<ˆ ˆ†I V e V d t c t( ) 2 Re{ ( ); ( ) }

(10)i
k

k k

and the lesser Green’s function is defined as ≡
<ˆ ˆ ˆ ˆA B i BA; . This mixed Green’s function can be determined 

using the Dyson equation = 〈 〉 + +
<

+
< <ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆA B A B A V B g A V B g; { , } [ , ]; [ , ];

r a. In our case, we obtain

∫
∫

τ τ τ

τ τ τ
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σ σ σ σ
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Figure 6. Evolution of transmittances. Unpolarized T 0(ω) (Panel (A)) and polarized T↑ (ω) (Panel (B)) 
transmittances summed over all lattice sites as a function of magnetic field. The topological phase starts around 
BZ = 0.21.
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with the bare Green’s functions τ ε= ε τ< − − −g t i f e( , ) ( ) i eV t
k k

( ) ( )k  and τ θ τ= − + ε τ− − −g t i t e( , ) ( )a i eV t
k

( ) ( )k .
For studying the charge transfer in the low bias regime (comparable or smaller than energy gap Δsc of the 

superconducting electrode) we can impose constant couplings to the normal π δ ω εΓ ≡ ∑ −V2 ( )N k k k
2  and 

superconducting electrode π δ ω εΓ ≡ ∑ −V2 ( )S q q q
2

. Substituting (11) to (10) we get

∫ ∫
ω
π

τ τ ω

τ

= − Γ 〈〈 〉〉

+〈〈 〉〉

σ
ω τ

σ σ

σ σ

−∞

− −

<

ˆ ˆ

ˆ ˆ

†

†

{
}

(
)

I V e d d e d t d f

d t d

( ) 2
2

Im ( ); ( ) ( )

( ); ( )
(12)

i N
t i eV t r( ) ( )



Introducing the Nambu notation Ψ = ↑ ↓
ˆ ˆ ˆ† †

d d( , )d , Ψ = Ψˆ ˆ † †( )d d  we can define the matrix Green’s function 
τ τ τ τ′ = 〈〈Ψ Ψ ′ 〉〉ˆ ˆ †

G ( , ) ( ); ( )d d d  and recast expression (12) as

∫ ∫ω τ τ ω τ= −
Γ

+ω τ
↑

−∞

− − <{ }I V e
h

d d e G t f G t( ) 2 Im ( ( , ) ( ) ( , ) )
(13)i

N
t i eV t

d
r

d
( ) ( )

11 11

The lesser matrix Green’s function obeys the Keldysh equation = + Σ + Σ + Σ< < <G G g G G G(1 ) (1 )r r a a r a, 
where for brevity we dropped the temporal arguments. In our case the first term vanishes, so we are left with 

= Σ + Σ + Σ + Σ< < < < <G G G G G G G G Gr a r a r a r a
11 11 11 11 11 12 21 12 21 11 12 22 21. Using the explicit selfenergies τΣαβ

< t( , ) we finally 
obtain the total current given by25

= +I V I V I V( ) ( ) ( ), (14)i i i
0 1

where the first contribution (Andreev current)

∫ ω ω ω ω= + − −I V e
h

d T f eV f eV( ) ( ) [ ( ) ( )] (15)i i
0 0

describes processes, in which electrons from the normal STM tip are scattered back to the same electrode 
holes, injecting Cooper pairs to the superconducting substrate. Its transmittance depends on the anomalous 
(off-diagonal) retarded Green’s function

ω = Γ + ′ ↑ ↔ ↓ ′.
ω↑ ↓

ˆ ˆT d d( ) (16)i N i i
r0 2

2

The other contribution appearing in equation (14) takes the usual form

 ∫ ω ω ω ω= + −I V e d T f eV f( ) ( ) [ ( ) ( )] (17)i i
1 1

and its transmittance consists of three terms

ω ρ ω

ω

= Γ Γ |〈〈 〉〉 | + |〈〈 〉〉 |

−
Δ
| |

〈〈 〉〉 〉〉 + ′ ↑ ↔ ↓ ′

ω ω

ω ω

↑ ↑ ↑ ↓

↑ ↑ ↑ ↓

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

†

†

T d d d d

d d d d

( ) ( ) (
2 Re[ ])

(18)

i N S S i i
r

i i
r

sc
i i

r
i i

r

1 2 2

with ρ ω θ ω= − Δ
ω

ω − Δ
( ) ( )S sc

sc
2 2

. These terms correspond to the single particle tunneling, electron to hole 

conversion (“branch crossing” in the language of Blonder-Tinkham-Klapwijk approach) and electron to Copper 
pair scattering, respectively25. At zero temperature I V( )i

1  vanishes in the sub-gap regime e|V| < Δsc for this reason 
the charge current can be transmitted solely via the Andreev channel.

Situation studied by us in the main text is a bit more complex, because of the inter-site p-wave pairing that 
activates the equal spin Andreev scattering processes. Their contribution to the subgap current can be expressed 
in the same way as (15) with straightforward generalization of the transmission (16).
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