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1 Introduction 

The ability of an electron to tunnel across a potential barrier is one of the spectacular and fundamental 

quantum effects. It plays a particularly important role in nanodevices, where the transport is also domi-

nated by the charging effects. An electron sitting on a small grain between the leads prevents other elec-

trons from tunneling on it. In such a geometry one observes new quantum phenomena, like Coulomb 

blockade, quantization of the electric conductivity, appearance of the Kondo resonance, the spin Hall 

effect, etc. 

 The devices, called single electron transistors, which consist of a small island between two external 

electrodes allow the control of parameters and measurements of the transport characteristics precise 

enough to test the predictions of the many body theories for non-equilibrium charge [1] and heat [2] 

currents. The small central island, to be called quantum dot (QD), displays a rich physics very much 

similar to that of a magnetic impurity in a non magnetic host [3]. This situation enables exploration of 

the non-equilibrium regime which usually is not accessible in the condensed matter bulk systems. 

 Here we shall discuss the effect of strong Coulomb interaction (between electrons on an island) on the 

low temperature charge transport in the system with a bias voltage and temperature gradients applied 

between the electrodes. 

2 Microscopic model 

For a description of the tunneling through the quantum dot we use the single impurity Anderson model [3] 

 † † *( )
d

H c c d d Ud d d d V c d V c dβσ βσ βσ σ σ β βσ σ β βσ σ

β σ σ β σ

ξ ε+ + + +
Ø Ø≠ ≠

, , , ,

= + + + + ,Â Â Âk k k k k k k

k k

 (1) 

where c βσk
( †
c βσk

) operators correspond to annihilation (creation) of electrons in the left Lβ =  and right 

h.s. Rβ =  leads. Energies of the electrons βσ σ βξ ε µ= -
k k

 are measured from the chemical potentials 
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which in a presence of the bias voltage V are shifted from each other by 
L R

eVµ µ- =  and moreover, the 

electrodes can be characterized by different temperatures T
L
 and T

R
. Operators ,d

σ
 †
d
σ

 describe annihila-

tion and creation of electron on a quantum dot whose spectrum consists of a single energy level .

d
ε  The 

on-dot Coulomb potential U describes repulsion between electrons of opposite spins. It leads effectively 

to another (high energy) level at .

d
Uε +  

 The last term in the Hamiltonian (1) describes hybridization between localized electrons of the quan-

tum dot and mobile electrons of the leads. It gives rise to a finite broadening of the energy levels cen-

tered around 
d

ε  and .

d
Uε +  Moreover, when temperature is sufficiently low, the hybridization and Cou-

lomb interactions give a combined effect observed as a narrow resonance at .βω µ=  Under specific con-

ditions (which are discussed below) the itinerant electrons from vicinity of the Fermi energy (chemical 

potential) can form a singlet state with the QD electron [3]. This low energy Kondo peak together with 

the high energy features have a qualitative influence on the transport properties which is the main object 

of our study here. 

3 Conditions for the Kondo resonance 

Formation of the many-body Kondo effect requires existence of the effective spin on the dot with charge 

fluctuations frozen out by the strong Coulomb repulsion U. To consider the mechanism responsible for the 

Kondo effect one can restrict to a perturbative treatment of the hybridization hyb [ h.c.]H V c dβ βσ σ

β σ

+

, ,

= +Â k k

k

. 

It is convenient to construct a unitarily equivalent Hamiltonian e e
A A

H H�

-

=  in which hybH  is eliminated 

up to quadratic terms. Such canonical transformation has been designed for the model Hamiltonian (1) 

by Schrieffer and Wolff [5] using 

 † †
1 h.c

d d

V U
A d d c d

U

β

σ σ βσ σ

β σ β βε ξ ε ξ
- -

, ,

È ˘
= - - .Í ˙

- + -Î ˚
Â

k

k

k k k

 (2) 

Focusing on the Hilbert space corresponding to the singly occupied QD states one obtains the following 

spin–spin interactions 

 †( )H c c J c c
β β

σ σβ βσ βσ βσ β σ

β σ β σ σ

ξ�

+ , ¢
, ¢, ¢ ¢

, , , , , , ¢

= - ,Â Âk k k k q k q

k k q

S s  (3) 

where †
,S d d

+

Ø≠
=  †

,S d d
-

Ø ≠
=  † †1/ 2( )

z
S d d d d

Ø Ø≠ ≠
= -  and vector ( )

x y z
σ σ σ= , ,s  consists of the Pauli 

matrices. The effective exchange coupling between spins of the QD and itinerant electrons is given by 

 
2 ( ) ( ) ( ) ( )

d d d d

V V U U
J

U U

β ββ β

β β β βε ξ ε ξ ε ξ ε ξ

¢, ¢

,

¢ ¢

È ˘
= + .Í ˙

- + - - + -Î ˚

k q

k q

k k q q

 (4) 

Near the Fermi surface ( 0
F

ξ =
k

) the coupling simplifies to ( / ( ))
F F F F d d

J V V U U
β β

β β ε ε
, ¢

, ¢= +k q k q . It becomes 

negative (antiferromagnetic) for the chemical potential located between 
d

ε  and 
d

Uε + . Absolute value of 

such antiferromagnetic coupling is large either for 
d

ε µ
-

Æ  or for .

d
Uε µ

+

+ Æ  

 One should however be cautious analyzing results of the Schrieffer-Wolff transformation because 

Eq. (4) may eventually diverge due to vanishing energy denominators. This ill-defined ultraviolet cutoff 

problem can be regularized using some other better controlled methods such as the Renormalization 

Group (RG) theory [6] or the Bethe ansatz [7]. Systematic improvement of the Schrieffer-Wolff trans-

formation has been also proposed recently by Kehrein and Mielke [8]. These authors projected out the 

hybridization term hybH  by means of the continuous canonical transformation ( ) ( )
e e
A l A l

H
- . This idea has 

been introduced by Wegner [9] in analogy to a general scheme of the RG method. 
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Fig. 1 Variation of the spin–spin coupling 
F

J
β β,

,k q  versus ε
q
 for 1U D=  in the equilibrium situation 0V = . The left 

h.s. panel corresponds to 0 03
d

Dε = - .  (the Kondo regime) and the right h.s. one to 0 03
d

Dε = .  (the mixed valence 

regime). Thick solid lines show the results obtained by the continuous canonical transformation [8] which are com-

pared with the standard Schrieffer–Wolff transformation [5] illustrated by the dashed lines. 

 

 Solution of the corresponding flow equations [8] improves the Eq. (4) and yields the following spin–

spin coupling 

 
2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d d d d

d d d d

U U
J V V U

U U

β β β ββ β

β β

β β β β

ε ξ ε ξ ε ξ ε ξ

ε ξ ε ξ ε ξ ε ξ

� � �

� � � �

¢ ¢, ¢

, ¢

¢ ¢

- + - + - + -

= .

- + - + - + -

k k q q

k q k q

k k q q

 (5) 

Energies 
β

ξ�
q

 of the mobile electrons are simultaneously renormalized hence the exchange coupling (5) is 

completely different from Eq. (4). In Fig. 1 we show variation of 
F

J
β β,

,k q versus ε
q
 where, for simplicity, 

we neglected the renormalizations of energies ββ
ξξ� �
qq

. One notices that the extent of antiferromagnetic 

interactions (negative value of the exchange coupling J) spread over different regimes in both methods. 

 The spin–spin coupling J β β, ¢

,k q  has a direct influence on the effective density of states of the QD. In 

particular, it determines the characteristic temperature T
K
 below which the resonance starts to be formed. 

In the literature there are various definitions of the Kondo temperature T
K
. For instance, by using the 

Bethe ansatz it has been argued that T
K
 can be expressed as [7] 

 
B

2
exp{ [2 ( ) ]}

π F FK c

D
T J

k

β β
Φ ρ µ�

,

,

- ,k q  (6) 

where ( ) (1/ | |) (ln | |)/2x x xΦ = -  and ( )
c

ρ µ  is the density of states for c electrons in a conduction band of 

the width D. The Eq. (6) is restricted to the equilibrium case .βµ µ=  Kondo temperature T
K
 is exponen-

tially dependent on the effective spin–spin coupling J, however it is well defined only if the interactions 

are antiferromagnetic near the Fermi surface (see Fig. 1). 

4 Role of the particle–hole symmetry 

We can notice in Fig. (1) that 
F

J
β β,

,k q is symmetric with respect to the point /2
d

Uξ ε= +
q

. For the equilib-

rium case this property is related to invariance of the Anderson model (1) with respect to the particle–

hole transformation defined by 

 † † † †
d d d d c c c cσ σ σ σ βσ βσ βσ βσ

� �

� �∫ , ∫ , ∫ , ∫ .
k k k k

 (7) 

Using the new operators introduced in Eq. (7) one finds that the Hamiltonian (1) preserves its initial 

structure upon simultaneously transforming the model parameters to 

 *
d d

U U U V Vβ β ββ
ξ εξ ε � �

�

�= - , = - - , = , = - .
k k kk

 (8) 
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In particular, the single impurity Anderson model (1) has a particle–hole symmetry when /2
d

U βε µ+ = . 

For other values of 
d

ε , U and βµ  the particle excitation spectrum at ω  is always identical with the hole 

excitation spectrum at U–ω. Let us emphasize that this property has nothing to do with approximations 

employed either to the hybridization term (the preceding section) or to the on-site interaction (discussed 

in the next section). Such symmetry between the particle and hole excitations does clearly show up in the 

transport properties. 

5 Transport properties 

By applying a source-drain voltage V between the L and R electrodes (so that the chemical potentials get 

shifted 
L R

eVµ µ- = ) or by imposing some temperature difference 
L R

T T TD = -  one induces the charge 

and heat currents through the quantum dot. In this work we focus on the charge transport 

( ) (d/d )
L

I V e t N= - · Ò. Within the non-equilibrium Keldysh formalism [4] one can determine a steady 

current using the generalized Landauer formula [10] 

 
L R

2
( ) d [ ( ) ( )] ( )

e
I V f f T

h
ω ω µ ω µ ω

•

-•

= - - - ,Ú  (9) 

where 1

B
( ) [1 exp ( )/ ] .f k Tω ω

-

= +  It has been shown [4] that the transmission coefficient ( )T ω  is 

 L R

L R

( ) ( )
( ) ( )

( ) ( )
T

σ

σ

Γ ω Γ ω
ω ρ ω

Γ ω Γ ω
=

+
Â  (10) 

and, as usually, the weighted densities of states are defined by 2( ) 2π | | ( )Vβ β βΓ ω δ ω ε= -Â k k

k

. We fur- 

ther assume these functions ( )βΓ ω  to be constant for energies | | Dω £ . The density of states of the quan-

tum dot ( ) (1/π) Im ( 0 )r

G i
σ

ρ ω ω
+

= - +  must be determined using the Fourier transform of the retarded 

Green’s function † †( ) ( ) ( ) ( ) ( ) ( ) .r

G t t i t t d t d t d t d t
σ σ σ σ σ

θ, = - - · + Ò¢ ¢ ¢ ¢  

 In this work we focus on the semi-equilibrium situation (some more general case will be discussed 

separately [11]). For a qualitative study of the excitation spectrum we use the simplest procedure based 

on the equations of motion for the Green’s function. Following the scheme described in Ref. [12] we 

determine the retarded Green’s function 

 
1

0 3

1 1

0 0 3 1

( ) [ ( ) ( ) (1 )]
( )

[ ( ) ( )] [ ( ) ( ( ) ( ))] ( )]

r

r d d

d r r

d d

g U n
G

g g U U

ω Σ ω Σ ω
ω

ω Σ ω ω Σ ω Σ ω Σ ω

-

- -

- + + -
= ,

- - + + +
 (11) 
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Fig. 2 Effective density of states ( )ρ ω  obtained when 
d

ε  is located slightly below the Fermi energy µ . 



phys. stat. sol. (b) 244, No. 7 (2007)  2441 

www.pss-b.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Original

Paper

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

-8 -6 -4 -2  0  2

ρ(
ω

)

ω/Γ

VG= -0.5Γ
VG= 0Γ
VG= 0.5Γ
VG= 1Γ

  

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10  12  14

G
(V

)

eV/Γ

VG= -0.5Γ
VG= 0Γ

VG= 0.5Γ
VG= 1Γ

 
 

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-40 -20  0  20  40  60

G
(V

=
0)

VG/Γ

T=0.0025Γ
T=2.5Γ

 

 

where †

d
n d d

σ σ
= · Ò, 1( ) [ ]r

d d
g ω ω ε

-

= -  denotes the Green’s function of non interacting system ( 0U = )  

and 2 1

0
( ) | | ( ) .V β β

β

Σ ω ω ξ -

= -Â k k

k

 The effect of finite Coulomb interaction U enters through the 1 2ν = ,  

selfenergies given by 
12 1( )( ) | | [ ( 2 ) ] ( )

d
V U Fβν β β ν

β

ω ξΣ ω ω ε ξ ω
-

-

-= + - - +Â kk k

k

 with 
1
( ) ( )F fω ω µ= -  

and 
3
( ) 1.F ω =  In Fig. 2 we illustrate the density of states ( )

d
ρ ω  for high temperature 

K
T T>  (panel on 

the left) and for 
K

T T<  (panel on the right). 

 In the limit 0V Æ  the differential conductance ( ) d /dG V I V=  simplifies to 

 
22 d ( )

( 0) d ( )
d

e f
G V T

h

ω µ
ω ω

ω

•

-•

-È ˘Æ = -Í ˙Î ˚Ú  (12) 

and at very low temperatures (12) implies that 2

L R L R
(0) (2 / ) /( ) ( )G e h

σ

σ

Γ Γ Γ Γ ρ µ= + Â . Therefore the 

zero bias conductance (0)G  is proportional to the density of states of the quantum dot on the Fermi level 

ω µ= . In Fig. 3 we show the low temperature density of states ( )ρ ω  and the corresponding differential 

conductance ( )G V  computed for identical leads 
L R

Γ Γ Γ= ∫  with the Coulomb interaction 50U Γ=  

and the single particle energy level assumed to depend on the gate voltage through 3
d G

Vε Γ= - - . Al-

though the zero bias conductance shows a strong enhancement we can notice that the equation of motion 

technique does not reproduce a well defined value of the unitary limit 2(2 / )e h . For this reason in the right 

h.s. panel of Fig. 3 we do not obtain a plateau typical for the Kondo regime. Such fine behaviour could 

be obtained within better controlled treatments as the NCA or the numerical renormalization group 

method. 

Fig. 3 Density of states ( )ρ ω  and the differential 

conductance ( ) ( )/G V I V V= ∂ ∂  for several values of the 

gate voltage 
G

V  and 
K
.T T<  The bottom panel shows the 

zero bias conductance versus the gate voltage 
G
.V  
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Fig. 4 Variation of the thermopower S versus the gate voltage 
G

V  for two representative temperatures 

K
T T>  (left h.s. panel) and 

K
T T<  (right h.s. panel). 

 

 Figure 4 presents the thermopower ( ) 0( / )|
I V

S V T
=

= - D  calculated in the linear response limit 0V Æ . At 

high temperatures S has a characteristic saw-tooth shape which, roughly speaking, follows the semi-

classical Mott relation 2 2

B
(π /3 ) ln /S k T e G µ= ∂ ∂ . For low temperatures, on top of this shape there arise 

two additional anomalous features: one of them comes from the typical Kondo effect (which occurs 
d

ε  

approaches the Fermi energy µ  from below) and the other one corresponds to a similar Kondo effect for 

holes (when 
d

Uε +  approaches µ  from above). Existence of these two features is strictly related to the 

particle-hole symmetry of the Anderson model (1). 

6 Summary 

We studied the charge transport through a correlated quantum dot. In agreement with the experimental 

data [1] we found that the differential conductance G oscillates as a function of the gate voltage VG and 

temperature shows merely a quantitative effect on it. The thermoelectric power S is characterized by a 

saw-tooth shape versus VG. For low temperatures we observe an emergence of the anomalous features 

related with the Kondo resonance either for particles or for holes. The lower feature has been already 

observed experimentally [2] and we hope that the other one could be checked in the future measurements. 
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