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We analyze the charge transport through a single level quantum dot coupled to a normal and superconduct-
ing lead where the electron pairs exist either as the coherent �for temperatures below Tc� or incoherent objects
�in a region Tc�T�T*�. Practically, this situation can be encountered using the high Tc superconducting
materials where precursor effects have been observed upon approaching Tc from above. Without restricting to
any particular microscopic mechanism, we investigate the qualitative properties of nonequilibrium charge
current caused by the electron pair coherence.

DOI: 10.1103/PhysRevB.76.104514 PACS number�s�: 74.45.�c, 74.20.Fg, 73.23.�b, 73.63.Kv

I. INTRODUCTION

It is a well established experimental fact that phase tran-
sition from the normal to superconducting state of the under-
doped high Tc copper oxides is accompanied by the appear-
ance of a pseudogap.1 Upon decreasing the temperature
below T* �larger than Tc� the single particle states become
gradually depleted over a certain energy region �����pg
around the Fermi level. This phenomenon is often interpreted
theoretically as a precursor of the true superconducting gap
usually present at temperatures T�Tc. On a microscopic
level, the pseudogap can be assigned to the appearance of the
electron pairs. Above Tc, their long-range coherence is miss-
ing because of the strong quantum fluctuations either driven
by the reduced dimensionality, due to a close neighborhood
to the Mott insulating state, or because of competition with
some other types of ordering. The incoherent electron pairs
have been unambiguously detected experimentally above Tc
in measurements of the large Nernst coefficient2 and in ob-
servation of the Berezinski-Kosterlitz-Thouless phase
fluctuations.3 There is, however, a great amount of contro-
versy regarding the temperature extent where the incoherent
pairs eventually exist. According to available experimental
data, their presence has been confirmed at least for a dozen
Kelvin above Tc, but such region might spread over a much
wider regime, perhaps up to T* where the pseudogap finally
closes.

Various tunneling techniques have been used for a long
time for probing the single particle spectra of the correlated
systems. The recent technological progress of spectroscopic
methods such as the scanning tunneling microscopy �STM�,4
the angle resolved photoemission spectroscopy �ARPES�,5
the Andreev-type techniques,6 and the Fourier transformed
scanning tunneling spectroscopy7 allow for precise measure-
ments of the energy, momentum, and spatially dependent
density of states. They are hence useful for studying the
pseudogap.

In the present work, we propose considering a spectro-
scopic method sensitive the coherence of electron pairs. For
this purpose, we explore a junction consisting of a normal
conductor coupled via the quantum dot to a superconducting
electrode. We claim that in such setup, one could distinguish
between the true gap and the pseudogap of the single particle

excitation spectrum. Pair coherence shows up there by the
unique temperature dependence of the differential conduc-
tance �see Fig. 9 in Sec. V�.

Our analysis here is not limited to any particular micro-
scopic model describing the formation of electron pairs and
onset of their coherence. We investigate on rather general
grounds the proximity effect, which gives rise to a particle-
hole mixing in the quantum dot spectrum at small energies
�����, and analyze its influence on the nonequilibrium
charge transport. We clear up few salient features typical for
normal-quantum dot-superconductor N-QD-S junctions. In
particular, for a limit of the strong on-dot repulsion, we re-
port that the Kondo resonance enhances the Andreev conduc-
tance below the Kondo temperature TK �assumed here to be
smaller than Tc�. This aspect of our work clears up some
earlier studies of the correlated quantum dot coupled be-
tween the normal and superconducting electrodes.

In Sec. II, we briefly introduce the problem explaining
how we treat the coherent and incoherent electron pairs.
Next, we discuss a spectrum of the quantum dot neglecting
the correlations �Sec. III� and considering the limit of very
strong on-dot interaction U=� �Sec. IV�. The main part of
our study is in Sec. V, where we determine the tunneling
conductance as a function of bias V applied across N-QD-S
junction for temperatures below and above Tc. In Sec. VI, we
check an influence of the anisotropic d-wave energy gap and
finally close the paper with summary and outlook for some
related problems.

II. FORMULATION OF THE PROBLEM

For a description of the quantum dot �QD� coupled to one
normal �N� and one superconducting �S� leads, we consider
the single impurity Anderson model

Ĥ = ĤN + ĤS + �
�

	dd̂�
† d̂� + Un̂d↑n̂d↑

+ �
k,�

�

=�N,S�

�Vk
d̂�
† ĉk
� + H.c.� . �1�

Operators d� �d�
†� annihilate �create� electrons on the QD

with a single particle energy �d. Coulomb potential U�0
describes the repulsion between electrons of opposite spins
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�= ↑ ,↓. Hybridization Vk

* describes the transfer of electrons

from the QD to the normal �
=N� or superconducting �

=S� leads.

We assume that the normal electrode is described by the

Hamiltonian of noninteracting fermions, ĤN=�k,���kN

−N�ĉk�N
† ĉk�N. To describe the superconducting lead, we use

a general expression

ĤS = �
k,�

��kS − S�ĉk�S
† ĉk�S + V̂pairing, �2�

where the two-body term V̂pairing induces either coherent �be-
low Tc� or incoherent �above Tc� electron pairs.

Without specifying V̂pairing nor restricting to any particular
microscopic mechanism of superconductivity, we proceed
along the lines of BCS-like treatment. For the superconduct-
ing state �below Tc�, we use the retarded Green’s function in
the Nambu representation given by the standard expression

GS
r�k,�� =	

uk
2

� − Ek
+

vk
2

� + Ek

ukvk

� + Ek
−

ukvk

� − Ek

ukvk

� + Ek
−

ukvk

� − Ek

vk
2

� − Ek
+

uk
2

� + Ek


 , �3�

where the quasiparticle dispersion is Ek=��kS
2 +�k

2 and �k


=�k
−
 measures the energy from the chemical potential

. As usual, �k denotes a gap of the single particle excita-
tions for S electrons, and the BCS coherence factors are uk

2

= 1
2
�1+

�kS

Ek
�=1−vk

2.

Since the excitation gap is known to develop well above
the transition temperature, we follow the arguments of Chin
et al.8 and impose the following phenomenological ansatz for
the effective gap:

�k
2 = �k,sc

2 + �k,pg
2 . �4�

The first part �k,sc is related to the superconducting order
parameter �ĉ−k↓Sĉk↑S, while �k,pg refers to the pseudogap.
For some quantitative study, we use temperature dependence
in a form

�k,sc�T� = ��k�0��1 − � T

Tc
�2

for T � Tc

0 for T � Tc.
� �5�

The pseudogap contribution �k,pq to the effective gap �Eq.
�4�� origins from the preformed electron pairs, and above Tc,
their long-range coherence is absent �hence, a name of the
incoherent pairs�. Such pairs ultimately dissociate at tem-
perature T*, so in analogy to Eq. �5�, we propose

�k�T� = �k�0��1 − � T

T*�2

. �6�

Above Tc, the off-diagonal long-range order is missing;
therefore, the retarded Green’s function �Eq. �3�� must reduce
to a diagonal structure for an entire temperature region Tc
�T�T*. To satisfy this physical constraint, we set ukvk
=�k,sc /2Ek. Thus, above Tc, the pseudogap enters the
Green’s function only by the diagonal terms:8

GS
r�k,�� =	

uk
2

� − Ek + i�k
+

vk
2

� + Ek + i�k
0

0
vk

2

� − Ek + i�k
+

uk
2

� + Ek + i�k


 . �7�

This sort of behavior �Eq. �7�� can be derived on a micro-
scopic level investigating the pairing interactions beyond the
mean-field BCS framework.9

We moreover introduced in expression �7� some phenom-
enological damping rate �k. For computational purposes, we
use

�k = �0+ for T � Tc,

�k�0�
T − Tc

T* − T
for Tc � T � T* � �8�

and take its momentum variation �k=�2 / ��+
��kS�
1000

�, where
parameter ���kF

. In Fig. 1, we illustrate the phenomeno-
logical temperature dependencies introduced in this section.

III. UNCORRELATED QUANTUM DOT

To introduce the formalism of our calculations, we first
start by analyzing the equilibrium case L=R. Using the
Nambu notation, we can express the retarded Green’s func-
tion of the QD through the Dyson equation

Gd
r���−1 = gd

r���−1 − �d
r��� , �9�

with two contributions to the matrix self-energy �d
r���

=�N
r ���+�S

r���. This problem can be solved exactly only for
the case of noninteracting QD �U=0� when

gd
0r���−1 = �� − �d + i0+ 0

0 � + �d + i0+ � , �10�

and the corresponding self-energies simplify to10

DOMAŃSKI, DONABIDOWICZ, AND WYSOKIŃSKI PHYSICAL REVIEW B 76, 104514 �2007�

104514-2



�N
0r��� = 	�

k

�VkN�2

� − �kN + i0+ 0

0 �
k

�VkN�2

� + �kN + i0+

 , �11�

�S
0r��� = �

k
�VkS�2	

uk
2

� − Ek + i�k
+

vk
2

� + Ek + i�k

ukvk

� + Ek + i�k
−

ukvk

� − Ek + i�k

ukvk

� + Ek + i�k
−

ukvk

� − Ek + i�k

vk
2

� − Ek + i�k
+

uk
2

� + Ek + i�k


 . �12�

Proper choice of the coefficient ukvk=
�k,sc

2Ek
assures that the

proximity effect appears in QD only for temperatures T
�Tc. Above Tc, the pseudogap affects the QD spectrum only
via the diagonal parts of Eq. �12�.

The hybridization coupling Vk
 can be conveniently re-
placed by the weighted density function �
���
=2��k�Vk
�2���−�k
�. For both electrodes being normal,
the QD spectral function �d���=− 1

�Gd11
r ��� acquires a

Lorentzian shape centered around the single particle level �d
�see the dashed line in Fig. 2� with the effective broadening
�=�N+�S.

If one electrode is superconducting with an isotropic �k
independent� energy gap, we notice several qualitative as
well as quantitative differences of the QD spectrum.

�i� Since S electrons can occupy no states in the energy
gap �����, thereby the line broadening gets reduced �by
50% when �S=�N� and, in consequence, the QD peak
around �d becomes narrower.

�ii� A large amount of S electron states is accumulated
near �= ±� �i.e., at the square root divergences in the den-
sity of the S lead�. Efficiency of the hybridization VkS is
considerably enhanced, depleting the QD states at �= ±�.

�iii� A role of well defined quasiparticles in the supercon-
ducting state is played by the electron pairs. Due to the hy-
bridization VkS, such particle-hole mixing is also transferred
onto the QD spectrum �the proximity effect�. In Fig. 2, we
notice that besides the Lorentzian peak centered around �d,
there also appears its tiny mirror reflection at −�d.

To provide the arguments for the above mentioned effects,
we plot in Fig. 3 the diagonal and off-diagonal parts of the
matrix self-energy �d���. An odd symmetry of Im��12����
gives a nonvanishing Re��12���� for all energies located in-
side the energy gap �����. In diagonal term �11���, the
imaginary part is even �and negative� while the real part is
odd �therefore vanishing at �=0�. Similar quantitative be-
havior of the matrix self-energy �d��� has been reported by
several authors.11–14 However, to our knowledge, no clear
evidence of the particle-hole mixing �see Fig. 4� has been
emphasized so far. We would like to stress that splitting of
the Lorentzian inside the superconducting gap into the par-
ticle and hole peaks has nothing to do with the Kondo state;
a sole proximity effect is responsible for it. After this paper
was submitted, we noticed that the same results have been
obtained by Tanaka et al.15 using the numerical renormaliza-
tion group calculations.

IV. STRONG CORRELATION LIMIT

It is known from the theoretical16 and experimental
studies17,18 that the Coulomb interactions have a remarkable
influence on transport properties through the QD. In particu-
lar, such correlations are responsible for the Coulomb block-
ade �observed by oscillations of the differential conductance�

T
*Tc

∆(T)

γ(T)

∆sc(T)

∆(0)

0

FIG. 1. Temperature dependence of the single particle gap ��T�
�solid line�, the damping rate ��T� �dashed line�, and the supercon-
ducting order parameter �sc�T� �dotted line�.

−0.2 −0.1 0 0.1
0

10

ω

ρd(ω)

−∆

εd

−εd

∆

FIG. 2. Spectral function �d��� of the QD for U=0 with the
right hand side electrode being in a superconducting state �solid
line� and in a normal state �dashed line�. We used the isotropic
energy gap �k=0.1D and �d=−0.05D, �
=0.05D, and �=0.01D
and set the half bandwidth D as a unit for energies.
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and, at sufficiently low temperatures, produce the Kondo
resonance leading to enhancement of the conductance to the
unitary limit value 2e2 /h.

In this section, we consider the correlations focusing on
the extreme limit of U=�. Under such condition, no double
occupancy of the QD is allowed, and one expects it to have
a tremendous effect on the charge tunneling, especially in the
anomalous channels involving the electron pairs.

Excluding the doubly occupied states from the Hilbert
space can be formally achieved using the auxiliary fields

d̂�
† = f̂�

† b̂, d̂� = b̂† f̂�, �13�

where the boson b̂�†� and fermion operators f̂�
�†� correspond to

an annihilation �creation� of the empty and singly occupied
states on the QD. These new fields must obey the local con-

straint b̂†b̂+�� f̂�
† f̂�=1.

There are various methods to deal with the local con-
straint. For simplicity, we apply here the technique proposed
by Le Guillou and Ragoucy,19 where projecting out the dou-
bly occupied states is achieved by appropriate commutation
relations between the operators of auxiliary fields. For the
present context �Eq. �1��, some necessary technical details
have been previously discussed in Ref. 10.

In the limit U=�, the Dyson equation �Eq. �9�� can be
solved using the renormalized propagator gd

r���= �1
−n−��gd

r0��� and the matrix self-energy

�

r ��� = ��


0r��� + �

Ir����/�1 − n−�� , �14�

where the contribution �

0r of noninteracting electrons is

given in Eqs. �11� and �12�. The other contribution �

Ir origi-

nates from the correlations and, under appropriate condi-
tions, leads to the Kondo effect.16 One finds10

�

Ir��� = nk
�3�


0r����3, �15�

where �3 is the Pauli matrix and nk
 denotes an average
occupancy of the k momentum in the 
th lead given by

nk
 = ��1 + exp� �kN

kBT
��−1

for 
 = N

1
2�1 −

�kS

Ek
tanh� Ek

2kBT
�� for 
 = S .� �16�

In Fig. 5, we show the spectral function �d��� calculated
for several temperatures in both the superconducting and
pseudogap states. In a comparison with the previous situation
U=0, we can notice the following:

�i� For temperatures T�Tc, there are visible two Lorent-
zian peaks; however, their positions are a bit shifted from
±�d because of a finite real part of the matrix self-energy
�14�.

�ii� For very low temperatures �T�TK�, there appears a
narrow Kondo resonance at the Fermi energy associated with
the spin singlet made of the QD and itinerant electrons �see
the inset of Fig. 5�.

−1 −0.5 0 0.5 1
−0.1

0

0.1

Re Σ11(ω)
Im Σ11(ω)

ω

−1 −0.5 0 0.5 1
−0.1

0

0.1

Re Σ12(ω)
Im Σ12(ω)

ω
−∆ ∆

(a)

(b)

FIG. 3. The real and imaginary parts of the matrix self-energy
for the diagonal �11

r ��� �top panel� and off-diagonal �12
r ��� �bottom

panel� terms. We used the same set of parameters as in Fig. 1.

-0.1
0

0.1ω -0.1

0

0.1

εd

10

ρd(ω)

FIG. 4. The ground state spectral function �d��� of the QD for
U=0 versus varying position of the energy level �d. One can note a
clear particle-hole mixing �two Lorentzians built around ±�d�.

−0.1 0 0.1
0

10

T=0.01 Tc

T=0.5 Tc

T=1.0 Tc

T=1.5 Tc

T=2.0 Tc
−0.02 0 0.02

0

10

0.01Tc

0.1Tc

0.2Tc

ω

ρd(ω)

FIG. 5. Spectral function �d��� of the QD in the limit U=�
obtained for �d=−0.05D, �
=0.01D assuming the isotropic energy
gap �k�T=0�=0.1D and T*=2Tc.
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�iii� In the pseudogap regime above Tc, we no longer ob-
serve a tiny Lorentzian at ��−�d and simultaneously a dip
of the spectral function at ���= ±�pg�T� gets smeared be-
cause of the damping effects.

For the particular set of parameters �
=0.01D, �d=
−0.05D used in Fig. 5, we estimate that the Kondo peak
disappears for temperatures higher than TK�0.15Tc. For
temperatures exceeding T*, the QD spectrum evolves back to
its single Lorentzian peak centered around �d.

V. TRANSPORT PROPERTIES

In order to study the nonequilibrium physics, we use the
Keldysh formalism. Applying a bias V leads to imbalance of
the chemical potentials N−S=eV, which induces the
charge current J�V�=−e d

dt�k,��ckN�
† ckN� through the QD.

Following the procedure described previously,10 we ex-
press the charge current J�V� in terms of the following con-
tributions:

J = J11 + J12 + J22 + JA. �17�

The first three components in Eq. �17� have the Landauer-
type structure

Jij�V� =
2e

h
� d�Tij�V��f�� − eV� − f���� , �18�

with the transmittances correspondingly defined by

T11�V� = − Im �11,S
r �G11�2�N��� , �19�

T12�V� = − 2 Im �12,S
r Re�G11G12

* ��N��� , �20�

T22�V� = − Im �22,S
r �G12�2�N��� . �21�

The last contribution describes the Andreev current

JA�V� =
2e

h
� d�TA�V��f�� − eV� − f�� + eV�� , �22�

where

TA�V� = − Im �22,N
r �G12�2�N��� . �23�

This type of current �Eq. �22�� arises when electron from the
N lead is converted into the Cooper pair in the S electrode
and simultaneously a hole is reflected back to the N lead. For
a detailed discussion of such anomalous Andreev current,
see, for instance, the recent review article.6 In a case when
the both leads are normal �i.e., �→0�, there survives only
J11�V� current and its transmittance �19� simplifies to the
Meir-Weingreen form.16

In Fig. 6, we plot the differential conductance G�V ,T�
=dJ�V� /dV as a function of the external bias V for a set of
representative temperatures. In the superconducting state, we
clearly notice a strong suppression of the charge current at
small voltages �eV����T�. Due to energy gap in the spec-
trum of S electrons, the tunneling occurs at small tempera-
tures mainly through the Andreev channel. However, below
Tc, the Andreev conductance GA�V ,T� is almost an order of

magnitude smaller than the normal state conductance
G�V ,T*�.

For temperatures below TK, there forms the Kondo peak
�see Fig. 5� which has an indirect effect on the differential
conductance at small biases �V�. From numerical calcula-
tions, we find that the Kondo peak enhances the zero-bias
conductance �compare the panels of Fig. 8� through the An-
dreev scattering. This zero-bias anomaly is rather residual as
compared to its efficiency for the N-QD-N junctions.16 We
checked that at temperatures below TK, the zero-bias conduc-
tance G�0,T� fits very well the universal parabolic variation
which is characteristic for the Kondo regime.

The limit
TK

Tc
�1 has been previously addressed by other

authors who used the mean-field theory for the auxiliary
fields11 and the non-crossing approximation �NCA� scheme
supplemented by additional diagrams responsible for the
anomalous channels of the transport.13 The authors of Ref.
11 concluded that the zero-bias enhancement is partly sup-
pressed for the N-QD-S junctions. In our present study, we
do find an enhancement of the Andreev conductance due the
Kondo resonance but actually this effect is so residual that it
has been overlooked in the former studies of our group.10 We
hope that, nevertheless, this fragile effect could be somehow
resolved experimentally.

For higher voltages, exceeding ��T�, a dominant part of
the charge transport comes from the normal current J11�V�.
In Fig. 7, we show each contribution to the total conductance
at small temperature T�TK�Tc. The anomalous channels
J12�V� and J22�V� are activated slightly outside the energy
gap and, like JA�V�, they quickly diminish for an increasing
bias �V�.

The in-gap conductance arising from the Andreev current
is very sensitive to temperature �see Fig. 8�. Already at T
�TK, the Kondo peak starts to be washed out and this leads
to a concomitant disappearance of the zero-bias anomaly.
Upon further increasing the temperature, there occurs a
gradual suppression of the Andreev current which com-
pletely vanishes when T→Tc

−.
For temperatures above Tc, the charge current is transmit-

ted only via the normal J11�V� channel. With increase of

−0.2 −0.1 0 0.1 0.2

0.01 Tc

0.50 Tc

1.00 Tc

1.25 Tc

1.50 Tc

1.75 Tc

2.00 Tc

eV/D

G
(V

,T
)/

G
0

0.5

1.0

0.0

FIG. 6. The differential conductance G�V ,T� versus the applied
bias V for a representative set of temperatures in the superconduct-
ing region �lines� and for the pseudogap phase �symbols�. We used
the same set of parameters as in Fig. 5, and conductance is ex-
pressed in units of G0�G�0,T*�.
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temperature, the pseudogap is gradually filled in �see Fig. 6�;
therefore the zero-bias conductance smoothly increases,
reaching a local maximum at T*. In the normal state �which,
in our case, corresponds to temperatures above T*�, the dif-
ferential conductance starts to fall off exponentially with re-
spect to T. Let us remark that the differences in variation of
the zero-bias differential conductances G�0,T� of supercon-
ductors with and without pseudogap shown in Fig. 9 could
be a sensitive method for identifying the temperature region
of the incoherent electron pairs.

VI. d-WAVE SUPERCONDUCTOR

In high temperature superconductors �HTSCs�, the elec-
tron �hole� pairs are formed locally, practically between the
neighboring sites of CuO2 planes. The energy gap is aniso-
tropic, �k=��T�cos 2�, where � stands for an azimuthal
angle within the superconducting planes. In this section, we
show that the fourfold symmetry of such anisotropic �k

strongly affects the characteristics of charge tunneling be-
tween the conducting STM tip, QD, and the superconducting
electrode.

It is known on general grounds that impurities affect the
d-wave �anisotropic� and s-wave �isotropic� superconductors
in a qualitatively different way. According to the Anderson’s
theorem, paramagnetic impurities do not break the pairs in
isotropic superconductors �unless the scattering is strong
enough� while they have a detrimental influence on the
d-wave superconductors.20 In configuration of tunneling
junctions �where QDs play analogous role to impurities�,
these properties can be expected to manifest, for instance, in
the differential conductance �in much the same way as the
Kondo effect shows up in the tunneling junctions and in the
bulk materials�. In what follows, we briefly consider two
representative situations for tunneling �a� perpendicular and
�b� parallel to the CO2 planes of high temperature supercon-
ductors.

A. Perpendicular tunneling

If tunneling occurs along the z axis, we can consider the
matrix elements VkS to be invariant under rotations of � by
90° within the CuO2 plane. From the symmetry reasons, the
off-diagonal terms of the self-energies �12� and �14� cancel
out after integration with respect to all orientations of two-
dimensional k vector. Thus, the d-wave superconducting en-
ergy gap �k enters the QD Green’s function Gd

r only through
the diagonal part.

Assuming the constant matrix elements VkS�VS for the
physically relevant states �i.e., for momenta near the Fermi
surface�, we obtain the following imaginary part:

Im �S,11
0r ��� = Im �S,22

0r �− �� � �S��� , �24�

where �S��� is a weighted density of states of the d-wave
superconducting electrode,

−0.2 −0.1 0 0.1 0.2

G11

G12

G22

GA

eV/D

G
(V

,T
)/

G
0

0.5

0.0

particle−hole peaks

zero−bias
anomaly

FIG. 7. Contributions of the normal channel G11 �solid line� and
anomalous channels G12 �long-dashed line�, G22 �short-dashed line�,
and GA �circles� to the total differential conductance G�V ,T� for
temperature T=0.01Tc below TK. All parameters have the same val-
ues as in Fig. 5.

−0.1 0 0.1

T=0.01 Tc

T=0.10 Tc

T=0.50 Tc

T=0.75 Tc

T=0.95 Tc

−0.1 0 0.1
eV/D

G
A
(V

,T
)/

G
0

0.1

0.0

eV/D

U=0 U= 8

FIG. 8. The differential conductance GA�V ,T� of the Andreev
current computed for a number of temperatures for U=0 �left-side
panel� and U=� �right-side panel�. Notice the zero-bias enhance-
ment �the middle peak� which is due to the Kondo resonance.
Above Tc, the Andreev current vanishes �Ref. 6�.
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FIG. 9. Temperature dependence of the zero-bias differential
conductance G�V=0,T� of the N-QD-S junction for the set of pa-
rameters used in Fig. 5. The thin dashed curve refers to the normal
superconductor, while the thick lines describe the superconductor
with a pseudogap, where the damping rate is �=0.01D �solid curve�
and �=0.02D �dashed curve�. Inset shows the enhancement at low
temperatures due to the Kondo resonance.
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�S��� = �VS�2 Re� � + i�
��� + i��2 − �2�T�cos2�2����

,

�25�

and �¯� denotes averaging over the angle �. The same
structure of effective coupling �Eq. �25�� has also been re-
cently inferred from the STM studies21 when exploring the
HTSC materials in temperature region below and above Tc.
Authors figured out that the lifetime broadening � is very
small at low temperatures and can be fitted by a finite value
for higher temperatures �in the pseudogap regime�. The ef-
fective coupling �S��� has a characteristic V-shape energy
dependence, which, above Tc, gets broadened at �� ±��T�
due to the damping effects as shown in the top panel of Fig.
10.

Total self-energy �14� of the strongly correlated QD con-
sists of �S

0r, and another term given by Eq. �15�. Both terms
affect the retarded Green’s function Gd

r���, and the resulting
QD spectrum �d��� is shown in the middle panel of Fig. 10.
In particular, we notice that �a� for T�TK �assumed here to
be smaller than Tc�, there is again a formation of the Kondo
resonance; �b� for TK�T�Tc, the Kondo resonance is gone
while still the sharp energy gap features exist at �= ±��T�;
and �c� in the pseudogap region Tc�T�T*, the damping �
�0 gradually smears out the gap features.

For tunneling perpendicular to CuO2 planes �as nicely il-
lustrated in Fig. 1 of Ref. 22�, the diagonal structure of the
matrix Green’s function �Eq. �9�� signals an absence of the
proximity effect �recall the pair-breaking influence of impu-
rities on d-wave superconductors�. Under such conditions,
the charge current �Eq. �17�� flows through the normal chan-
nel whose transmittance �19� simplifies to the well known
formula16

T11��� =
�S����N

�S��� + �N
���� . �26�

This quantity �Eq. �26�� determines the differential conduc-
tance. At low temperatures and in the limit �V�→0, the con-
ductance is suppressed �see the bottom panel of Fig. 10� due
to �S���. Disappearance of the zero-bias conductance at low
temperatures makes it hence insensitive to the Kondo effect
and this property is qualitatively different in comparison with
the behavior discussed in previous sections for the isotropic
superconductor.

B. Parallel tunneling

For tunneling parallel to the superconducting CuO2
planes, a rotational symmetry of the model �Eq. �1�� breaks
down. In general, it is then a complicated issue to properly
treat the geometry of an interface. In principle, one should
construct and numerically solve a corresponding set of the
Bogoliubov–de Gennes equations,23 but such strategy is be-
yond a scope of the present study. To get some insight of the
underlying physics, we proceed in assuming that momentum
is conserved in the plane of the interface.24 To dismiss the
rotational symmetry, we propose factorizing VkS as function

of k-vector directions promoting the tunneling predomi-
nantly along x axis,

�VkS� = �VS�2N���e−��2
, �27�

where �� �−� ,�� and N��� is a normalizing factor. Instead
of Eq. �27�, other types of parametrizations can be used, but
we believe that one would nevertheless obtain the same con-
clusions.

Replacing k summation by �k=�−D
D d�S

2D �−�
� d�

2� , we can de-
termine the matrix self-energy �12�,
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FIG. 10. Effective coupling �S��� �top panel�, spectral function
�d��� �middle panel�, and bias V dependence of the differential
conductance G�V ,T� for a perpendicular tunneling to the d-wave
superconductor. We used the correlated quantum dot �U=�� with
the energy level �d=−0.08D and considered three representative
temperatures: T�TK�Tc �solid lines�, TK�T�Tc �long-dashed
lines�, and Tc�T�T* �short-dashed lines�.
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 �28�

and also the correlation contribution �I��� defined in Eq.
�15�. For sufficiently large asymmetries �controlled here by
the parameter ��, we almost reproduce the behavior of the
isotropic superconductor. For instance, in Fig. 11, we plot the
differential conductance of the Andreev current for �=1.
Again, we notice the appearance the zero-bias anomaly be-
low TK together with a systematic decrease of the in-gap
conductance toward T→Tc �compare it to the right hand side
panel of Fig. 8�.

Practically, by varying �, we can interpolate between the
limits of the tunneling perpendicular to the d-wave supercon-
ductor presented in Sec. VI A. �when �=0� and tunneling to
the isotropic superconductor discussed in Sec. V �when �
→��. While formally it is rather obvious, we support this
conclusion showing in Fig. 12 the zero-bias conductance
starting from the region of small values �.

VII. CONCLUSIONS

We have investigated a charge tunneling through the
quantum dot located between the normal and superconduct-
ing leads. So far, such situation has been addressed by sev-
eral authors10–14,25 using various methods to account for the
correlations, and it has been shown that the QD �coupled to
isotropic superconductor� absorbs the off-diagonal order.
Here, we emphasize that this proximity effect is further re-
sponsible for splitting the QD spectrum into the particle and
hole peaks whenever ��d���. Independently, the same con-
clusion has been recently reached by Tanaka et al.15 from the
renormalization group studies. In practice, such a phenom-

enon might be observed measuring the differential conduc-
tance upon varying the gate voltage across N-QD-S junction.

Due to the on-dot correlations U, at sufficiently low tem-
peratures, the Kondo state can appear.16 In tunneling junc-
tions containing isotropic superconductors �where the low
energy excitations are “frozen” because of the Cooper pair
binding�, the Kondo effect arises owing to the normal lead
electrons and it has an influence on the transport properties.
At low temperatures, the normal channel J11�V� is forbidden
for �eV���; therefore, charge can be transferred solely
through the Andreev channel. Although the magnitude of the
Andreev current is small,6 nevertheless, in analogy to the
zero-bias Kondo anomaly of N-QD-N junctions,16,17 we do
find a similar �though tiny� enhancement for the N-QD-S
setup.

We extended our study also on the superconductors which
exhibit the pseudogap above Tc. We have found that tem-
perature dependence of the zero-bias conductance G�0,T� is
completely different compared to the conventional supercon-
ductors. In the latter case, G�0,T� rises abruptly to its normal
state value when passing Tc �see the thin dashed curve in Fig.
9�, while in the former, it has a nonmonotonous temperature
variation with a marked minimum at Tc �the thick solid and
dashed curves in Fig. 9�. From a physical point of view, we
can distinguish between the following three regimes: �a� for
T�TK, we note the enhancement of the zero-bias conduc-
tance; �b� in the range TK�T�Tc, there is a systematic de-
crease of the Andreev current for T→Tc, while still no other
channel of the transport is allowed because of the finite gap;
and �c� for T�Tc, the anomalous channels disappear and
there is a continuous revival of the normal current through
filling in the pseudogap. We believe that this unique tempera-
ture behavior could serve as a sensitive tool for probing the
region Tc�T�T* of the incoherent electron pairs.

There are some additional effects which might eventually
play a role in practical realizations of the N-QD-S junctions.
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FIG. 11. Differential conductance of the Andreev current for the
tunneling along the x axis of the d-wave superconductor. For com-
putations, we used ��0�=0.1D, �=1 and considered the strongly
correlated quantum dot �U=�� with the same set of parameters as
in Fig. 8.
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FIG. 12. The zero-bias value of the Andreev conductance
GA�0,T� as a function of the asymmetry parameter � using the
same model parameters as in Fig. 11 for T=0.1Tc. Inset shows the
gap faction �k weighted by the angular factor e−��2

for �=0.1
�thick solid line� and �=0 �thin dashed line�.
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One of them is the gap anisotropy, which, in HTSC materi-
als, has the d-wave symmetry. This kind of a problem has
been partly addressed in Ref. 22, where authors explored the
charge current from a conducting STM tip to quasi-two-
dimensional superconducting CuO2 planes via the apical
oxygen atom �to be regarded as QD�. Their study has been
focused on the influence of inelastic scattering driven by the
oxygen atoms’ vibrations.

Here, we analyzed the effective charge currents for such
d-wave function �k considering two representative orienta-
tions of the STM tip with respect to the superconducting
CuO2 planes. From various theoretical considerations, it is
known that the Kondo state can show up in the gapless �d- or
p-wave� superconductors.26,27 The tip orientation has, how-

ever, a strong impact on the properties of N-QD-S tunneling
junctions. We discussed this issue in some detail for the limit
TK�� when the in-gap states qualitatively affect the low
energy nonequilibrium transport. Our results can be regarded
as complementary to analogous study of the QD attached to
p-wave superconductor25 for the other limit, TK��, where
the Kondo effect strongly dominates over the superconduct-
ing correlations.
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