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We discuss the influence of proximity effect on the quantum dot located between metallic and supercon-
ducting electrodes and consider its interplay with the Kondo state arising from the on-dot correlations. We
show that upon increasing the hybridization to superconducting lead the Kondo resonance is gradually washed
out. This behavior indirectly affects the subgap charge transport suppressing the zero-bias enhancement of the
Andreev conductance.
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I. MOTIVATION

The issue of quantum impurity immersed in a continuum
of fermion states has a fundamental importance for the
solid-state1 and nanoscopic physics.2 Such problem is par-
ticularly interesting for a discrete state embedded near the
Fermi energy of an isotropic superconductor where the low-
energy single-particle states are not allowed to exist. One
may then ask whether impurity is going to be inactive or it
would interfere with itinerant fermions and eventually build
up the singlet Kondo state.

We address here a similar question investigating impurity
located between the metallic and superconducting leads. The
recent rapid development of nanotechnology enables control-
lable manipulation of the hybridization between such “quan-
tum dot” �QD� and the external reservoirs of itinerant fermi-
ons. On practical side, one can measure the nonequilibrium
charge current applying a source-drain voltage V across the
junction. Since the low-bias �subgap� current is transmitted
solely through the Andreev reflections3,4 �which are sensitive
both to the effective electronic structure and to the supercon-
ducting order induced in QD �Refs. 5–9�� the Andreev spec-
troscopy might be a useful tool for exploring the interplay
between superconductivity and the Kondo effect in quantum
dots.

In this report we briefly recollect signatures of the
particle-hole splitting showing up in a subgap Andreev cur-
rent due to the proximity effect. We furthermore analyze un-
der what conditions there can appear the low-temperature
enhancement of zero-bias Andreev conductance driven by
the Kondo effect. For this purpose we focus on the limit of
large energy gap �→� and treat approximately the on-dot
correlations. In particular, we try to clarify why some authors
have predicted existence �although weak� of the zero-bias
Kondo anomaly7 while the other ones reported its absence10

apparently due to specific choice of the model parameters.
We hope that a controversial issue of the zero-bias Andreev
feature could be soon resolved experimentally.

II. PARTICLE-HOLE SPLITTING

Strongly correlated quantum dot hybridized with the nor-
mal �N� and superconducting �S� electrodes can be described
by the single impurity Anderson model

Ĥ = ĤN + ĤS + �
�

�dd̂�
† d̂� + Un̂d↑n̂d↓ + �

k,�
�

�=N,S
�Vk�d̂�

† ĉk��

+ Vk�
� ĉk�,�

† d̂�� . �1�

Operators d� �d�
†� denote annihilation �creation� of QD elec-

tron with spin � and energy level �d, U is the on-dot repul-
sion �or charging� energy between opposite spin electrons,
and the last term describes hybridization of the QD with

external leads. We represent the normal electrode by ĤN
=�k,�	kNĉk�N

† ĉk�N while superconducting lead is described

by the BCS Hamiltonian ĤS=�k,�	kSĉk�S
† ĉk�S

−�k��ĉk↑S
† ĉ−k↓S

† + ĉ−k↓Sĉk↑S�. Energies 	k�=�k�−
� are mea-
sured with respect to the chemical potentials which can be
detuned by external voltage 
N=
S+eV. We shall restrict to
the wide band limit �Vk���D, where −D��k��D.

For description of the proximity-effect spread on the QD
from superconducting lead it is convenient to introduce the

retarded Green’s function G��= ���̂�� ;�̂†�� using the

Nambu spinor notation �̂†= �d̂↑
† , d̂↓�, �̂= ��̂†�†. Its Fourier

transform can be written as

G���−1 = 	� − �d 0

0 � + �d

 − �d

0��� − �d
U��� , �2�

where �d
0 denotes the self-energy of noninteracting �U=0�

case and the last part �d
U accounts for the correlation effects.

The effect of �d
0 �known exactly� has been so far discussed

by a number of authors.5–14 Below we briefly recall the fea-
tures of particle-hole mixing observable in the spectral func-
tion and in subgap Andreev conductance.

For simplicity we shall consider the QD whose energy
level �d is located deep inside the gap of superconductor
focusing on energies �����. The self-energy �d

0 becomes
then a static �� independent� quantity7,12,13

�d
0��� = −

1

2
	i�N �S

�S i�N

 , �3�

where ��=2��k�Vk��2. Under such circumstances QD can
be treated as a superconducting grain characterized by a non-

vanishing off-diagonal order parameter �d̂↓d̂↑�. The spectral
function �d����− 1

� Im G11��+ i0+� acquires then effectively
BCS-type structure
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�d��� =
1

2
�1 +

�d

Ed
 1

��N/2
�� − Ed�2 + ��N/2�2

+
1

2
�1 −

�d

Ed
 1

��N/2
�� + Ed�2 + ��N/2�2 , �4�

with Ed=��d
2+�d

2 and �d=�S /2. The spectrum of noninter-
acting QD consists thus of the particle and hole peaks at �
= �Ed whose spectral weights depend on �d and broadening
is controlled by the coupling �N to metallic lead. In Fig. 1 we
illustrate the spectral function for �d=0 and �S=10�N when
the particle-hole �p-h� peaks are well separated. Otherwise,
for ��d���S the p-h features are less pronounced and for
�S��N they practically merge into the single Lorentzian.

Consequences of the proximity effect responsible for the
p-h splitting can be detected in the tunneling current. At low
bias �eV��� �of the order of millivolts� the charge current
I�V�= e

2�k,�
d
dt �ĉk�N

† ĉk�N− ĉk�S
† ĉk�S� is transferred only

through the anomalous Andreev channel.4 Using the Keldysh
formalism one can express the Andreev current by the fol-
lowing Landauer-type formula7,8

IA�V� =
2e

h
� d�TA����f�� + eV,T� − f�� − eV,T�� , �5�

with f�� ,T�= �1+exp�� /T��−1 and the corresponding trans-
mittance TA��� determined by the off-diagonal part of the
Green’s function TA���=�N

2 �G12����2.8 Andreev transmit-
tance of the uncorrelated QD simplifies in the limit �→� to

TA��� =
�N

2 ��S/2�2

��� − Ed�2 + ��N/2�2���� + Ed�2 + ��N/2�2�
, �6�

hence at low temperatures the differential conductance
GA�V�= d

dVIA�V� should exhibit the p-h features. Figure 2
shows that for �S��N the differential Andreev conductance
indeed achieves the optimal value 4e2 /h �Ref. 4� near the
quasiparticle energies eV= �Ed.

Expression for the corresponding zero-bias conductance
GA�0�= 4e2

h �
2�N�S

4Ed
2+�N

2 �2 is at low temperatures identical with Eq.
�9� obtained by Beenakker4 from the Breit-Wigner formula.
For �d=0 this reproduces the well-known result GA�0�
= 4e2

h �
2�N�S

�S
2+�N

2 �2 �Ref. 12� being invariant under replacement
�N↔�S. Let us remark that the zero-bias conductance di-
minishes upon increasing asymmetry between the couplings

�� and is further suppressed whenever QD level �d moves
away from the center of energy gap. From these introductory
considerations we conclude that in order to observe any par-
ticular features at low voltages one must restrict to nearly the
symmetric case �S��N.

III. INTERPLAY WITH THE KONDO EFFECT

In the limit �→� the self-energy �d
0��� becomes a static

quantity, therefore Oguri et al.15 remarked that the effect of
superconducting lead could be exactly modeled by the aux-
iliary superconducting QD described by

Ĥ = �
�

�dd̂�
† d̂� + ��dd̂↑

†d̂↓
† + H . c.� + Un̂d↑n̂d↓

+ �
k,�

�VkNd̂�
† ĉk�� + Vk�

� ĉk�,�
† d̂�� + ĤN. �7�

Let us emphasize that Eq. �7� is completely equivalent to Eq.
�1� irrespective of the Coulomb interaction U. In other
words, no approximations have been imposed so far on cor-
relations.

A clear virtue of the auxiliary Hamiltonian �7� can be seen
analyzing the on-dot Coulomb repulsion Un̂d↑n̂d↓= U

2 �n̂d

−1�2+ U
2 �n̂d−1�. The operator �n̂d−1�2 turns out to be invari-

ant under the Bogoliubov-Valatin transformation �see Appen-
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FIG. 2. The subgap Andreev conductance GA�V� obtained at
several values of the ratio �S /�N for the uncorrelated QD U=0 with
�d=0, �N=0.03D. Notice that the zero-bias conductance GA�0� is
invariant under replacement �S↔�N and it is optimal for �S��N.
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FIG. 3. Temperature dependence of the spectral function �d���
of the correlated QD �U=10 �N� in the equilibrium situation �V
=0� for �d=−1.5�N, �S=�N. Notice formation of the Kondo reso-
nance at �=0 whereas the p-h splitting �not visible here� appears
for stronger hybridizations �S �see Fig. 4�. Kondo temperature for

the present case is TK=
�U�N
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FIG. 1. Spectral function �d��� of the uncorrelated �U=0� quan-
tum dot obtained for �S=10�N and the energy level located in a
center of superconductor’s gap �d=0 assuming �→�.
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dix B in Ref. 12�, therefore the term �d
U accounting for the

correlations must have a diagonal structure. With this rigor-
ous constraint in mind we shall adopt some approximation
because exact solutions are not available at this level �be-
sides the one-dimensional case�.

Influence of the Coulomb interactions has been previously
studied directly within the Hamiltonian �1� using various
treatments such as the slave boson approach,7,11 generalized
noncrossing approximation,10 perturbative scheme,16 and the
numerical renormalization group.17 Following the lines12,15

we revisit here the issue of interplay between the correlations

and superconductivity using the auxiliary model �7� for
which the exact matrix Green’s function �2� can be written as

G��� =�� − �d − �N���
1

2
�S

1

2
�S � + �d + �N

� �− �� �
−1

. �8�

We estimate the value �N��� using the equation of motion
method18

�N��� = � − �d −
�� − �d − �0������ − �d − �U + �0��� + �3����� + U�1���

� − �d − ��0��� + �3��� + U�1 − nd,���
, �9�

where �0���=− i
2�N and �1,3��� are given by18

����� = �
k

�VkN�2	 1

� − 	kN
+

1

� − U − 2�d + 	kN



��f��,T��
3−�

2 . �10�

This approach �9� qualitatively captures the following impor-
tant aspects of Coulomb interactions: �i� the charging effect
and �ii� appearance of the Kondo resonance at �=0 for low
temperatures, smaller than TK �see Fig. 3�. In nonequilibrium
conditions the Kondo resonance shifts to �=
N and this be-
havior differs from N-QD-N setup where there are two
Kondo peaks at both chemical potentials 
�.

Let us stress that the Kondo peak comes from a hybrid-
ization of the QD with the metallic lead. By increasing the
coupling �S to the superconducting lead we observe a
gradual emergence of the particle-hole features simulta-
neously accompanied by a suppression of the Kondo reso-
nance. Such competition between the p-h splitting and the
Kondo effect is illustrated in Fig. 4 for a set of relative cou-
plings �S /�N. To our knowledge a systematic study of this
competition has not been discussed in the literature.

Since the differential Andreev conductance GA�V� is very
sensitive to the available low-energy states of QD it does
show up a characteristic zero-bias enhancement �see Fig. 5�
arising from the Kondo peak. Besides this low-temperature
zero-bias feature we notice also the quasiparticle peak at
�eV�=Ed and another weaker one at �eV�=U coming from the
upper Coulomb satellite in the spectral function.

Optimal conditions for observing the zero-bias anomaly
occur when �S��N and QD energy level is being located
close to the center of superconductor energy gap. With in-
crease of the ratio �S /�N the particle-hole splitting forces the
QD into the mixed-valence regime �see Fig. 4� and thereby
the zero-bias enhancement gradually fades away as illus-
trated in Fig. 6. Such stringent conditions needed for the
zero-bias anomaly of the Andreev current might explain why
some authors have missed it by choosing inappropriate
parameters.10

So far the experimental data indicated existence of the
zero-bias enhancement in the Josephson current observed for
S-QD-S junctions.19 We hope that our study might be instruc-
tive for the experimentalists to find similar effect in case of
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FIG. 4. Spectral function �d��� of the correlated QD in the
equilibrium situation �V=0� obtained for �d=−1.5�N, U=10�N, T
=0.001 �N, and several representative values of the ratio �S /�N.
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FIG. 5. Temperature evolution of the differential Andreev con-
ductance GA�V� for the correlated QD with U=10 �N, �d=
−1.5 �N, and �S=5 �N. This situation is outside the optimal con-
ditions �corresponding to �S��N� but it exemplifies the following
features: �i� the zero-bias enhancement, �ii� the particle-hole peaks,
and �iii� additional peaks at �eV��U due to the charging effect.
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the quantum dot located between the normal and supercon-
ducting leads.

IV. SUMMARY

We have investigated the quantum dot between the metal-
lic and superconducting electrodes. Due to proximity effect
the QD spectrum shows up the particle and hole peaks which
split for �S��N if the energy level �d is located near the
center of energy gap. These BCS-type features can be probed
by the subgap Andreev current whose optimal conductance
4e2 /h is reached at eV= ���d

2+ ��S /2�2. Practically such

maxima could be manipulated experimentally by varying the
coupling �S with superconductor and adjusting the QD level
�d by the gate potential.

The strong Coulomb correlations can further induce the
Kondo resonance at �=
N owing to the QD hybridization
with the normal lead. For �S��N and QD level located
slightly below the center of the energy gap the Kondo reso-
nance contributes an enhancement to the zero-bias Andreev
conductance �although its magnitude is much smaller than
the value 2e2 /h observed for the QD coupled with both me-
tallic leads in the Kondo regime�. For �S��N the p-h split-
ting drives the QD into the mixed-valence regime where the
Kondo peak and the zero-bias anomaly are washed away. We
hence conclude that in N-QD-S structures the particle-hole
splitting related to the proximity effect competes with the
singlet Kondo state in much the same way as superconduc-
tivity competes with magnetic ordering in the solid-state
physics.
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