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Topological superconductivity at finite temperatures in proximitized magnetic nanowires
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Performing Monte Carlo simulations, we study the temperature-dependent self-organization of magnetic
moments coupled to itinerant electrons in a finite-size one-dimensional nanostructure proximitized to a super-
conducting reservoir. At low temperatures, an effective interaction between the localized magnetic moments,
that is mediated by itinerant electrons, leads to their helical ordering. This ordering, in turn, affects the itinerant
electrons, inducing the topologically nontrivial superconducting phase that hosts the Majorana modes. In a wide
range of system parameters, the spatial periodicity of a spiral order that minimizes the ground-state energy turns
out to promote the topological phase. We determine the correlation length of such spiral order and study how it
is reduced by thermal fluctuations. This reduction is accompanied by suppression of the topological gap (which
separates the zero-energy mode from continuum), setting the upper (critical) temperature for the existence of the
Majorana quasiparticles. Monte Carlo simulations do not rely on any ansatz for configurations of the localized
moments, therefore, they can be performed for arbitrary model parameters, also beyond the perturbative regime.
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I. INTRODUCTION

Recent progress in fabricating artificial nanostructures with
spatial constraints [1] enabled observation of novel quantum
states [2] where topology plays a prominent role. Motivated
by the seminal paper of Kitaev [3], one of such intensively
explored fields is related to topological superconductivity
which occurs in semiconducting nanowires proximitized to
superconductors [4–11] or nanochains of magnetic atoms
deposited on superconducting surfaces [12–17]. In both
cases, the Majorana-type quasiparticles have been observed
at boundaries of proximitized nanoscopic wires/chains,
and non-Abelian statistics [18] makes them promising
for realization of quantum computing [19,20] and/or new
spintronic devices [21].

A mechanism that drives the proximitized nanowire into
a topologically nontrivial phase can originate from the spin-
orbit coupling combined with the Zeeman splitting above
some critical value of magnetic field [22–25]. Upon approach-
ing this transition, a pair of finite-energy (Andreev) bound
states coalesces into the degenerate Majorana quasiparticles
[26,27] formed near the ends of the nanowire. Another sce-
nario combines the proximity-induced superconducting state
with the spiral magnetic order [28–48]. The latter approach is
particularly appealing because magnetic order seems to adjust
its periodicity (characterized by the pitch vector q∗) to support
the topological phase. Origin of the topological phase in a
system with spirally ordered magnetic moments is mathemat-
ically equivalent to the scenario based on the spin-orbit and
Zeeman interactions [34,49]. Its topofilia (such terminology
was introduced in Ref. [35] to emphasize that spatial profile
of the spiral magnetic order self-tunes to external conditions
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in a way, guaranteeing the ground state of this system to be
in a topological phase) has been investigated by a number of
groups [32,42,47,48].

Topological features of the systems with self-organized
spiral ordering have been, so far, studied, focusing mainly on
the zero-temperature limit. Thermal effects have been partly
addressed, taking into account magnon excitations (which
suppress a magnitude of the spiral order) [34,42] and inves-
tigating a contribution of the entropy term to the free energy
(which substantially affects the wave vector of the spiral order
so that magnetic order might be preserved but the electronic
state could no longer be topological) [47]. Usually, however,
any long-range order hardly exists in one-dimensional (1D)
systems at finite temperatures, and therefore, it is important—
especially for practical applications of such systems—to esti-
mate the maximum temperature up to which the topologically
nontrivial states could survive. For its reliable determination,
we perform here the Monte Carlo (MC) simulations.

Our numerical results unambiguously indicate that ther-
mal effects are detrimental to both the topological super-
conducting state and the Majorana quasiparticles. This is
evidenced by:

(i) changeover of the topological Z2 number,
(ii) characteristic scaling of the temperature-dependent

coherence length of the spiral magnetic order,
(iii) and directly from the quasiparticle spectrum where

thermal effects suppress the topological energy gap converting
the zero-energy quasiparticles into overdamped modes.

The rest of the paper is organized as follows. In Sec. II,
we introduce the microscopic model. Next, in Sec. III, we
briefly revisit the topologically nontrivial superconducting
state at zero temperature and check if it really coincides with
the spiral pitch q∗ that minimizes the ground-state energy.
Essential results of our paper are presented in Sec. IV where
we analyze (dis)ordering of the magnetic moments at finite
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temperatures by means of the MC method determining the
upper (critical) temperature for the existence of the topologi-
cal superconducting state and the Majorana quasiparticles. In
Sec. V, we address the case beyond coplanar ordering. Finally,
in Sec. VI, we summarize the main results.

II. MODEL

We consider a chain of the localized magnetic impurities
whose moments are coupled to the spins of itinerant electrons.
This nanoscopic chain is deposited on a surface of s-wave
bulk superconductor, through the proximity effect inducing
electron pairing. The setup is illustrated in Fig. 1. Such a
system can be described by the following Hamiltonian:

H = −t
∑
i,σ

ĉ†
i,σ ĉi+1,σ − μ

∑
i,σ

ĉ†
i,σ ĉi,σ + J

∑
i

Si · ŝi

+
∑

i

(�ĉ†
i↑ĉ†

i↓ + H.c.), (1)

where ĉ†
i,σ and ĉi,σ are the creation and annihilation operators

of an electron at site i and ŝi is their spin,

ŝi = 1

2

∑
α,β

ĉ†
i,ασαβ ĉi,β , (2)

with σ being a vector of the Pauli matrices. We assume
that magnetic moments Si have much slower dynamics than
electrons and can be treated classically. In general, they can
be expressed in the spherical coordinates in terms of the polar
and azimuthal angles θi and φi,

Si = S(sin θi cos φi, sin θi sin φi, cos θi ). (3)

In the weak-coupling J limit, it has been shown [32,34,35]
that the effective Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction induces the helical ordering between the magnetic
moments of the impurities,

φi = iaq∗, (4)

where a is the lattice constant and the spiral pitch q∗ is
strongly dependent on the model parameters [42,46]. Since
Hamiltonian (1) has a SU(2) spin rotation symmetry for
any constant opening angle θi without loss of generality,

FIG. 1. A chain of magnetic impurities placed on top of a
superconductor.

it can be assumed that θi = π/2. It is possible to perform
the gauge transformation, upon which the localized magnetic
moments become ferromagnetically polarized at the expense
of introducing the spin and q∗-dependent hopping amplitude
[29]. Here, however, we are mostly interested in nonzero
temperatures where the ground-state ordering is affected by
thermal excitations. Therefore, we will treat φi’s as fluctuating
degrees of freedom. This will allow us not only to describe
thermal states, but also to take into account possible phase
separation where orderings with different values of q∗ take
place in segments of the nanochain [42,46]. We will also
check the influence of θi fluctuations on the stability of the
topological phase (Sec. V).

In what follows, we set the intersite spacing as a unit
(a = 1) and impose S = 1 [50]. For simplicity we also set the
Boltzmann constant kB ≡ 1 and treat the hopping integral as a
convenient unit (t = 1) for all energies discussed in our paper.

III. TOPOFILIA OF THE GROUND STATE

In the case of periodic boundary conditions, a spin-
dependent gauge transformation can convert the Hamiltonian
(1) into a translationally invariant form that can be easily
diagonalized [29,35]. Here, however, we focus on the open
boundary conditions that allows us to study the Majorana end
states. Additionally, open boundary conditions do not impose
any restrictions on the spiral pitch q, that is especially impor-
tant for rather short nanochains. Most of our calculations have
been performed for the nanowire comprising 70 sites. We have
numerically diagonalized the system, considering various
configurations of the local magnetic moments Si. In particular,
we have inspected the spiral ordering and considered q ∈
[0; π ] varying the model parameters J, μ, and � (transforma-
tion q → −q changes the chirality of the spiral, but it neither
affects the thermodynamic nor the topological properties).

The ground state of the Hamiltonian (1) refers to some
characteristic pitch q = q∗, which is determined from min-
imization of its energy. Since, in 1D metals, the static spin
susceptibility diverges at 2kF , where kF is the Fermi momen-
tum, it has been suggested that also in the presence of the
proximity-induced pairing the system will self-organize into
a helical structure with the spiral pitch q∗ coinciding with the
momentum 2kF [32,34,35]. However, even in the absence of
the induced superconductivity, the spiral pitch that minimizes
the ground-state energy can deviate from 2kF if one goes
beyond the Born approximation in the RKKY scheme [44].
We have investigated numerically the variation of the ground-
state energy with respect to the model parameters and found
that q∗ ≈ 2kF , only in some regimes, whereas, generally,
q∗ can vary from 0 (fully polarized magnetic moments) to
π/a (anitferromagnetic ordering). Figure 2(a) shows a typical
example of the ground-state energy dependence on q.

To distinguish the trivial from nontrivial superconducting
phases, we have computed the topological number Z2, deter-
mining it from the scattering matrix [51,52]. Here, we follow
the procedure described in Ref. [28]. We have, thus, computed
the scattering matrix S of the chain,

S =
(

R T ′

T R′

)
, (5)
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FIG. 2. (a) The ground-state energy EGS versus the spiral pitch
q obtained for � = 0.3, μ = 1.5, and J = 1. (b) Evolution of the
quasiparticle spectrum with respect to q. The red arrows indicate q∗,
minimizing the ground-state energy.

where R and T (R′ and T ′) are 4 × 4 reflection and transmis-
sion matrices on the left (right) sides of the chain. This matrix
(5) describes transport through the chain,(

ψ−,L

ψ+,R

)
= S

(
ψ+,L

ψ−,R

)
, (6)

where ψ±,L/R are the right- or left-moving modes (±) at the
left or right edge (L/R) at the Fermi level. The topological
quantum number is given by [28]

Q = sgn det(R) = sgn det(R′). (7)

The scattering matrix S can be obtained from multiplication of
the individual transfer matrices of all the lattice sites. Since the
product of numerous transfer matrices is numerically unsta-
ble, we converted them into a composition of the unitary ma-
trices, involving only eigenvalues of the unit absolute value.

The spiral pitch q can, in general, be treated as an indepen-
dent parameter, and we can study the topological properties
of the Hamiltonian (1) as its function. Figure 3 shows det(R)
versus q and � for J = 2 and several values of the chemical
potential μ (analogous data have been obtained by us also for
the stronger-coupling J). The topological phase corresponds
to det(R) < 0, and the nontopological phase corresponds to
det(R) > 0, respectively. In each panel, we display the spiral
pitch q∗ (yellow line) that minimizes the ground-state energy.
Such curves resemble the results obtained previously in the

weak-coupling limit J (see Fig. 3 of Ref. [53]). Let us remark
that, for the wide range of model parameters, the spiral
pitch q∗(�) indeed coincides with the topological region. It
means that the system has a natural tendency towards self-
adjusting the local magnetic moments in a way that guarantees
the topologically nontrivial superconducting state [32,35,48].
Nevertheless, closer inspection of Fig. 3 reveals that such
a tendency is not universal. For instance, for μ = 0.5, the
topological region does not overlap with q∗. Also, for μ= 2.5,
the topological state exists for 0.08 � � � 0.87, but it co-
incides with q∗ only in a narrow regime 0.52 � � � 0.72.
Figure 4 shows examples of the topological phase diagrams
with respect to � and μ for the nanochain consisting of
70 sites, assuming the stable spiral orderings q = q∗. The role
of the finite-size effects is presented in the Appendix (Fig. 19).
We noted that with increasing length L the topological regions
gradually expand and their boundaries become sharper.

IV. ROLE OF THERMAL EFFECTS

The influence of finite temperatures on the model (1) can
be seen in a twofold way: By thermal broadening of the
Fermi-Dirac distribution function of itinerant electrons and
by a disturbance induced among the classical local moments
Si. Since the energy resulting from the rearrangement of the
magnetic moments is much lower than costs of the thermal
excitations of itinerant electrons, we focus on fluctuations
of the classical moments and assume that fermions are in
their ground state [54]. Such fluctuations are expected to
suppress ordering of the local moments, indirectly affecting
the topological superconducting phase.

To estimate the critical temperature Tc up to which
the topologically nontrivial state can persist, we have per-
formed the MC simulations for the localized magnetic mo-
ments. Since the Hamiltonian (1) includes both the quantum
(fermions) and the classical (localized magnetic moments)
degrees of freedom, we apply the method used in Ref. [55]. At
each MC step, a randomly chosen localized magnetic moment
is rotated, the Hamiltonian (1) with an actual configuration
of Si is diagonalized, and the trial move is accepted or re-
jected according to the Metropolis criterion based on the free
energy instead of the internal energy. During such a routine,
we have computed the topological quantum number Q and
various correlation functions. The great advantage of the MC
method is that we do not need any particular ansatz for the
magnetic order that is crucial for inspecting the self-organized
structures composed of, e.g., several coexisting phases [42].

Most of our results refer to the magnetic moments confined
to a plane, therefore, only the azimuthal angles φi have been
varied in MC simulations. Section V presents some results
for the case when this constraint is relaxed. In what follows,
we discuss the most interesting results obtained within the
aforementioned algorithm.

A. Correlation function

In Sec. III, we have inspected the long-range spiral order-
ing of the ground state. Here, we analyze how this order is af-
fected by thermal fluctuations. In Fig. 5, we show the structure
factor of the magnetic order A(q) = 1/L

∑
jk eiq( j−k)〈S j · Sk〉
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FIG. 3. Zero-temperature value of det(R) [see Eq. (7)] as a function of � and q obtained for 70 sites using J = 2 and different values of
μ. The blue area [det(R) < 0] corresponds to topological, and the red one [det(R) > 0] corresponds to nontopological states, respectively. The
yellow circles show q∗, minimizing the ground-state energy. Note that, for μ = 0.5, q∗ is equal to 0.5.

obtained at different temperatures as indicated. At very low
temperatures, there is a narrow peak at q = q∗, indicating
that magnetic configurations are nearly identical with the
perfect zero-temperature long-range order. With increasing
temperature, this peak remains at its original position, but

its width substantially broadens, and its height is reduced.
This signals that thermal fluctuations are detrimental for the
magnetic ordering.

Stability of the spiral order against thermal fluctuations
is determined by the strength and range of the effective
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FIG. 4. Zero-temperature value of det(R) [see Eq. (7)] as a function of � and μ for different values of J , ranging from 0.5 to 10. The blue
regions represent the topologically nontrivial phase [det(R) < 0] with the Majorana end modes. We have chosen q to minimize the ground-state
energy for the chain of L = 70 lattice sites. The yellow circles labeled A–D indicate the parameters for which results are presented in Fig. 8.

interaction between the localized magnetic moments. The
interaction is mediated by itinerant electrons which are paired
through the proximity effect. Since the long-range type of
the RKKY interaction in one-dimensional systems results

from the gapless nature of excitations near the Fermi point,
it is possible that, in our case, the effective interaction can
differ from the standard one typical for metals. Proximity
to a bulk superconductor can substantially affect its range,
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which should be important for any magnetic order at finite
temperatures [56]. In particular, if the interaction varies as
r−α , the long-range order could exist for α < 2 in the one-
dimensional classical spin-S Heisenberg model [57,58].
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FIG. 6. Correlation function between the local magnetic
moments (8) as a function of distance r obtained at representative
temperatures for μ = 1.7. The red thick points show the MC data,
whereas the blue line is the best fit with a function defined in Eq. (9).
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FIG. 7. Log-log plot of the correlation length versus temperature
for the same model parameters as in Fig. 6. The red thick dots
display the MC data, and the blue line is the best fit with a func-
tion ξ (T ) = AT −1.

To get insight into effective interactions between the loc-
alized moments and the role of the thermal effects, we have
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FIG. 8. (a) Variation of topological invariant Q during the MC
sweeps obtained for varying temperature. The blue regions cor-
respond to Q = −1, and the red regions correspond to Q = +1,
respectively. The results refer to J = 1, μ = 1.7, � = 0.27 (point C
in Fig. 4). (b) Temperature dependence of the invariant Q averaged
over 105 MC sweeps for the model parameters indicated by points
A–D in Fig. 4. The thick black dotted line marked as three dimen-
sional “(3D)” shows Q calculated for point C under the assumption
that the magnetic moments Si are not confined to a plane (see Sec. V).
The inset presents the standard deviation of Q obtained for point C.
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FIG. 9. Evolution of the zero-temperature spectral functions with respect to varying � obtained for q = q∗ which for the model parameter
μ = 2.5, J = 2 is shown by the yellow line in Fig. 3. The zoomed region displays the formation of the zero-energy mode. Note that the
presence of this feature coincides with q∗ being in the topological region (blue area in Fig. 3).

analyzed the correlation function defined as

C(r) = 1

L − r − 2s

L−r−s∑
i=s

〈Si · Si+r〉, (8)

where L denotes the nanochain length and s is a small offset
introduced to minimize the finite-size effects. Results of our
numerical MC computations obtained for three representative
temperatures are presented by the thick red dots in Fig. 6.
The simulations show that the exponential decay of the two-
point correlation function has a power-law correction. The
classical Ornstein-Zernike power (d − 1)/2, where d is the

dimensionality of the system, vanishes in a one-dimensional
system [59]. Here, however, the MC results can be very well
fitted by

C(r) ∝ cos(qr) r−αe−r/ξ (T ), (9)

where α is small (α  1) and slightly temperature dependent.
The major influence of thermal fluctuations is seen by the
correlation length ξ (T ) (see Fig. 7). We have also treated q
as a fitting parameter, but it turned out that, even at elevated
temperatures, its value was very close to q∗, that minimizes
the ground-state energy.
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Fitting the MC results by C(r) defined in Eq. (9) has en-
abled us to determine the temperature-dependent correlation
length. As can be seen in Fig. 7, it diverges for T → 0,
indicating that the effective interaction is too short ranged to
produce any long-range order at finite temperatures. Never-
theless, at sufficiently low temperatures, the correlation length
is comparable to the nanowire length, therefore, the system
remains in the topologically nontrivial state with the Majorana
modes located at its edges. For unambiguous verification of
such a possibility, we have directly calculated the topological
properties of the system at finite temperatures (Sec. IV B).

B. Topological phase at finite temperatures

Figure 8(a) displays variation of the topological invariant
Q during the MC runs performed at different temperatures
(vertical axis). We have chosen the model parameters which
guarantee the system to be in the topologically nontrivial
phase at zero temperature (point C in Fig. 4, corresponding
to J = 1.0). At this point, the system is in its topologically
nontrivial state for chains of different lengths (see Fig. 19).
We clearly note that with increasing temperature more and
more frequently the system prefers the topologically trivial
state. Such a gradual changeover from the topological to
the nontopological phase depends on the chemical potential
[Fig. 8(b)] and other parameters as well. Roughly speaking,
for the chosen set of model parameters, the topological phase
exists up to the critical temperature Tc ∼ 0.04 (in units of the
hopping integral). Considering typical values of t ∼ 10 meV
[34,35], this would yield the critical temperature for the
topological superconducting phase Tc ∼ 5 K, which is a more
stringent limitation than all previous estimations [34,35,47].

C. Spectral functions

Another evidence for the detrimental influence of thermal
effects on the topological superconductivity and the Majorana
modes can be seen directly from the quasiparticle spectra of
fermions. The spectral function,

A(k, ω) = − 1

π
Im G(k, ω + i0+) (10)

can be obtained using the single-particle Green’s function,

G(k, z)δ(k − k′) =
∑
m,n

〈Gmn(z)〉ei(mk−nk′ ). (11)

Here, Gmn(z) = {[z − H]−1}mn is defined in the real space
for a given configuration of the localized moments (recall
that the lattice constant a ≡ 1), and 〈· · · 〉 denotes averaging
over configurations generated in MC runs. For any particular
(inhomogeneous) configuration of the localized moments,
the Fourier transform of Gmn(z) depends on both k and k′.
However, averaged over configurations, it becomes strongly
peaked around k = k′. A finite width of this peak results from
the finite size of the system and vanishes in the L → ∞ limit.

Let us first inspect the spectral function (10) at zero
temperature to demonstrate its characteristic features upon
entering the topological regime. Figure 9 presents evolution
of the low-energy spectrum, showing emergence of the zero-
energy Majorana mode. For a given value of � we have
computed the optimal pitch q∗ of the ground state and then
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FIG. 10. The density of states for (a) � = 0.52, (b) � = 0.66,
and (c) � = 72. Other model parameters are the same as in Fig. 9.
The irregular shape of the functions results from the finite length of
the system (L = 70).

determined A(k, ω) for the model Hamiltonian (1) with such
a particular configuration of the local moments Si. In other
words, at zero temperature, the averaging over configurations
〈· · · 〉 defined in Eq. (11) was not necessary. For the chosen
value of μ = 2.5, the pitch vector q∗(�) is shown by the
yellow line in Fig. 3. In particular, we can note the qualitative
change (from a topological to a nontopological phase) when
� varies from 0.50 to 0.72, which corresponds to the abrupt
jump of q∗(�) displayed in Fig. 3. The integrated spectral
weight [total density of states (DOS)] for three characteristic
points is presented in Fig. 10. Panel (a) shows DOS for
� = 0.52 where there is no gap in the energy spectrum. For
� = 0.66 [panel (b)], there is a gap with a well pronounced
zero-energy Majorana mode. For � = 0.72 [panel (c)], the
gap still exists, but the system is not in the topological regime,
so the Majorana mode is absent. Due to the correspondence
between the present Hamiltonian and the one describing the
Rashba chain, the spatial profile of the Majorana mode is very
similar to what has been presented, e.g., in Fig. 6 of Ref. [60].

The influence of thermal effects of the spectral function
(10) is illustrated for the representative set of model param-
eters in Fig. 11. At zero temperature, the Majorana mode
(appearing near boundaries of the Brillouin zone as shown by
the inset) is protected from the finite-energy Andreev quasi-
particles by the topological gap. Upon increasing the tem-
perature, such a topological gap gradually diminishes. This is
accompanied by an ongoing disordering of the local magnetic
moments leading to a broadening of all the spectral lines.
Ultimately, at temperatures T � 0.05, the topological gap is
hardly visible, and the zero-energy feature merges with a con-
tinuum. Nonetheless, even at higher temperatures, we could
still resolve some remnants of the overdamped zero-energy
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FIG. 11. The spectral function [defined in Eq. (10)] averaged over 103 statistically independent configurations of the localized moments
{Si}. MC results are obtained for J = 1, μ = 1.7, � = 0.27, and several temperatures as indicated. The zoomed region displays the zero-
energy mode.

mode. This brings us to the conclusion that the topological
superconductivity vanishes near such a critical temperature in
a continuous manner (such as a crossover rather than a typical
phase transition). The temperature-induced suppression of
the Majorana quasiparticles close to the system edges (not
shown here) is very similar to detrimental influence caused by
inhomogeneity of the Rashba chain (see Fig. 6 of Ref. [60]).

V. BEYOND COPLANAR ORDERING

Finally, we have checked whether deviation of the az-
imuthal angle of the local moments (3) from its coplanar value
θi = π/2 could affect the topological superconducting phase.
For this purpose, we have performed MC simulations, treating
both angles (θi, φi) on equal footing. To find the lowest-energy
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FIG. 12. Orientations of the localized magnetic moments at dif-
ferent temperatures. The model parameters correspond to point C in
Fig. 4. For the sake of clearness, the origin of all these vectors has
been collected to a common point and the average plane of the order
tilted to be horizontal.

configuration of the localized magnetic moments, we used the
simulated annealing method [61].

At very low temperatures, the local magnetic moments are
arranged in a coplanar spiral, albeit now the plane of moments
rotation is arbitrarily oriented, which reflects the symmetry of
the Hamiltonian (1). This situation is illustrated in Fig. 12(a)
where the moments have been shifted so that their origins are
in the same point.

As a result, the zero-temperature phase diagrams are the
same as in Fig. 4. With increasing temperature, the moments

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
T

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75 coplanar

3D

10−2 10−1 100

T

−1.0

−0.5

0.0

0.5

1.0

FIG. 13. Temperature dependence of the average topological
invariant Q for coplanar configurations of the localized magnetic
moments (blue solid line) and when their rotation is allowed in an
arbitrary direction (red dashed line marked 3D). The inset shows the
same but on a semilogarithmic scale for a wider range of tempera-
tures. The model parameters are J = 4, � = 1.2, and μ = 2.

deviate from their coplanar arrangement (besides introducing
in-plane disorder). Similar to the previously studied case
where the moments were confined to a plane, it may lead to
the destruction of the topological state. As the temperature
increases, the topological region shrinks and usually eventu-
ally vanishes. An example of such a behavior is illustrated by
the thick dotted black line in Fig. 8(b). One can note there
that the temperature dependence of 〈Q〉 is almost unaffected
by the presence of the additional degree of freedom, which
may suggest that fluctuations of the polar angle θi are rather
irrelevant for stability of the topologically nontrivial super-
conducting phase.

This property, however, is not universal. Figure 13 shows
the temperature dependence of 〈Q〉 for a different set of
the model parameters. In this case, the topological phase
is destroyed by increasing temperature when only in-plane
thermal fluctuations of the localized moments are allowed, but
it survives to pretty high temperatures when they rotate freely
in all three dimensions. Such intriguing behavior requires
fine-tuning of the model parameters, and we have found only
one region where the topological state is not destroyed at high
temperatures. Figure 14 shows the average value of det(R)
at zero and infinite temperatures. One can note that only for
parameters close to the point marked by the white cross the
averaged value of det(R) is equal to −1. This is the point
for which the temperature dependence of 〈Q〉 is presented in
Fig. 13.

Extremely high temperatures in this case means that the
local moments are completely randomly oriented. Of course,
it does not imply that the topological state would survive up
to arbitrarily high temperatures because, at some critical point,
the superconducting state of the substrate would be destroyed.
However, the magnitude of effective interactions between the
localized moments is much smaller than the superconducting
gap and other energies of the electronic subsystem. Therefore,
in typical situations, i.e., when destruction of the helical order
destroys also the topological state, this is the energy scale that
usually determines the critical temperature.
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FIG. 14. The average value of det(R) at zero and infinite tem-
peratures for J = 4. The white cross corresponds to parameters for
which the temperature dependence of 〈Q〉 is presented in Fig. 13.

Since, at high temperatures, there is no helical order,
the model Hamiltonian (1) cannot be related to the sce-
nario with the spin-orbit and Zeeman interactions [34,49].
However, it was shown in Ref. [28] that even without the
helical order this Hamiltonian can have a topologically non-
trivial state provided the localized magnetic moments point
in different directions. To study how the ordering is de-
stroyed by unrestricted thermal fluctuations, we parametrize
the local moments in a way presented in Fig. 15. To dis-
tinguish the in-plane and out-of-plane types of fluctuations,
we apply the following procedure. Using MC simulations,
we generate large sets of statistically independent config-
urations of the local moments at different temperatures.
The configurations are represented by unit vectors defined
by r̂i = (sin θi cos φi, sin θi sin φi, cos θi ), i = 1, . . . , L. For
each configuration, we use singular value decomposition to
find plane P best fitted to the end points of these vectors.
In Fig. 15, the horizontal gray circle represents this plane,
and the blue arrows represent arbitrary two neighboring vec-
tors r̂i and r̂i+1. For each configuration, we calculate the
angles αi between vector r̂i and plane P and other angles
γi between projections of r̂i and r̂i+1 on plane P . At low
temperatures, the average values of these angles (for a single
configuration) are α ≡ 1/L

∑
i αi ≈ 0 and γ ≡ 1/L

∑
i γi ≈

q∗. We use the variance of αi’s and γi’s around these values
as a measure of the out-of-plane and in-plane fluctuations,
respectively.

Figure 16 displays the fluctuations �α ≡ 〈α2 − α2〉 and
�γ ≡ 〈γ 2 − γ 2〉 with respect to temperature, where 〈· · · 〉
denotes averaging over configurations generated in MC runs.

FIG. 15. Parametrization of directions of the local moments.
The blue arrows marked r̂i and r̂i+1 are unit vectors representing
directions of two neighboring moments, the gray circle represents a
plane P best fitted to the end points of all vectors r̂i, i = 1, . . . , L; αi

is an angle between vector r̂i and plane P; γi is an angle between
projections of vectors r̂i and r̂i+1 on plane P .

Both types of fluctuations vanish when T → 0. It means that,
in this limit, a perfect spiral order with a coplanar alignment is
formed although the orientation of the plane is arbitrary. With
increasing temperature, the in-plane fluctuations develop, and
they dominate over the out-of-plane ones for T < 10−3. At
higher temperatures, both types of fluctuations significantly
increase, and the alignment of the magnetic moments loses its
coplanar character.

It is usually assumed that, for sufficiently large J , the
electron spin is parallel to the localized magnetic moment. We

10−4 10−3 10−2

T

0.00

0.05

0.10

0.15

0.20
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0.30

0.35

Δ
α
,

Δ
γ

T = ∞

a)

T = 10−5

b)

c)Δα

Δγ

FIG. 16. Typical temperature dependence of the out-of-plane
(blue solid line) and in-plane (red dashed line) fluctuations of the
local moments. The horizontal arrows indicate the limiting values of
�α and �γ at T = ∞, i.e., for randomly oriented moments. The
black arrows marked (a)–(c) indicate temperatures at which typical
configurations are presented in Figs. 15(a)–15(c), respectively. The
model parameters are the same as at point C in Fig. 4.
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GORCZYCA-GORAJ, DOMAŃSKI, AND MAŚKA PHYSICAL REVIEW B 99, 235430 (2019)

0.0 0.2 0.4 0.6 0.8 1.0
|Δ|2/|Δmax|2

1

2

3

4

5

P
(|Δ

|2 )

3D

coplanar

FIG. 17. Distributions of the squared magnitude of the pair
potential |�i|2 obtained for the nanowire with coplanar and three-
dimensional magnetic moments as indicated.

have verified this assumption by calculating the correlation
function 1/L

∑
i〈Si · ŝi〉. The results show that the electron

spin is almost completely polarized along the localized mag-
netic moments for an arbitrary value of J . In such a case, the

Hamiltonian (1) can be projected onto the lowest spin band
and take a form of Kitaev’s chain with additional hopping
to the next-nearest neighbors [28]. In the effective Kitaev
Hamiltonian, the pairing potential increases with increasing
disorder of the magnetic moments and can drive the system
into the topological phase. This can explain that, although
the spiral ordering is destroyed at high temperatures, another
mechanism can still preserve the system in its nontrivial state
as marked by the red line in Fig. 13.

One may ask why the same mapping onto the Kitaev model
does not lead to a high-temperature topological state in the
case when the local moments are confined to a plane? It has
been shown in Ref. [28] that the pair potential �i in the
effective model is proportional to

�i ∝ − sin
θi

2
cos

θi+1

2
eiφi + cos

θi

2
sin

θi+1

2
eiφi+1 , (12)

that for θi = π/2 (the coplanar arrangement) reduces to

�i ∝ 1
2 (eiφi+1 − eiφi ). (13)

In the 3D case at infinite temperatures, the directions of
vectors r̂i are uniformly distributed in a full 4π solid angle.
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FIG. 18. The pitch vector q∗ obtained at zero temperature for J = 1 and several sizes, ranging from L = 40 to L = 200. The model
parameters are the same as in Fig. 4.
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For the coplanar confining, only φi’s are uniformly distributed
from 0 to 2π , whereas θi = π/2. The corresponding dis-
tributions of the squared pair potential |�i|2 are shown in
Fig. 17. One can note that, in the 3D case, it is random
with a box distribution between 0 and |�|2max, whereas, for
coplanar confining, it is strongly peaked around 0 and |�|2max,
resembling almost a binary distribution. We believe the latter
distribution may be much more destructive for the topological
state by leading to the formation of Griffiths-like phases in a
disordered chain [60,62,63].

VI. SUMMARY

We have investigated the stability of the topologically non-
trivial superconducting phase of itinerant electrons coupled
to the local magnetic moments in the finite-length nanowire
proximitized to a s-wave superconductor. We have performed
the MC simulations, considering various configurations of
such local moments constrained on a plane and oriented
arbitrarily in all three directions. We have focused on the
role played by thermal fluctuations. MC simulations clearly
indicate that self-organization of the local moments into the

spiral order gradually ceases upon increasing the temperature.
We have found the universal scaling of the correlation func-
tion for the localized magnetic moments (8) and determined
the coherence length, revealing its characteristic temperature
dependence ξ (T ) ∝ 1/T .

Our MC data for the topological invariant and analysis
of the quasiparticle spectrum both unambiguously show the
upper (critical) temperature Tc, above which the topological
nature of the superconducting phase no longer exists. When
approaching this critical temperature from below, there oc-
curs a gradual reduction of the topological gap, protecting
the zero-energy mode from the finite-energy (Andreev-type)
quasiparticles so that, at T → Tc, the Majorana modes get
overdamped. Our quantitative estimations show that Tc ∼
0.05 (in units of the hopping integral) that in realistic systems
would yield Tc ∼ 6 K. Such an upper limit for the existence of
the topological superconducting phase could be important for
experimental and theoretical studies of the Majorana quasipar-
ticles in the condensed-matter and the ultracold atom systems.
This evaluation should also be taken into account when con-
sidering future applications of the Majorana quasiparticles for
quantum computing.
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FIG. 19. det(R) obtained for J = 1 and several sizes, ranging from L = 40 to L = 200. Computations have been performed for the same
model parameters as in Fig. 4.
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The approach we used in this paper is quite general, and
thus, the model can be easily extended by taking into account
other mechanisms which affect stability of the topological
phase, such as the spin-orbit coupling, direct interaction be-
tween the localized moments, different kinds of disorder, or
an external magnetic field.
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APPENDIX: FINITE-SIZE SCALING

In the scenario based on the Rashba nanowire proximitized
to a bulk superconductor, a sharp transition from the topo-
logically trivial to the nontrivial regime has been predicted
only for infinitely long wires, and it has been emphasized [64]
that finite-size effects would smooth it into a crossover. Due
to correspondence between systems with the spin-orbit and

Zeeman interactions and systems with the spiral ordering of
localized moments, the same effect can be expected for the
present model described by the Hamiltonian (1). To verify it,
we performed additional calculations for various lengths L of
nanowires, comprising 40 to 200 sites.

Pitch vector q∗ of the ground state (Fig. 18) and diagrams
of the topological superconducting phase (Fig. 19) clearly
indicate that: (i) q∗ is hardly affected by nanowire length L,
(ii) total area of the topological phase in the parameter space
slightly increases with increasing L, and (iii) boundaries of the
topological region are sharper for longer nanowires. In both
these figures, one can note that the size dependence is weak,
and, already, for L = 40, the main properties of the system are
clearly visible.

Observations (i) and (ii) suggest that a tendency towards
formation of the topological state (topofilia) should be valid
for sufficiently long nanochains. With regard to observation
(iii), it indicates that, in the studied system, the finite-size
effects smooth out the topological transition. This is visible
in Fig. 19 for L = 40 where the white area shows such a
transition between the topologically trivial and the nontrivial
regions. Finite-size effects are also important for splitting of
the Majorana end modes when their overlap is sizable (for
short nanowires).
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