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We study the charge current transmitted through the corre-
lated quantum dot characterized by a finite magnitude of the
Coulomb interaction |U |. At low temperatures the correlations
can lead to a formation of the spin (for U > 0) or charge
(for U <0) Kondo states which qualitatively affect the trans-

port properties. We explore the influence of charge Kondo ef-
fect on the electron pair tunneling introducing the auxiliary
two-channel model accounting for the fluctuations between the
empty and doubly occupied states on QD.

1 Introduction Electronic transport through the cor-
related quantum dots (QDs) has recently attracted a con-
siderable interest both from a point of view of fundamental
research as well as practical applications [1]. Both these
aspects are possible because of a large degree of flexibility
for adjusting a coupling of QD to the external leads and
a controlled positioning of the quantized QD levels by the
gate voltage.

Among the most interesting achievements, there has
been obtained an equivalent of the many-body Kondo ef-
fect [2] earlier known in the solid state physics [3]. At suf-
ficiently low temperatures T <TK (where TK denotes the,
so called, Kondo temperature) the spin of QD combines a
singlet state with the spins of itinerant electrons from the
leads. In consequence the QD spectrum develops a narrow
resonance at the chemical potential which enhances the
low bias conductance up to the perfect unitary limit value
2e2/h [2]. On a microscopic level the underlying Kondo
physics arises from effective an antiferromagnetic interac-
tion between the QD and mobile electrons as envisaged
by Schrieffer and Wolf within the perturbative canonical
transformation [4].

Recently several authors [5,6] have pointed out that
molecular quantum dots affected by the bosonic degrees of
freedom such as e.g. phonons could show up (besides the
side-band structure) signatures of the charge Kondo effect.
This phenomenon has been previously theoretically pre-
dicted for the heavy fermion compounds [7] and it might
occur when the bipolaronic shift lowers the charging en-

ergy to a negative value U < 0. The essential physics in-
volved in the charge Kondo effect relies on a neutraliza-
tion of the electron pair charge at the negative U center (in
the present context on QD) by electrons (or holes) from
the adjacent leads. Due to a preferred double occupancy of
QD there is activated a mechanism of the electron pair tun-
neling which manifests the qualitative features of charge
Kondo effect in the differential conductance [6,8] and in
the thermopower [9].

In what follows we propose a phenomenological two-
channel model which allows for a simple description of
charge tunneling under the circumstances when the empty
|0〉 and doubly occupied |↑↓〉 states are degenerate (be-
ing the necesarry condition for realization of the charge
Kondo effect [5–7]). We discuss some preliminary results
obtained for the QD spectral function and the differential
conductance in the symmetric case using an approximate
treatment for the on-dot correlations.

2 The spin versus charge Kondo effects For a de-
scription of charge tunneling through the single level cor-
related quantum dot we use the Anderson model [3]

Ĥ =
∑
k,β,σ

ξkβ ĉ†kβσ ĉkβσ (1)

+
∑
k,β,σ

(
Vkβ d̂†σ ĉkβσ + V ∗

kβ ĉ†kβσd̂σ

)
+ ĤQD,

ĤQD =
∑

σ

εd d̂†σ d̂σ + U d̂†↑d̂↑ d̂†↓d̂↓. (2)
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Operators ĉ
(†)
kβσ correspond to annihilation (creation) of

electrons in the left β =L or right h.s. β =R lead. The ener-
gies ξkβσ =εkσ−μβ are measured with respect to the chem-
ical potentials which under nonequilibrium conditions can
be shifted by an applied bias V through μL −μR = eV .
The other terms containing V

(∗)
kβ describe hybridization of

the QD to external leads. As usually in (2) d̂
(†)
σ denote the

annihilation (creation) of electron at the QD energy level
εd and U is the on-dot Coulomb potential.

Let us first start by focusing on a widely studied
case of the repulsive charging energy U > 0. Condi-
tions necesarry for a formation of the Kondo effect can
be explained using a perturbative treatment for the hy-
bridization term Ĥhyb =

∑
k,β,σ[Vkβ d̂†σ ĉkβσ + h.c.].

Unitary transformation ˆ̃H = eÂĤe−Â with the antiher-
mitean generating operator Â = Â − Â† where Â =∑

k,β,σ
Vkβ

εd−ξkβ

[
U

εd+U−ξkβ
d̂†−σ d̂−σ − 1

]
ĉ†kβσd̂σ eliminates

Ĥhyb up to the quadratic terms [4]. Since for U > 0 the
double occupancy of QD is energetically expensive we can
restrict to a subspace of the singly occupied states when
transformed Hamiltonian reduces to the spin Kondo model
[4]

ˆ̃HKondo
spin =

∑
k,β,σ

ξkβ ĉ+
kβσ ĉkβσ

−
∑

k,q,β,β′

Jβ,β′

k,q Ŝd · Ŝkβ,qβ′. (3)

The QD spin operator Ŝd can be conveniently expressed
through Ŝ+

d = d̂†↑d̂↓, Ŝ−
d = d̂†↓d̂↑, and Ŝz

d = 1
2 (d̂†↑d̂↑ −

d̂†↓d̂↓) and similarly Ŝ+
kβ,qβ′ = ĉ†kβ↑ĉqβ↓ etc. Near the

Fermi surface the effective coupling Jβ,β′

k,q simplifies to

[4] Jβ,β′

kF ,kF
= U

εd(εd+U) VkF βV ∗
kF β′ . In the regime of an-

tiferromagnetic coupling Jβ,β′

kF ,kF
< 0 and at sufficiently

low temperatures T < TK the magnetic moment of QD
is perfectly screened by spins of the itinerant electrons.
For typical QDs the value of Kondo temperature TK �√

UΓ
2 exp

{
πεd(εd+U)

UΓ

}
(where Γ � 2π

∑
β |VkF β|

2ρβ(εF )

is the electrodes’ density of states at the Fermi level) is of
the order of hundreds mK. Appearance of such resulting
Kondo resonance pinned at the electrodes’ chemical po-
tentials leads to enhancement of the zero bias conductance
which has been confirmed experimentally [2].

Formally in the negative U model the canonical trans-
formation can be done in the same way. However, since
the empty and doubly occupied QD states are energetically
more favorable therefore one has to focus mainly on the
terms describing pair tunneling [6]

∑
k,q,β,σ,σ′

(
Jβ,β′

k,q d̂†σ d̂†−σ ĉkβ−σ′ ĉqβ′σ′ + h.c.
)

.

Taraphder and Coleman [7] have shown that in the sym-
metric case εd + U/2 = 0 (here assuming also V = 0)
the attractive U < 0 model becomes exactly isomorphic
to its repulsive U > 0 counterpart (2) under the fol-
lowing particle–hole (p–h) transformation d̂†↓ → −d̂−↓,

ĉ†kβ↓ → ĉ−kβ↓. Outside the symmetric situation the p–h
transformation still renders the structure of (2) with an ad-
ditional Zeeman field Bz = 2εd + U (see Ref. [6] for de-
tails). One can then express the effective Hamiltonian [4]
operating on the relevant empty and doubly occupied QD
states by

ˆ̃HKondo
charge =

∑
k,β,σ

ξkβ ĉ+
kβσ ĉkβσ (4)

+ 2
∑

k,q,β,β′

Jβ,β′

k,q T̂ d · T̂ kβ,qβ′ + T̂ z
d Bz

where T̂ +
d = d̂†↑d̂

†
↓, T̂ −

d = d̂↓d̂↑, and T̂ z
d = 1

2 (d̂†↑d̂↑ +

d̂†↓d̂↓ − 1) [7]. Using this pseudospin representation the
spin Kondo effect can be directly translated into the charge
Kondo effect of the model (4) taking place near the degen-
eracy point εd + U/2 ∼ 0. Its consequences on the pair
tunneling conductance have been partly examined in Refs.
[5,6].

3 Two-channel model To consider the situation when
the empty and doubly occupied states of QD are nearly de-
generate we introduce the following auxiliary model

ĤQD =
∑

σ

Ed d̂†σ d̂σ (5)

+ g
(
b̂† d̂↓d̂↑ + d̂†↑d̂

†
↓ b̂

)
+ Epair b̂†b̂.

Whenever the electron pair happens to arrive on the d-QD
we let it be stored on the side-coupled buffer described by
the operators b̂(†). They obey the hard-core boson relations
[11] so that at most only one electron pair can be allocated
on this side-coupled b-QD. Similar lattice version of this
model has been proposed in the solid state physics to ac-
count for the bipolaron superfluidity in the crossover be-
tween the adiabatic and antiadiabatic regimes [11].

Loosely speaking the correspondence between (5) and
the negative U < 0 Hamiltonian (2) holds via substi-
tutions g = U , Epair = 2εd + U . This relation can
be further supported analytically in the Lagrangian lan-
guage after performing the Hubbard-Stratonovich trans-
formation which eliminates Ud̂†↑d̂↑d̂

†
↓d̂↓ through the addi-

tional bosonic fields, here denoted by b̂(†).
We will show that the two-channel QD described by (5)

is able to capture the charge Kondo effect [7] known for the
negative U Anderson model [12] near the symmetric situ-
ation. The underlying mechanism is driven by supressing
the quantum fluctuations between the empty and doubly
occupied states. Within the phenomenological model (5)
such fluctuations are present even in the case of isolated
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Figure 1 Spectral function of the molecular quantum dot for the
equilibrium situation (V = 0) in the symmetric case Epair = 0,
Ed = 0 for several temperatures. We used g = Γβ assuming the
wide-band limit Γβ = 0.001D, where D denotes the conduction
electron bandwidth.

molecular quantum dot i.e. for Vkβ = 0. Out of 8 possible
configurations being a product of the fermionic states |0 >,
| ↑>, | ↓>, | ↑↓> and the hard-core bosonic ones |0), |1)
two of them ↑↓> ⊗|0) and |0 > ⊗|1) get mixed due to the
Andreev-like interaction. A complete set of the eigenstates
can be obtained using the transformation [13]

|B > = sin(ϕ) |0 > ⊗|1) + cos(ϕ) | ↑↓> ⊗|0), (6)

|A > = cos(ϕ) |0 > ⊗|1) − sin(ϕ) | ↑↓> ⊗|0) (7)

with tan(2ϕ) = 2g/ (2Ed − Epair).
For such limit Vkβ → 0 the Green’s function Gd(ω) =

〈〈d̂σ; d̂†σ〉〉ω acquires the three pole structure [13]

G
Vkβ=0
d (ω) =

Z

ω − Ed
+ (1 −Z)

[
u2

ω − E+
+

v2

ω − E−

]

(8)
where

v2, u2 =
1

2

(
1 ∓

1

γ

)
, (9)

E−, E+ =
1

2
[Epair ∓ (2Ed − Epair)γ] (10)

with γ2 = 1 + 4g2/(2Ed − Epair)
2 and

Z =
(
1 + e−Ed/kBT + e−(Ed+Epair)/kBT

+ e−(2Ed+Epair)/kBT
)

/
(
1 + 2e−Ed/kBT

+ e−(Ed+E−)/kBT + e−(Ed+E+)/kBT

+ 2e−(Ed+Epair)/kBT + e−(2Ed+Epair)/kBT
)

.

Spectral weight Z of the single particle level is gradually
depleted for a decreasing temperature and its amount is
transferred to the bonding E− and antibonding E+ levels.
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Figure 2 The differential conductance G(V ) as a function of bias
voltage V for the symmetric case with T = 0.2g and g = ΓL.
Width of the central (superradiance) peak is proportional to tem-
perature whereas the zero bias value G(0) still remains constant
(temperature-independent) [6].

To get some insight into the many-body physics we em-
ploy a simple approximation based on the following self-
energy

Gd(ω)−1 = G
Vkβ=0
d (ω)−1 −

∑
k,β

|Vkβ |
2

ω − ξkβ
. (11)

In Figure 1 we show the spectral function ρd,σ(ω) =
− 1

π ImGd(ω + i0+) for the symmetric case Epair = 0,
Ed = 0 when u2 = 0.5 = v2 and E+ = g, E− = −g.
We notice the three-peak structure where the middle one
is sensitive to temperature due to transfer of its spectral
weight Z . Let us emphasize that this is a behavior typi-
cal for the Dicke effect known in quantum optics where
the narrow/broad energy features correspond to the states
weakly/strongly coupled to the electromagnetic field and
they contribute the subradiant/superradiant emission lines
[14]. Recently a similar concept of the Kondo-Dicke ef-
fect has been proposed in mesoscopic physics for a set of
three vertically coupled quantum dots [15]. Our proposal
(5) formally belongs to the same class of models. Some
details concerning its relation to the Dicke effect has been
already in pointed out in the review paper [14].

For the present context it is important to mention that
the particular value of the spectral function ρd,σ(ω = 0)
is fixed (temperature-independent). This property has an
impact on the low-voltage differential conductance of the
charge current.

4 Transport properties External bias V applied be-
tween the electrodes induces the charge and energy trans-
port through the interface. We calculate the charge current
I(V ) = −e d

dt 〈N̂L〉 following the standard procedure [1]
which leads to the following Landauer-type formula [10]

I(V ) =
2e

h

∫ ∞

−∞
dω[f(ω − μL)−f(ω − μR)] T (ω), (12)
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where f(ω) = [1 + exp(ω)/kBT ]
−1. The transmission co-

efficient T (ω) depends on the spectral function

T (ω) =
∑

σ

ΓL(ω)ΓR(ω)

ΓL(ω) + ΓR(ω)
ρd,σ(ω)s (13)

where the hybridization couplings are defined by Γβ(ω)=
2π

∑
k |Vkβ |

2δ (ω − εkβ). In particular, at low tempera-
tures the zero bias conductance

G(V =0) =
2e2

h

∫ ∞

−∞
dω

[
−

df(ω)

dω

]
T (ω)

simplifies to

lim
T→0

G(0) =
2e2

h

ΓL(0)ΓR(0)

ΓL(0) + ΓR(0)

∑
σ

ρd,σ(0). (14)

Such result along with the behavior presented in Figure 1
explains why the value of low temperature conductance
G(0) is pinned at a constant value. However, right outside
the zero bias the differential conductance drops off as is
illustrated in Figure 2. Width of the narrow conductance
peak around the its zero bias value is proportional to tem-
perature in agreement with the previous study [6].

5 Summary We have studied the charge transport
through a correlated quantum dot with an effective nega-
tive value of the Coulomb interaction U < 0. To account
for the quantum fluctuations between the empty and dou-
bly occupied states we have introduced the phenomenolog-
ical model with QD dot coupled to an additional electron
pair buffer via the Andreev-type interaction. Focusing on
the symmetric case, when the Kondo effect can arise in the
pseudospin charge channel [7], we have examined its influ-
ence on the spectral function and the differential conduc-
tance. For both these quantities we have found the narrow
peak whose height is constant whereas its width is propor-
tional to temperature. This resembles the properties of the
Dicke effect [14] which has been recently independently
reported for a configuration composed of three vertically
coupled quantum dots [15]. It might be of some interest
to proceed an analysis of here proposed model outside the
symmetric case and to adopt some more sophisticated self-
consistent treatment for the Andreev-like interaction on the
molecular quantum dot.

Acknowledgements This work is partly supported by
the Polish Ministry of Science and Education under the grants
NN202187833 and NN202373333.

References

[1] I.L. Aleiner, P.W. Brouwer, and L.I. Glazman, Phys. Rep.
358, 309 (2002).
H. Haug, A.P. Yauho, Quantum Kinetics in Transport and
Optics of Semiconductors (Springer-Verlag, Berlin, 1996).

[2] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D.
Abusch-Magder, U. Mairav, and M.A. Kastner, Nature 391,
156 (1998).
W.G. van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elz-
erman, S. Tarucha, and L.P. Kouwenhoven, Science 289,
2105 (2000).

[3] A.C. Hewson, The Kondo Problem to Heavy Fermions
(Cambridge University Press, Cambridge, 1993).

[4] J.R. Schrieffer and P.A. Wolf, Phys. Rev. 149, 491 (1966).
[5] J. Mravlje, A. Ramsak, and T. Rejec, Phys. Rev. B 72,

121403 (2005).
L. Arachea and M.J. Rozenberg, Phys. Rev. B 72, 041301
(2005).
P.S. Cornaglia, H. Ness, and D.R. Grempel, Phys. Rev. Lett.

A.S. Alexandrov and A.M. Bratkovsky, Phys. Rev. B 67,
235312 (2003).
A.S. Alexandrov, A.M. Bratkovsky, and R.S. Williams,
Phys. Rev. B 67, 075301 (2003).

[6] J. Koch, E. Sela, Y. Oreg, and F. von Oppen, Phys. Rev. B
75, 195402 (2007).
J. Koch, M.E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96,
056803 (2006).

[7] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814
(1991).

[8] M.J. Hwang, M.S. Choi, and R. Lopez, Phys. Rev. B 76,
165312 (2007).

[9] M. Gierczak and K.I. Wysokiński, J. Phys. Conf. Ser. 104,
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