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Transient dynamics of a quantum dot embedded between two superconducting
leads and a metallic reservoir

R. Taranko, T. Kwapiński, and T. Domański*
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We study time-dependent subgap properties of a quantum dot (QD) embedded between two superconductors
and another metallic lead, solving the Heisenberg equations of motion by the Laplace transform technique
subject to the initial conditions. Focusing on the response of the system induced by a sudden coupling of
the QD to external reservoirs, we analyze the transient currents and their differential conductance. We also
derive analytical expressions for measurable quantities and find that they oscillate in time with the frequency
governed by the QD coupling to superconducting reservoirs. Such quantum oscillations are damped due to
relaxation processes caused by the normal lead, whereas their period is controlled by the phase difference φ

between the order parameters of superconducting leads (except the case φ = π , when all observables evolve
to their stationary values without any oscillations). We also explore time-dependent development of the subgap
quasiparticles and find their signatures measurable in the differential conductance. We evaluate (numerically and
analytically) three typical time scales, characterizing the initial and large-time stages of the transient dynamics
which in the asymptotic limit (t → ∞) drives these subgap quasiparticles to the true Andreev states.
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I. INTRODUCTION

Transient effects of the quantum dot (QD) systems have
been intensively studied over recent years, providing useful
insight into the electron transport properties. These effects
could be of special importance in experiments on nanoscopic
devices, where different types of time-dependent pulses can
effectively control the electron flow. Transient effects have
been studied, both theoretically and experimentally, for the
QDs coupled to the metallic (conducting) electrodes [1–67]
and in the presence of superconducting reservoirs [68–84].
Numerous theoretical approaches have been developed to
deal with such time-dependent problems, e.g., the itera-
tive influence-functional path integral [35], Keldysh formal-
ism and time-dependent partition-free approach [40], weak-
coupling continuous-time Monte-Carlo method [27], and
many other techniques [53,61].

The coherent oscillations and current beats have been
found in a short-time response of a system upon abrupt change
of the bias voltage [9,14]. From the periods of the current
beats it is possible to estimate the values of the QDs energy
levels or the hopping parameters between them [38,51,57].
The transient current characteristics can also be used to de-
termine the spin relaxation time in some QD systems [4].
Such phenomena have been investigated for QDs coupled
to the normal leads as a result of the bias voltage pulse
[5,22,29,31,36,41,53,60,75], driven by an arbitrary time-
dependent bias [26,27,40,53,61], by a sequence of rectangular
pulses applied to the input lead [17,32] or applied to the
contact gradually switched on in time [25]. The transient dy-
namics has also been studied for QD after a sudden symmet-
rical connection to the leads [27,37,78,85] or asymmetrically
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coupled to electrodes following a sudden change of the QD
energy levels [11]. The transient heat generation driven by
a steplike pulse bias within the Anderson-Holstein model or
the time-dependent current through QD suddenly coupled to a
vibrational mode have been studied in nanostructures with the
normal [19,30,47,56,63] or superconducting electrodes [71].

Technological progress in the real-time detection of single
electrons has opened a possibility for studying electron trans-
port from a perspective of the stochastic processes. Among
theoretical tools for investigating the electron hopping statis-
tics there are, e.g., the full counting statistics (FCS) and the
waiting time distribution (WTD) [54,55,62,66,73,79]. These
theoretical techniques have been successfully applied to in-
vestigations of the transient processes via QD coupled to the
normal leads [62] or in hybrid systems with superconductors
[66,73,79]. Time-dependent processes are often investigated
numerically, however, in exceptional cases some analytical
results can give deeper insight into the considered problem.
For instance, WTD in the normal lead-QD-superconducting
junction exhibit the coherent oscillations between the empty
and doubly occupied QD [73]. Similarly, some analytical cal-
culations are possible for the energy transport in the polaronic
regime described within the FCS method [59], for transient
dynamics after a quench [64], for a phononic heat transport
in the transient regime [65], or for transient heat generation
under a steplike bias pulse [44].

In this paper we analyze the subgap transport properties of
a system comprised of a single QD which is tunnel coupled
to one metallic (normal) and two superconducting electrodes,
focusing on transient effects driven by abrupt coupling of
these constituents. It is natural that oscillations of the transient
current would appear as a result of such quench, and they
should depend on initial conditions of the system. Such hybrid
nanostructures with QD between the normal and supercon-
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ducting electrodes reveal many interesting effects with poten-
tial applications in nanoelectronics, spintronics, or quantum
computing [29,30,42,63,64]. The superconducting reservoir
affects the QD via proximity effect and could be responsible
for the Cooper-pair tunneling and Josephson currents, even
in the absence of any bias voltages. An additional normal
electrode coupled to the system allows for good control of the
electron transport [86–92] and could significantly affect the
transient phenomena. Our goal is to investigate analytically
the time-dependent QD occupation, the currents flowing from
the normal and superconducting leads, the induced QD pair-
ing, the conductance, and the time evolution of the Andreev
bound states (ABS) [90,93–97]. The formation of ABS signi-
fies that superconducting correlations are induced in the QD
via the proximity effect. We investigate the appearance in time
of these states and study their spin dependence. To perform
analytical time-dependent calculations we assume that the su-
perconducting gap of both superconducting leads is the largest
energy scale and we put it equal to infinity. Nevertheless,
the realistic physics in the Andreev transport regime is still
captured in this limit. Knowledge of the analytical formulas
allows us to find the answers to such questions as: (i) how
do the considered quantities and their characteristics depend
on the QD energy levels or the individual coupling of the QD
with a given lead, (ii) what is the time period and frequency
of these time-dependent quantities, and many related issues.
Our investigations allow us also to analyze time evolution
of the subgap quasiparticles and their dependence on the
phase difference between the superconducting reservoirs. In
our calculations we apply the equation of motion method for
the second quantization operators and obtain their analyti-
cal form using the Laplace transform technique. Numerical
calculations could provide results only for a specific choice
of parameters and would not give deep insight into specific
dependence of here considered quantities of our system. In
this context the analytical calculations are much more general
and could have some advantage over numerical data.

The paper is organized as follows. In Sec. II we present
our model and discuss the theoretical formalism. The time-
dependent QD occupancy is analyzed in Sec. III, whereas
Sec. IV is devoted to the proximity-induced pairing effects.
The normal and superconducting transient currents through
the QD are analyzed in Sec. V and in Sec. VI we discuss
the subgap conductance. In Sec. VII we briefly address the
correlation effects and finally, in Sec. VIII, we summarize our
study.

II. MODEL AND THEORETICAL DESCRIPTION

The system under consideration consists of a QD placed
between two superconducting leads (S1 and S2) and one
metallic electrode N , see Fig. 1.

The model Hamiltonian for this system can be written
in the following form: H = HS1 + HS2 + HN + HQD + Hint,
where HS j ( j = 1, 2) describes electrons in the left or right
superconducting lead

HS j =
∑
qσ

εq j ,σ c+
q jσ

cqjσ +
∑

q j

(
� jc

+
−q j↑c+

q j↓ + H.c.
)
, (1)

FIG. 1. Schematic diagram for a quantum dot coupled with
two superconducting leads (S1 and S2) and one normal (metallic)
electrode (N).

HN refers to the normal lead, HN = ∑
kσ εkσ c+

kσ
ckσ , HQD

describes the QD, HQD = ∑
σ εσ c+

σ cσ . Electron transitions
between external leads and the QD are established by the
tunnel Hamiltonian:

Hint =
∑
k,σ

Vkσ c+
kσ cσ +

∑
j=1,2

∑
qσ

Vqjσ c+
q jσ

cσ + H.c. (2)

We assume that the electron dispersion in all leads is spin in-
dependent and impose the order parameters, � j , of the super-
conducting leads to be phase dependent, � j = |� j | exp (iϕ j ).
In our notation k (qj) shall denote itinerant states of the normal
(superconducting) lead.

We are going to study time response of this system on
abrupt switching of the coupling parameters. We shall thus
calculate the time-dependent QD occupations, nσ (t ), and the
currents flowing from the leads, jNσ (t ), jS jσ (t ). Addition-
ally we will compute 〈c↓(t )c↑(t )〉, which corresponds to the
electron pairing induced at QD via proximity effect. In what
follows we assume that all couplings between the QD and
the leads are suddenly switched on at t = 0+ (for t � 0 the
QD is decoupled from the leads). The time evolution of the
considered quantities for t > 0 depends on the initial QD
filling and the chemical potentials. As time goes to infinity,
we reproduce the stationary limit results known for the corre-
sponding system. In this paper we use the Laplace transform
method and our strategy in the calculations is as follows: We
construct the closed set of the equation of motion for creation
and annihilation operators (in the Heisenberg representation)
cσ (t ), ckσ (t ), cqjσ (t ), c+

σ (t ), c+
kσ

(t ), c+
q jσ

(t ), using the Laplace
transformations for these differential equations we obtain the
set of coupled algebraic forms c(s) = ∫∞

0 dte−st c(t ) for all
considered operators. For instance, the QD occupation nσ (t )
can be found from the relation

nσ (t ) = 〈L−1{c+
σ (s)}(t ) · L−1{cσ (s)}(t )〉, (3)

where L−1{a(s)}(t ) stands for the inverse Laplace transform
of a(s) and 〈...〉 is the quantum statistical averaging.

Let us find the Laplace transforms of operators cσ (t ) and
cqjσ (t ) which are required to calculate the QD occupancy
〈c†

σ (t )cσ (t )〉 ≡ nσ (t ), the QD induced pairing 〈c↓(t )c↑(t )〉,
and the currents flowing from the leads. We write the Laplace
transformed equations of motions for the closed set of twelve
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operators (in the Heisenberg representation): c↑, c†
↓, ck↑, c†

k↓,

cqj↑, c†
−q j↓, c†

q j↓, c−q j↑, j = 1, 2.

(s + iε↑)c↑(s) = −i
∑

r=k,q1,q2

Vrcr↑(s) + c↑(0), (4a)

(s + iεq j )cqj↑(s) = −iVqj c↑(s) − i� jc
†
−q j↓(s) + cqj↑(0),

(4b)

(s − iεq j )c
†
−q j↓(s) = iVqj c

†
↓(s) − i�∗

j cq j↑(s) + c†
−q j↓(0),

(4c)

(s + iεk )ck↑(s) = −iVkc↑(s) + ck↑(0), (4d)

(s − iε↓)c†
↓(s) = i

∑
r=k,q1,q2

Vrc†
r↓(s) + c†

↓(0), (5a)

(
s − iεq j

)
c†

q j↓(s) = iVqj c
†
↓(s) − i�∗

j c−q j↑(s) + c†
q j↓(0),

(5b)(
s + iεq j

)
c−q j↑(s) = −iVqj c↑(s) − i� jc

†
q j↓(s) + c−q j↑(0),

(5c)

(s − iεk )c†
k↓(s) = iVkc†

↓(s) + c†
k↓(0). (5d)

From Eqs. (4a)–(4d) and Eqs. (5a)–(5d) we get

c↑(s)M (+)
↑ (s) = A(s) − iK (s)c†

↓(s), (6a)

c†
↓(s)M (−)

↓ (s) = B(s) − iK∗(s)c↑(s), (6b)

where

K (s) =
∑
j=1,2

V 2
q j

� j

s2 + ε2
q j

+ |� j |2 , (7)

A(s) = −
∑
j=1,2

Vqj

(
� jc

+
−q j↓(0) + i

(
s − iεq j

)
cqj↑(0)

)
s2 + ε2

q j
+ |� j |2

−i
∑

k

Vkck↑(0)

s + iεk
+ c↑(0), (8)

B(s) =
∑
j=1,2

Vqj

(
�∗

j c−q j↑(0) + i
(
s + iεq j

)
c+

q j↓(0)
)

s2 + ε2
q j

+ |� j |2

+ i
∑

k

Vkc+
k↓(0)

s − iεk
+ c+

↓ (0), (9)

M (+/−)
σ (s) = s ± iεσ +

∑
j=1,2

V 2
q j

(
s ∓ iεq j

)
s2 + ε2

q j
+ |� j |2

+
∑

k

V 2
k

s ± iεk
. (10)

Solving Eqs. (6a), (6b) we obtain for c↑(s)

c↑(s) = M (−)
↓ (s)A(s) − iK (s)B(s)

M (+)
↑ (s)M (−)

↓ (s) + K (s)K∗(s)
. (11)

Repeating the same procedure to the set of operators: c↓, c†
↑,

c†
k↑, ck↓, cqj↓, c†

−q j↑, c†
q j↑, and c†

−q j↓ one can get

c↓(s) = M (−)
↑ (s)B+(s) + iK (s)A+(s)

M (−)
↑ (s)M (+)

↓ (s) + K (s)K∗(s)
. (12)

Laplace transforms of c†
↑ and c†

↓ can be obtained, taking the
hermitian conjugation of c↑ and c↓, respectively.

In the wide-band limit approximation and for |� j | =
∞ the functions M+/−

σ (s) and K (s) can be expressed
in the following analytical forms: M+/−

σ (s) = s ± iεσ +
�N/2, and K (s) = (�S1 eiϕ1 + �S2 eiϕ2 )/2. Here we have
assumed �N/S j = 2π

∑
k/q j

V 2
k/q j

δ(ε − εk/q j ) and εkσ = εk ,
εq jσ = εq j−σ = ε−q j . As an example, let us present the explicit
form of the Laplace transform for c↑(t )

c↑(s) = 1

(s − s3)(s − s4)

{(
s − iε↓ + �N

2

)

×
[

c↑(0) − i
∑

k

Vk ck↑(0)

s + iεk

−
∑
j=1,2

iVqj

(
s − iεq j

)
cqj↑(0) + Vqj � jc

†
−q j↓(0)

s2 + ε2
q j

+ |� j |2

⎤
⎦

− i

2

(
�S1eiϕ1 + �S2eiϕ2

)[
c†
↓(0) + i

∑
k

Vk c†
k↓(0)

s − iεk

+
∑
j=1,2

iVqj

(
s + iεq j

)
c†

q j↓(0) + Vqj � jc−q j↑(0)

s2 + ε2
q j

+ |� j |2

⎤
⎦
⎫⎬
⎭,

(13)

where s3,4 = 1
2 [−i(ε↑ − ε↓) − �N ± i

√
δ], δ = (ε↑ + ε↓)2 +

�12, and �12 = �2
S1

+ �2
S2

+ 2�S1�S2 cos(ϕ1 − ϕ2).
Note that in the formula (13) there appears the finite

superconducting energy gap � j . The limit |� j | = ∞ will be
imposed later on, when computing the expectation values of
the product of two corresponding operators, e.g., 〈c†

σ (t )cσ (t )〉
or 〈c†

σ (t )cqjσ (t )〉. Additionally, expression for cqjσ (s) needed
for calculations of the currents flowing between the QD and
the superconducting leads can be obtained from Eqs. (4b),
(4c), (11), (12) and it reads

cqjσ (s) = 1

s2 + ε2
q j

+ |� j |2
[(

s − iεq j

)(
cqjσ (0) − iVqj cσ (s)

)
+αVqj � jc

+
−σ (s) − iα� jc

+
−q j−σ (0)

]
, (14)

where α = +(−) for σ = ↑ (↓). Using these formulas for
cσ (s) and cqjσ (s) we can analytically determine the QD occu-
pancy, pairing parameter, subgap currents and its differential
conductance.
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In the following we set e = h̄ = kB ≡ 1 and make use
of the wide-band limit approximation. All numerical calcu-
lations shall be performed for �S1 = �S2 = �S and μN = 0,
unless stated otherwise. The energies, currents, and time are
expressed in units of �S , e�S/h̄, and h̄/�S , respectively.
We assume the chemical potentials of superconducting leads
μS1 = μS2 = 0 to be grounded. For experimentally available
values of �S , �S ∼ 200 μeV [82–84], the typical time and
current units would be ∼3.3 psec and ∼48 nA, respectively.

III. QUANTUM DOT OCCUPANCY

Let us consider the time-dependent QD occupancy after
abrupt coupling (at t = 0+) to the normal and superconduct-
ing electrodes. We assume no bias voltage between electrodes
and make use of the wide band limit approximation and
impose |� j | = ∞. Under these assumptions the QD occupa-
tion, nσ (t ), reads (cf. [80] for N-QD-S and [98] for N-QD-N
systems):

nσ (t ) = L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)

}
(t )L−1

{
s − iε−σ + �N/2

(s − s3)(s − s4)

}
(t )nσ (0)

+ �12

4
L−1

{
1

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

}
(t )(1 − n−σ (0))

+
∑
k1,k2

Vk1Vk2L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)
(
s − iεk1

)}(t )L−1

{
s − iε−σ + �N/2

(s − s3)(s − s4)
(
s + iεk2

)}(t )
〈
c+

k1σ
(0)ck2σ (0)

〉

+ �12

4

∑
k1,k2

Vk1Vk2L−1

{
1

(s − s1)(s − s2)
(
s + iεk1

)}(t )L−1

{
1

(s − s3)(s − s4)
(
s − iεk2

)}(t )
〈
ck1−σ (0)c+

k2−σ (0)
〉
, (15)

where s1,2 = 1
2 [i(ε↑ − ε↓) − �N ± i

√
δ], and for σ =↓ one should replace (s1, s2) ↔ (s3, s4), respectively. The first two terms

describe the transient QD charge oscillations which depend on the initial QD occupations. The last two terms (with the sums
over k) are related to the normal lead and they give nonvanishing and nonoscillating contribution to nσ (t ), regardless of the initial
conditions. Note that in Eq. (15) the terms involving the expectation values of the product of electron annihilation and creation
operators cqjσ and c†

q jσ
of the superconducting lead electrons do not appear. Such terms take, e.g., the following integral form

(cf. Ref. [80]):

�S

2π

∫ +∞

−∞
dε fS (ε)L−1

{ (
s + iε↓ + �N

2

)
(s + iε)

(s − s1)(s − s2)(s2 + ε2 + |� j |2)

}
(t )L−1

{ (
s − iε↓ + �N

2

)
(s − iε)

(s − s3)(s − s4)(s2 + ε2 + |� j |2)

}
(t ), (16)

where fs(ε) is the Fermi distribution function. It is easy to check numerically that the above integral over the energy is smaller
and smaller with increasing |� j |. Thus in our calculations for |� j | = ∞ we can neglect all terms involving operators ĉqσ (0).
The formula (15) can be further elaborated and after some algebra one rewrites the two first terms explicitly while the third and
fourth terms can be expressed by integrals over the energy in the normal lead spectrum

nσ (t ) = e−�N t

[
nσ (0) + (1 − nσ (0) − n−σ (0)) sin2

(√
δt

2

)
�12

δ

]

+ �N

2π

∫ +∞

−∞
dε fN (ε)L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iε)

}
(t ) · L−1

{
s − iε−σ + �N/2

(s − s3)(s − s4)(s + iε)

}
(t )

+ �N

8π
�12

∫ +∞

−∞
dε(1 − fN (ε))L−1

{
1

(s − s1)(s − s2)(s + iε)

}
(t ) · L−1

{
1

(s − s3)(s − s4)(s − iε)

}
(t ). (17)

Here fN (ε) is the electron Fermi distribution function for the
normal lead and for σ = ↓ the replacement (s1, s2) ↔ (s3, s4)
should be done. The phase difference φ = φ1 − φ2 enters
Eq. (17) only through the function cos φ, therefore the QD
occupancy satisfies the symmetry relation nσ (φ) = nσ (φ +
2π ). Note that the part which depends on the initial QD filling
oscillates with the period 2π/

√
δ. These oscillations depend

on the QD electron energies, ε↑ + ε↓, both couplings �S1 ,
�S2 , and the phase difference φ of the superconducting order
parameters, φ = ϕ1 − ϕ2. The oscillations are damped due to
the exponential factor e−�N t and in the asymptotic time limit
the information about the initial QD occupation is entirely
washed out. From Eq. (17) we infer that, when QD is coupled
only to the superconducting leads and the initial conditions

are nσ (0) = (1, 0) or (0,1), the time-dependent QD occupancy
does not change at all (independently of φ and �S1/2 ). In
this case the QD is occupied only be one electron which
cannot be exchanged with the superconducting reservoirs due
to the infinity large energy gaps. For the initial conditions
nσ (0) = (1, 1) or (0, 0) the QD occupancy oscillates with the
time period T = 2π√

δ
for φ �= π independently of �S1/2 or for

φ = π , �S1 �= �S2 . These oscillations, however, disappear for
φ = π and �S1 = �S2 as shown in Fig. 2.

The formula (17) for �N = 0 resembles the Rabbi oscil-
lations of a typical two-level quantum system described by
the effective Hamiltonian Heff = 1

2 (�S1 eiϕ1 + �S2 eiϕ2 )c†
↑c†

↓ +
H.c. +∑

σ εσ nσ . Assuming that at t = 0 the QD is empty,
nσ (0) = 0, we can calculate the probability P(t ) of finding
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FIG. 2. Time evolution of the QD occupancies n↑(t ), n↓(t ) as a
function of the phase difference φ for εσ = 0 (upper panel) and ε↑ =
−ε↓ = 0.5 (bottom panel). �S1 = �S2 = �S = 1, �N = 0.1, μN =
0, |�1| = |�2| → ∞, nσ (0) = 0. The QD occupancies satisfy the
relation nσ (φ) = nσ (φ + 2π ) and for t = ∞ are symmetrical with
regard to φ = π .

the QD in the doubly occupied configuration, n↑ = n↓ = 1.
Within the standard treatment of a two-level system we have
[80,99]

P(t ) = �12

�12 + (E1 − E2)2
sin2

(√
�12 + (E1 − E2)2

t

2

)
,

(18)

where E1 = 0 and E2 = ε↑ + ε↓ are energies of the empty and
double occupied configurations, respectively. This formula
can be rewritten as P(t ) = �12

δ
sin2 (

√
δ

2 t ) and becomes identi-
cal with our expression (17) obtained for nσ (0) = 0, �N = 0.

To illustrate such analytical results and to reveal influ-
ence of the phase difference of two superconducting leads
on the QD occupation in Fig. 2 we show n↑(t ) and n↓(t )
with respect to time and φ for εσ = 0 (upper panel) and for
the Zeeman splitting εσ = −ε−σ = 0.5 (bottom panel). We
consider here the symmetric coupling �S1 = �S1 = �S and
assume the initial conditions nσ (0) = (0, 0). Note that for
εσ = 0 the QD occupancy becomes spin independent, i.e.,
nσ (t ) = n−σ (t ) [see Eq. (17)]. For t → ∞ it always tends
to 0.5, regardless of the superconducting phase difference. In
the absence of any phase difference we observe the oscilla-
tions of nσ (t ) with the period T = π/�S which are damped
according to the exponential function e−�N t . Notice that the
period of these oscillations is twice as short compared to
the oscillations in the N-QD-S system [80]. For φ �= 0 these
oscillations are characterized by the phase-dependent period
T = π/[�S| cos(φ/2)|]. For the special case φ = π (�12 = 0)
the oscillations disappear and the QD charge develops in time
exactly in the same way as for the QD coupled only to the

normal lead (with εσ = 0), e.g., Ref. [1]:

nσ (t ) = nσ (0)e−�N t + �N

π
e−�N t/2

×
∫ +∞

−∞
dε fN (ε)

cosh(�Nt/2) − cos(εt )

(�N/2)2 + ε2
. (19)

For μ = 0 and the zero temperature case we obtain nσ (t ) =
1
2 + e−�N t (nσ (0) − 1

2 ). It means that for nσ (0) = (0, 0) or
(1,1) the QD occupation increases or decreases monotonically
in time without any oscillations, changing from zero (one) to
0.5 (see Fig. 2, upper panel).

The situation changes in the presence of the Zeeman split-
ting (bottom panel). For symmetric splitting around μN = 0,
ε↑ = −ε↓, the first term of Eq. (17) depends only on the
phase difference φ and �Si . Its contribution to the final QD
occupancy is the same for arbitrary values of εσ . On the other
hand the two last terms in Eq. (17) depend separately on
εσ . For φ = π the contribution from these terms is identical
with the case of the QD coupled only to the normal lead.
For t = 40 and ε↑ = −ε↓ = 0.5 (bottom panel in Fig. 2), the
contribution for spin up (down) is ∼0.03 (∼0.95). For φ = 0
such contributions become ∼0.49 and ∼0.51, respectively.
One can thus control the QD occupancy by changing the phase
difference φ.

Let us analyze more carefully variation of the QD occu-
pancy against the phase difference φ. In Fig. 3 (upper panel)
we present the ABS energies of the proximitized QD, Eαβ =
Ēα − εβ , (α = ±, β = ± ≡ ↑/↓), where Ēα = 1

2 (ε↑ + ε↓) +
α

√
(ε↑+ε↓ )2

4 + �2
S cos2 φ

2 is the quasiparticle energy, represent-
ing a superposition of the empty and double occupied states
[100]. In the lower panel we show the QD occupancies n↑(t ),
n↓(t ) and the difference n↓(t ) − n↑(t ) for �N = 0.02 obtained
for particular times t . QD occupancy rapidly changes for
such values of φ which satisfy the relation E++ = E−−, i.e.,
for φ = π ± arccos ε↑

�S
(here ε↑ + ε↓ = 0, ε↑ > 0). Exactly

for such values of φ we observe an abrupt change of the
QD magnetization, which is well visible especially in the
long-time (steady) limit. In our case for �N = 0.02 this time
equals 200 u.t. (approximately equal to 4

�N
). For stronger

couplings �N such changeover of the QD magnetization is
also observed (not shown here) although it is more smeared
around φ = π ± π/3 even for longer time after the quench.
At a very early stage of the time evolution such a transition
of the magnetization from zero value to 1 is only weakly
manifested (see the upper thick red curve in the lower panel of
Fig. 3). On the other hand, oscillations of the QD occupancies
hardly detect the existence of this transition. However, already
for t � 1

�N
= 50 u.t. this transition is well marked on the

occupancy curves as well as on n↓(t ) − n↑(t ). Notice the
decreasing amplitude and increasing frequency of the QD
occupancies versus time. These transient characteristics are
described by the factor sin2(2�S| cos(φ/2)|t )e−�N t , see the
first term of Eq. 17. Let us emphasize, that despite oscillatory
character of nσ (t ), the resulting magnetization n↓(t ) − n↑(t )
is a smooth function of φ.

IV. INDUCED ON-DOT PAIRING

We shall now calculate the pairing amplitude χ (t ) ≡
〈c↓(t )c↑(t )〉 driven by the proximity effect, assuming absence
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FIG. 3. Energies of the subgap quasiparticles of the proximitized
QD, Eαβ , (upper panel) and QD occupancies: n↑, n↓, and n↓ − n↑
(solid black, broken red, and thick red curves, respectively) as a
function of φ. The occupancies are obtained for t = 10, t = 50
(shifted down by 1.5) and for t = 200 u.t. (shifted down by 3.0).
The vertical black lines indicate characteristic points for φ = 2π

3 and
φ = 4π

3 , and the other parameters are ε↑ = −ε↓ = 0.5, �S1 = �S2 =
�S = 1, �N = 0.02, μN = 0.

of any bias voltage (μN = 0). Using the expressions for c↑(s)
and c↓(s) obtained in Sec. II we find

χ (t )=− i

2
(�S1eiϕ1+�S2eiϕ2 )

[
−n↑(0)L−1

{
1

(s−s1)(s−s2)

}
(t )

×L−1

{
s − iε↓ + �N/2

(s − s3)(s − s4)

}
(t )

+ (1 − n↓(0))L−1

{
s − iε↑ + �N/2

(s − s1)(s − s2)

}
(t )

×L−1

{
1

(s − s3)(s − s4)

}
(t ) + �N

2π
∗

↑

]
(20)

where

σ =
∫ +∞

−∞
dεL−1

{
1

(s − s1)(s − s2)(s + iε)

}
(t )

×L−1

{
s + iεσ + �N/2

(s − s3)(s − s4)(s − iε)

}
(t )(1 − fN (ε))

−
∫ +∞

−∞
dε fN (ε)L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iε)

}
(t )

×L−1

{
1

(s − s3)(s − s4)(s + iε)

}
(t ), (21)

FIG. 4. The real (upper panel) and imaginary (bottom panel)
parts of the QD induced pairing χ (t ) = 〈c↓(t )c↑(t )〉 as a function
of time and the phase difference ϕ1 − ϕ2 for εσ = 0, �S1 = �S2 =
�S , �N = 0.1, and nσ (0) = 0. χ (t ) satisfies the relation χ (t, φ) =
χ (t, φ + 4π ) and for t = ∞ is symmetrical about φ = 2π . The bold
green line for t = 40 in the upper panel corresponds to the case
ε↑ = −ε↓ = 0.5.

and the replacement (s1, s2) → (s3, s4) should be made for
σ = ↓. The terms proportional to n↑(0) and (1 − n↓(0)) in
the above relation can be expressed analytically, and

χ (t ) = i

2

(
�S1 eiϕ1 + �S2 eiϕ2

)
×
{

− �N

2π
∗

↑ + (n↓(0) + n↑(0) − 1)e−�N t

×[
√

δ sin(
√

δt ) + i(ε↑ + ε↓)(cos(
√

δt ) − 1)]

/
δ

}
.

(22)

Notice, that for �S1 = �S2 = �S and φ = π the factor
�S1 eiϕ1 + �S2 eiϕ2 = 2�S cos φ

2 vanishes, therefore the on-dot
pairing 〈c↓(t )c↑(t )〉 is absent (see upper and bottom panels in
Fig. 4 for φ = π ). However, for φ �= π and ε↑ + ε↓ = 0 we
have

χ (t ) = −�N�S

2π
cos

φ

2
�↑ + i

2
(n↓(0) + n↑(0) − 1)

×e−�N t cos φ

2∣∣ cos φ

2

∣∣ sin
(

2�S| cos
φ

2
|t
)
, (23)

where we have used the property �σ = 0, correspond-
ing to μN = 0 [80]. The imaginary part of χ (t ) oscillates
with the same period as the QD occupancy, i.e., with T =
π/[�S| cos(φ/2)|], but the real part changes monotonically
from zero to some constant value without any oscillations
(upper panel). We can notice that the imaginary part of χ
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vanishes when the QD is filled by a single electron at the initial
time t = 0. On the other hand, the real part of χ is a nonvan-
ishing function irrespective of the initial conditions. It is worth
mentioning that for �N = 0 (i.e., Josephson junction setup)
and for ε↑ + ε↓ = 0 the expression for χ (t ) becomes purely
imaginary and is characterized by undamped oscillations in-
ducing d.c. current (see Sec. V). In general, from the analysis
of Eq. (20) we infer that the QD induced pairing satisfies the
symmetry relation χ (t, φ) = χ (t, φ + 4π ). In particular, for
t = ∞, it becomes symmetric with respect to φ = 2π .

V. SUBGAP CURRENTS

Let us consider the currents jNσ (t ) and jS jσ (t ) flowing be-
tween the QD and the normal or superconducting electrodes,
respectively. These currents depend on time due to the abrupt
coupling of all parts of the considered system. For t > 0, even
at zero bias voltage, there are induced transient currents. Such
electron currents can be obtained from the evolution of the
total number of electrons of the corresponding electrode [1].
For the normal lead we can express it as [38,50,51,57,68]:

jNσ (t ) = 2�
(∑

k

Vkσ e−iεkσ t 〈c+
σ (t )ckσ (0)〉

)
− �N nσ (t ), (24)

where we have assumed the energy-independent normal lead
spectrum. Using the formulas of Sec. II we find

jNσ (t ) = �N

π
�
(∫ +∞

−∞
dε fN (ε)e−iεt

×L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iε)

}
(t )

)
− �N nσ (t ).

(25)

Inserting the inverse Laplace transform and using the ex-
pression for nσ (t ) one can obtain the analytical relation for
jNσ (t ). However, this solution for arbitrary t cannot be written
in relatively compact (or transparent) form, so we restrict
ourselves to the asymptotics t = ∞

jNσ = �N

π

∫
dε

{
fN (ε)

[
�
(

i(ε + ε−σ ) + �N
2(

�N
2 + iε++

)(
�N
2 + iε−+

))

− �N

2

(ε + ε−σ )2 + �2
N

4(�2
N

4 + ε2++
)(�2

N
4 + ε2−+

)
]

− (1 − fN (ε))
�N�12

8
(�2

N
4 + ε2+−

)(�2
N

4 + ε2−−
)
}

, (26)

where εαβ = ε + Eαβ and Eαβ are the quasiparticle energies
of the proximitized QD.

Upper panel of Fig. 5 shows the time-dependent current
flowing from the normal lead to the QD as a function of

FIG. 5. The time dependent currents flowing between the QD
and the normal lead, jN↑(t ) (upper panel), and between the QD and
the superconducting lead, jS1↑(t ) (bottom panel), as a function of
the phase difference ϕ1 − ϕ2. The system parameters are: εσ = 0,
�S1 = �S2 = �S , �N = 0.1, and nσ (0) = 0.

the phase difference φ = ϕ1 − ϕ2 obtained for the unbiased
system and εσ = 0. At the beginning the current starts to flow
from the normal electrode to the empty QD. In a next stage,
electrons tunnel in both directions with the characteristic
oscillations. These damped oscillations are clearly visible and
for t → ∞ the current vanishes for all φ. The period of
these oscillations increases with φ, similarly to the behavior
observed for the QD occupancy. Exceptionally, for φ = π , the
current tends to its asymptotic value without any oscillations
according to the formula (valid for the zero temperature, εσ =
0 and �S1 = �S2 ):

jNσ (t ) = �N e−�N t
(

1
2 − nσ (0)

)
. (27)

We can notice that right after the abrupt coupling (at t = 0+)
the large value of transient current jNσ is induced in the
system (∼�N

2 ) which is artifact of the WBL approximation
[15]. We have checked that by applying a more realistic
(smooth) QD-leads coupling profile the initial current would
gradually increase, revealing the same period of oscillations
and other overall features [80].

The situation looks a bit different for the currents flowing
between the QD and superconducting leads. To calculate
these currents we start from the standard formula jS jσ (t ) =
2�(

∑
q j Vq j〈c+

σ (t )cq jσ (t )〉) and use the Laplace transforms for
c+
σ (s) and cq jσ (s), obtaining [80]

jS1/2σ (t ) = �
{

�S1/2

2
(�S1/2 + �S2/1 e±iφ )

[
�N

2π
σ − nσ (0)L−1

{
1

(s − s3)(s − s4)

}
(t )L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)

}
(t )

+ (1 − n−σ (0))L−1

{
1

(s − s1)(s − s2)

}
(t )L−1

{
s + iεσ + �N/2

(s − s3)(s − s4)

}
(t )

]}
. (28)
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As usually, the replacement (s1, s2) ↔ (s3, s4) should be made for σ =↓. After straightforward algebra we can derive more
explicit form for the superconducting current

jS1/2σ (t ) = �S1/2

2δ
(1 − nσ (0) − n−σ (0))e−�N t

[(
�S2/1 cos φ + �S1/2

)√
δ sin(

√
δt ) ∓ �S2/1 (εσ + ε−σ ) sin φ(1 − cos(

√
δt ))

]
+ �N�S1/2

4π
�{(�S1/2 + �S2/1 e±iφ

)
σ

}
. (29)

Using the relation for the induced pairing, Eq. (20), the above
current can be recast as jS jσ (t ) = �(�S j e

iϕ j 〈c↓(t )c↑(t )〉∗).
Assuming that 〈c↓(t )c↑(t )〉 = |〈c↓(t )c↑(t )〉|eiϕd , where ϕd

is the argument (phase) of 〈c↓(t )c↑(t )〉, we obtain (e.g.,
Ref. [69]):

jS jσ (t ) = �S j |〈c↓(t )c↑(t )〉| sin(ϕ j − ϕd ), (30)

where j = 1, 2. Inspecting (30) we conclude that the currents
flowing between the QD and a given superconducting lead
does not depend on spin, jS1σ

(t ) = jS1−σ
(t ), irrespective of the

spin dependent QD energy levels. This is a consequence of the
fact that the QD can exchange charge with the superconduct-
ing leads only via pairs of opposite spin electrons.

Formula (30) simplifies for the case �S1 = �S2 ≡ �S and
ε↑ + ε↓ = 0, when we obtain

jS1σ (t ) = �S

2
e−�N t [1 − nσ (0) − n−σ (0)]

× cos(φ/2) sin(2�S| cos(φ/2)|t )

+ �N�2
S

2π
cos2(φ/2) �{σ } − �N�2

S

4π
sin φ �{σ }.

(31)

For μN = 0 the real part of σ , �{σ }, vanishes [80] and
in such a case for φ = π and identical couplings to both
superconducting leads the currents jS jσ (t ) vanish.

Under nonequilibrium conditions (μN �= 0) for symmetric
couplings and assuming ε↑ = −ε↓, the asymptotic (t → ∞)
value of the superconducting current can be expressed as

jS1σ = �2
N�2

S

4π

{∫
(1 − fN (ε))dε[(

�2
N

/
4 + ε2+−

)][(
�2

N

/
4 + ε2−−

)]
−
∫

fN (ε)dε[(
�2

N/4 + ε2−+
)][(

�2
N/4 + ε2++

)]
}

cos2

(
φ

2

)

− �N�2
S

4π

{∫
(1 − fN (ε))(ε + ε↑)dε[(

�2
N/4 + ε2+−

)][(
�2

N/4 + ε2−−
)]

−
∫

fN (ε)(ε − ε↑)dε[(
�2

N/4 + ε2−+
)][(

�2
N/4 + ε2++

)]
}

sin φ (32)

where εαβ = ε + Eαβ and Eαβ denote quasiparticle energies
of the proximitized QD. Notice that the first term in the
above formula vanishes for zero temperature and μN = 0. In
this case the superconducting current can be rewritten to the
following (Josephson-like) formula

jS1σ = �S

4π

sin φ∣∣ cos
(

φ

2

)∣∣
[

arctan
ε2
↑ + �2

N
4 − �2

S cos2
(

φ

2

)
�S�N

∣∣ cos
(

φ

2

)∣∣ − π

2

]
.

(33)

Let us remark that the formula for the current, Eq. (31), can
be used to determine the coupling value �S . As the time
oscillations are described by the first term of Eq. (31), then
for a given φ the oscillating part of jS jσ (t ) is proportional
to sin (2�S| cos(φ/2)|t ). The period of these oscillations T =

π
�S | cos(φ/2)| for the system characterized by a sufficiently small
�S and φ � π should be experimentally detectable.

Lower panel in Fig. 5 presents the current jS1↑(t ) as a func-
tion of φ for n↑(0) = n↓(0) = 0. The current oscillates with a
damping amplitude and for large time it tends to a nonzero
asymptotic value given in Eq. (33). The asymptotic value of
the current does not depend on the initial QD occupancies, see
Eq. (29). However, the transient currents are different for the
QD initial occupancies, nσ (0) = (0, 0), (1,1) and for nσ (0) =
(0, 1), (1,0). In the first case the current indicates a rather
rich time-dependent structure before it attains the asymptotic
value. This is a consequence of the Rabi-like oscillations
(damped via e−�N t due to the coupling with normal lead)
between the empty and double occupied QD configurations
and is described by the first term of Eq. (29) which depends
on the factor (1 − nσ (0) − n−σ (0)). This factor disappears for
the initial occupancies nσ (0) = (0, 1) or (1,0) and all time
dependence of jSiσ (t ) is described by the last term of Eq. (29).
This term, however, in contrast to the former case does not
introduce any visible oscillations for small �N but enters the
formulas for jSiσ , irrespective of the initial conditions. From
Fig. 5 we can learn that at a short time after the quench the
current is symmetric with respect to φ = π . This symmetry,
however, is quickly lost in the long time scale.

In Fig. 6 we present time dependent currents jS1↑ and
jS2↑ vs the phase difference φ for the finite Zeeman split-
ting of energy levels, ε↑ = −ε↓ = 0.5�S . Both currents os-
cillate with the period dependent on the phase difference
φ. As before, this period increases with φ and for φ = π

the currents do not flow in the system. Comparing such φ

dependence of the currents with those presented in Fig. 5
(lower panel) for εσ = 0 we observe a different behavior,
especially at asymptotic large time. In the presence of the
Zeeman splitting the asymptotic currents almost vanish for
some φ interval around φ = π . To study this effect in more
detail we show in Fig. 6, bottom panel, the superconducting
currents for several values of the Zeeman splittings (solid
lines for ε↑ = −ε↓ = 0, 0.25, 0.5, 0.75, and 1.0 expressed in
units of �S). As one can see, in the absence of the Zeeman
splitting the current does not flow only for φ = 0, π . In the
presence of the Zeeman term the zero-value superconducting
current interval of φ increases, but at the same time the
maximal values of the currents diminish. For ε↑ = −ε↓ � 1
the superconducting currents do not flow. The corresponding
asymptotic occupancies of the QD, n↑(φ, t = ∞), are shown
in Fig. 6, bottom panel (broken lines). One can notice that
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FIG. 6. Time dependent currents flowing between the QD and
the superconducting leads, jS1↑(t ), jS2↑(t ) as a function of the phase
difference ϕ1 − ϕ2 in the presence of the Zeeman splitting ε↑ =
−ε↓ = 0.5 (upper panel). In the bottom panel the asymptotic spin up
currents (solid curves) and corresponding QD occupancies (broken
curves) obtained for t = ∞ are shown for the Zeeman splitting:
ε↑ = −ε↓ = 0, 0.25, 0.5, 0.75 and 1.0. The parameters are: �S1 =
�S2 = �S , �N = 0.2, and nσ (0) = 0.

the occupancies decrease monotonically with φ and remain
very low for the zero-current interval of φ. The changes of
the QD occupancies in the presence of the Zeeman splitting
reflect phasal dependence of the superconducting currents.
These changes are coordinated with the QD magnetization
and will be discussed in the next paragraph (compare also φ

dependence of n↑ for ε↑ = −ε↓ = 0.5 and �N = 0.1 shown
in the lower panel of Fig. 3).

In Fig. 7 we analyze the time dependence of jS2σ (t ) for
some selected values of time t , starting from the quench
at t = 0 until nearly the asymptotically large times. In the
lower panel, �N = 0.02, the φ dependence of the current
demonstrates abrupt changing of the current value at points
corresponding to E++ = E−− (see upper panel in Fig. 3).
These jumps of the current are clearly visible for large times.
However, for larger �N , e.g., for �N = 0.1 (upper panel,
Fig. 7) the φ dependence of the current even for asymptoti-
cally large times does not show such sharp changes. Notice
that the time at which the current achieves constant (in time)
values is much shorter in comparison to the case of �N =
0.02. In both regimes of �N we can estimate this time as 4

�N

[compare the results for φ dependence of nσ (t )]. For small
time the abrupt change of the current is not visible but for
larger time it becomes evident in spite of the oscillations.
Such a transition is very well visible in the asymptotics, where
the oscillations vanish. For larger �N the current tends to its
asymptotic value (without time oscillations) in much shorter

FIG. 7. The current jS2↑(t ) as a function of the phase difference
ϕ1 − ϕ2 for different times: t = 5, 20, 60 and 200 u.t. (from upper
to bottom curves in both panels, respectively). The upper (bottom)
panel corresponds to �N = 0.1(0.02) and the Zeeman splitting is
ε↑ = −ε↓ = 0.5, �S1 = �S2 = �S , and nσ (0) = 0. The curves for
t = 20, 60, 200 are shifted down by 0.5, 1.0, 1.5, respectively, for
better visualization.

time than for smaller �N , due to the damping factor e−�N t [see
the first term in Eq. (31)].

Let us consider the simple case of the QD coupled solely to
superconducting leads, assuming �S1 = �S2 = �S , ε↑ = −ε↓
and n↑(0) = n↓(0) = 0. In this case

nσ (t ) = sin2(�S cos(φ/2)t ), (34)

jS1/2σ (t ) = �S

2
cos(φ/2) sin(2�S| cos(φ/2)|t ). (35)

The QD occupancy and the current do not depend on spin
and, in addition, both superconducting currents, jS1/2σ (t ), are
exactly identical. Note, however, that for ε↑ + ε↓ �= 0 these
currents differ one from another, see Eq. (29), and their
difference equals �2

S sin φ (1 − cos(
√

δ t ))(ε↑ + ε↓)/δ. The
current jS jσ vanishes for φ = π and �S1 = �S2 . For different
couplings, �S1 �= �S2 , the current does not vanish, even for
φ = π . For instance jS1σ in this case (for εσ = 0) is found to

be jS1σ (t ) = �S1
2 sin [(�S1 − �S2 ) t].

It would be interesting to consider the transition from
the permanently oscillating superconducting currents in the
system of the QD placed only between two superconducting
leads (�N = 0) to finite constant asymptotic values of such
currents in the presence of the third normal lead (�N �= 0),
see, e.g., the bottom panel in Fig. 6. From Eq. (31) we see
that for �N �= 0 the current consists of two parts. The first
one corresponds to the transient oscillations damped by the
factor e−�N t , whereas the second one is described by the
imaginary part of σ . This part of the current slowly evolves
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FIG. 8. Time-dependent Andreev conductance (in 4e2/h units)
as a function of the bias voltage μ for the phase difference φ = ϕ1 −
ϕ2 = 0 (upper panel) and for φ = 0.85π (bottom panel). The other
system parameters are the same as in Fig. 2 with εσ = 0.

in time to some nonzero asymptotic value given in Eq. (33).
Asymptotic value of this current vanishes with decreasing
�N , but the oscillating part of the current is damped less
and less effectively, and simultaneously the imaginary part
of σ vanishes thereby the current oscillates with constant
amplitude �S

2 cos(φ/2), Eq. (31).

VI. DIFFERENTIAL SUBGAP CONDUCTANCE

The next part of our studies is devoted to the subgap
time-dependent Andreev conductance Gσ (μ, t ) = ∂

∂μ
jNσ (t ),

expressing it in units of 4e2

h . We investigate this quantity as
a function of the bias voltage (μ = μN ) applied to the normal
lead. Using the expressions for the current and QD charge,
Eqs. (17) and (25), we obtain at zero temperature

Gσ (μ, t ) = �
[
�N e−iμtL−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iμ)

}
(t )

]

+ �2
N�12

8
L−1

{
1

(s − s1)(s − s2)(s + iμ)

}
(t )

×L−1

{
1

(s − s3)(s − s4)(s − iμ)

}
(t )

− �2
N

2
L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iμ)

}
(t )

×L−1

{
s − iε−σ + �N/2

(s − s3)(s − s4)(s + iμ)

}
(t ), (36)

where for σ =↓ the replacement (s1, s2) → (s3, s3) should
be made. Notice that for ε↑ = ε↓ the conductance is spin
independent (G↑ = G↓ = G).

In Fig. 8 we plot the time-dependent conductance
Gσ (μ, t ) = G as a function of μ for different phase difference

FIG. 9. Positions of the quasiparticle maxima vs time and μ

appearing in the differential conductance Gσ (μ, t ) for different �N

indicated in the legend and for superconducting phase difference
φ = 0, π/2 and 3π/4, respectively (upper panel). The bottom panel
shows the result for �N = 0.1 where different time scales, τ1, τ2, and
τ f are indicated. For negative values of μ the results are symmetrical.
The QD energy levels are: εσ = 0 and �S1 = �S2 = �S .

between the superconducting leads, i.e., for φ = 0 (upper
panel) and for φ = 0.85π (bottom panel), in the presence of
weakly coupled normal electrode, �N = 0.1�S (�S1 = �S2 =
�S = 1) and εσ = 0. The process of forming the Andreev
subgap states is clearly visible. We observe that for φ = 0 in
the limit of large time the conductance is characterized by two
well pronounced maxima appearing at μ � ±�S whose half-
widths gradually shrink in time. These maxima appear after
some time interval after abrupt switching of the QD-leads
couplings (we denote such a time scale by τ1, see Fig. 9). This
characteristic time is needed to build up two distinct maxima
of G and it depends on the phase difference φ—compare the
upper and bottom panels in Fig. 8. Time evolution of such
quasiparticle peaks allows us to estimate how fast the Andreev
quasiparticles appear in the system, and thus it is desirable to
study this process in more detail.

By inspecting Gσ (μ, t ) in Fig. 8 we observe that up to
some specific time τ1, a broad one-peaked structure of G is
present. Then, the conductance rapidly transforms in time into
a two-peak structure. The position of each quasiparticle peak
evolves in time to its steady limit value (that time is called τ2)
and finally the width and height of peaks are established after
the time τ f (see Fig. 9, bottom panel). In Fig. 9 we display
the position of the quasiparticle peaks maxima vs time and
μ for different values of �N and φ indicated in the legend
(upper panel). As one can see, the moment of the appearance
of the two-peak structure, τ1, depends on both φ and �N .
However, for φ = 0 this time only slightly depends on �N .
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With increasing φ it increases with remarkable dependence
on �N (for a given φ it increases with �N ). The time scale for
appearance of the two-peak structure is very small and for φ =
0 it equals approximately 2.5 u.t., for φ = π/2 it changes from
∼3 u.t. for �N = 0.1 up to ∼4 u.t. for �N = 0.5, and for φ =
3π/4 it changes from ∼6 u.t. for �N = 0.1 up to ∼8.5 u.t.
for �N = 0.5, respectively (see upper panel, Fig. 9). Positions
of the maxima versus μ evolve in time during approximately
τ2 � 12 u.t. (the bold parts of lines in the bottom panel)
and attain their steady-state values. Note that the asymptotic
quasiparticle peaks heights and widths are achieved with
the envelope function 1 − exp(−t/τ f ), where τ f = 2

�N
can

be deduced from the explicit expression for Gσ (μ, t ) in
which the long living terms proportional to exp(−�Nt/2) are
present.

Let us consider a few special cases, for which the simpler
analytical formulas can be given. For φ = π , εσ = 0, and
�S1 = �S2 the conductance takes the form (here G↑ = G↓ =
G):

G(μ, t ) = �N(�2
N

4 + μ2
)
[
�N

2
+ e−�N t/2 ·

(
�N

2
cos(μt )

−�N cosh

(
�Nt

2

)
+ μ sin(μt )

)]
. (37)

In this case the zero bias conductance reads G(μ = 0, t ) =
2[1 + e−�N t/2(1 − 2 cosh (�Nt/2))] and for t = 2 ln 2/�N it
reaches the optimal value equal to 0.5 and it vanishes for
t → ∞.

We notice the vanishing conductance Gσ (μ, t = ∞) for
the symmetric couplings �S1 = �S2 obtained for φ = π . For
�S1 �= �S2 the conductance is qualitatively different. Assum-

ing
�S2
�S1

= k we obtain �12 = �2
S1

(1 + k2 + 2k cos φ), so for

k �= 1 and φ = π we get �12 = �2
S1

(1 − k)2. In such a case
for calculating the conductance we should also take into
account a contribution from the second term of Eq. (36).
As differential conductance depends on the couplings �S1 ,
�S2 , and φ only through �12 therefore different choices of
these parameters can lead to the same values of Gσ . The
conductance calculated for �S1 = �S2 and a given phase
difference φ is identical to the one obtained for arbitrary
asymmetric couplings �S1/�S2 = k using the effective phase
difference φ̄ = arccos((1 − k2 + 2 cos φ)/2k), where k satis-
fies the condition |(1 − k2 + 2 cos φ)/2k| � 1. It means that
asymmetry in the couplings to superconducting leads �S1 , �S2

can be compensated by the phase difference parameter φ. This
conclusion refers also to the QD occupancy and the current
flowing between the QD and the normal lead. Since explicit
expression for Gσ (μ, t ) is rather lengthly, we skip it here and
present only its asymptotic form (t → ∞) for �S1 = �S2 =
�S , ε↑ = −ε↓ (G↑ = G↓ = G)

G(μ) = �2
N�2

S

2
cos2

(
φ

2

){
1(�2

N
4 + μ2−+

)(�2
N

4 + μ2++
)

+ 1(�2
N

4 + μ2+−
)(�2

N
4 + μ2−−

)
}

, (38)

FIG. 10. The asymptotic conductance obtained for t → ∞ as a
function of μ and the phase difference φ = ϕ1 − ϕ2. The contour
lines correspond to G = 0.5 and �S1 = �S2 = �S , �N = 0.75.

where μαβ = μ + Eαβ . For �N � �S the asymptotic conduc-
tance has four maxima placed at μ � ±ε↑ ± �S| cos ( φ

2 )| or
equivalently at μ = E++, E+−, E−+ and E−−, respectively.
Note that the asymptotic conductivity G(μ) does not depend
on spin but in general Gσ (μ, t ) can be spin dependent.

It is also interesting to check influence of the superconduct-
ing phase difference on the asymptotic Andreev conductance
behavior. For arbitrary φ �= π and εσ = 0, the asymptotic
value of G(μ, t ) can be written as follows (for t = ∞)

G(μ) = �2
N�12

4
[�2

N
4 + (√

�12

2 − μ
)2][�2

N
4 + (√

�12

2 + μ
)2] . (39)

Figure 10 presents the asymptotic conductance, G(μ, t = ∞),
as a function of the bias voltage μ, and the phase difference
φ. As one can see for φ = 0 two distinct maxima of G are
visible (cf. Fig. 8 for t = 100). For nonzero φ, which satisfies

the condition cos(φ) >
�2

N −�2
S1−�2

S2
2�S1�S2

, these two maxima appear

at points μ = ±
√

�12
4 − �2

N
4 . In the opposite case, there is

only one maximum at μ = 0 whose height is reduced to
zero value with φ → π . In consequence, for φ = π and
t = ∞ the conductance vanishes for all μ. Note that for the
QD coupled only to one superconducting and one normal
electrode, the zero-bias conductance is invariant under the
replacement �N ↔ �S , [70]. However, in our system with two
superconducting leads this conclusion is no longer valid, even
for the symmetric couplings case, �S1 = �S2 . Such a property
is achieved only for φ = 2π

3 .
In the last part of this section we discuss the time evolution

of the ABS for nonzero splitting of the QD energy levels.
In the first case we consider the symmetric splitting around
the zero energy (Fig. 11, ε↑ = −ε↓ = 0.5 for φ = 0.85π ) and
in the second case the splitting is symmetric but around the
nonzero energy value equal 0.5 (Fig. 12, ε↑ = 1, ε↓ = 0 for
some specific values of time after the quench). In Fig. 11 we
analyze the approach to equilibrium of G↑(μ, t ) for two values
of �N , �N = 0.1(0.02) upper (bottom) panel. We show only
G↑(μ, t ) as G↓(μ, t ) is symmetric (with respect to μ = 0) in
relation to G↑. The maxima of G↑ for large time correspond
to E−+, E++, E−−, and E+− ABS states (beginning from
negative values of the bias voltage μ). It is interesting that
the time evolution of E−+, E++ ABS is different from the
evolution of E−− and E+−, respectively. The stationary values
of the conductance peaks corresponding to G↑ and G↓ are all
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FIG. 11. Time-dependent Andreev conductance G↑ (in 4e2/h
units) as a function of the bias voltage μ for the phase difference
φ = ϕ1 − ϕ2 = 0.85π and the Zeeman splitting ε↑ = −ε↓ = 0.5.
The upper (bottom) panel corresponds to �N = 0.1 (�N = 0.02) and
�S1 = �S2 = �S .

the same [according to Eq. (38)] but the ABS E−+ and E++
begin to appear later than E−− and E+−. For �N = 0.1 (0.02)
this delay time can be approximately estimated as 30 (60) u.t.
For stronger coupling �N (upper panel) the ABS peaks are
wider in comparison to the case of weakly coupled normal
electrode (bottom panel) and appear earlier than for smaller
�N .

In Fig. 12 we show the phase dependence of G↑ and
G↓ calculated for small time, t = 10 u.t. (upper panels), for
t = 30 u.t. (middle panels), and for long time, t = 100 u.t.
(bottom panels) at which the conductance attains the sta-
tionary values. In addition, in the upper panels the curves
representing the localization of the ABS states on the (μ, φ)
plane are depicted. We observe the essential difference with
strong asymmetry between G↑ and G↓ at a short period of time
after the quench. The time evolution of G↑ (G↓) is limited to
the appearance of E+− (E++) ABS. Next, for larger time other
Andreev states appear but the most visible are still the curves
corresponding to E+− and E++, respectively. Notice that for
φ = π and large time the conductance vanishes for both
spins [cf. Eq. (38)] as shown in the bottom panels. However,
for smaller time after a quench the ABS states also vanish
for φ = π except E+− (for σ = ↑) and E++ (for σ = ↓).
These states vanish only at relatively large times after the
quench.

VII. CORRELATION EFFECTS

Finally let us address the correlation effects, driven by
the Coulomb interactions Uc+

↑ c↑c+
↓ c↓ that should be added

to the term HQD. Such electrostatic repulsion is usually in
conflict with the local electron pairing. In nanoscopic systems,
however, their relationship is a bit more subtle. On one hand
the Coulomb repulsion U > 0 suppresses the magnitude of
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FIG. 12. Phase-dependent Andreev conductance G↑ (left panels)
and G↓ (right panels) (in units of 4e2/h) as a function of the bias
voltage μ for t = 10, 30, and 100 u.t. (upper, middle, and bottom
panels, respectively) after the quench. Other parameters: ε↑ = 1,
ε↓ = 0, �N = 0.1, �S1 = �S2 = �S . The lower curves in all panels
correspond to φ = 0 and each next upper curve is shifted up by 2π

33 ,
so the upper curves correspond to φ = 2π . E+−, E++, E−−, E−+ are
represented by corresponding solid lines in the upper panels: They
show the localization of the ABS (for �N = 0) on the (μ, φ) plane.

on-dot pairing potential χ (t ) = 〈c↓(t )c↑(t )〉. In addition to
this monotonous behavior, at some critical value Uc there
occurs π shift of the complex function χ (t ) [101]. Under
such circumstances the subgap quasiparticles cross each other
and the correlated quantum dot changes configuration of
its ground state (singlet-doublet quantum phase transition).
When the quantum dot is embedded into Josephson junc-
tion geometry, such an effect leads to reversal of dc su-
percurrent which has been extensively discussed by various
groups [94,102].

Salient features of this π -shift effect can be captured within
the lowest order perturbative treatment of the Coulomb term
[101]. Crossing of the subgap quasiparticles can be quali-
tatively obtained using the Hartree-Fock-Bogoliubov decou-
pling scheme

c+
↑ c↑c+

↓ c↓ � n↑(t )c+
↓ c↓ + n↓(t )c+

↑ c↑ − n↑(t )n↓(t )

+χ∗(t )c+
↑ c+

↓ + χ (t )c↓c↑ − |χ (t )|2. (40)

In this mean-field treatment we can absorb the Hartree-Fock
terms to the renormalized QD energy level εσ + Un−σ (t ) and
the anomalous (pair source/sink) terms rescale the effective
on-dot pairing to 1

2 (�S1 eiϕ1 + �S2 eiϕ2 ) − Uχ (t ). In a weak
coupling regime U < Uc the lowest order approximation (40)
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FIG. 13. Time-dependent differential conductance G ≡ Gσ (ex-
pressed in units of 4e2/h) as a function the bias voltage μ obtained
for the correlated quantum dot, assuming ε = −U/2 and several
values of U as indicated. The phase difference is ϕ1 − ϕ2 = 0 and
�N = 0.1�S . We assumed the initial QD occupancy nσ (t = 0) = 0.

has been shown to qualitatively reproduce the results of more
sophisticated many-body techniques [92,101].

Since analytical determination of the time-dependent ob-
servables is no longer possible, we have investigated the
correlation effects by means of self-consistent numerical cal-
culations. In what follows, we focus on the special case
εσ = −U/2 which in the stationary limit corresponds to the
half-filled quantum dot nσ (t → ∞) = 1

2 . We have computed
the time-dependent occupancy nσ (t ) and the complex pairing
potential χ (t ), solving the differential equations of motion
for the relevant expectation values [80] by the Runge-Kutta
algorithm.

In Fig. 13 we show representative results, which illus-
trate time-dependent buildup of the subgap quasiparticles of
the correlated quantum dot. In analogy to the discussion in

Sec. VI (corresponding to the noninteracting case), we present
the differential Andreev conductance G(μ) versus the bias
voltage μ obtained numerically for ϕ1 = ϕ2 and several values
of the Coulomb potential U , as indicated. Comparison with
the top panel of Fig. 8 clearly indicates that the subgap
quasiparticle peaks gradually move closer towards each other
upon increasing the Coulomb potential U . At the critical
value Uc � 2�S , they finally merge into the single (rather
broad) peak, signaling the mentioned 0 − π transition. In the
strongly correlated regime (U > Uc) this structure should split
again into two separate peaks, but unfortunately the Hartree-
Fock-Bogolubov approximation (40) fails to properly account
for such physical effect. We are predominantly interested in
the transient phenomena, therefore description of the strong
correlations (including realization of the subgap Kondo effect)
is beyond a scope of the present analysis.

By inspecting the panels of Fig. 13 we notice that fre-
quency of the transient oscillations depends on the potential
U . This is a rather obvious fact, considering that Coulomb
repulsion has direct influence on the energies of subgap
quasiparticles [93]. Furthermore, electron correlations seem
to substantially enlarge a temporal region of the quasiparticle
buildup (characterized by the time scale τ f ). For a more
reliable study of this nontrivial interplay between the transient
and correlation effects there should be used some sophisti-
cated (nonperturbative) methods.

VIII. SUMMARY

We have investigated the dynamics of subgap quasiparti-
cles for the setup comprising the quantum dot (QD) embedded
between two superconducting leads and another metallic elec-
trode. Transient phenomena, caused by an abrupt coupling of
the QD to external reservoirs, have been studied solving the
Heisenberg equations of motion within the Laplace transform
technique which easily incorporates the initial conditions. We
have determined the time-dependent charge and magnetiza-
tion of QD, development of the on-dot pairing, and transient
currents induced under the equilibrium (for identical chemical
potentials of the leads) and nonequilibrium conditions (i.e.,
for the biased system). Similar effects can be also observed
in the Josephson junctions periodically driven by external
fields [103].

In the limit of large energy gap of superconducting reser-
voirs we have derived analytical formulas for time-dependent
observables. We have distinguished between two contribu-
tions appearing in expressions for the QD occupancy nσ (t ),
on-dot pairing amplitude 〈c↓(t )c↑(t )〉, and charge current
flowing between the QD and superconducting leads. The first
term depends on the initial QD occupancy (but is not depen-
dent on the chemical potentials of external reservoirs) and is
responsible for an oscillating transient behavior of the con-
sidered quantities, with a characteristic damping exp(−�Nt )
driven by the QD-normal lead coupling �N . Contribution of
this term is proportional to the factor (1 − n↑(0) − n↓(0)), so
it can vanish for some specific initial QD occupancies nσ (0).
The second part appearing in the considered formulas depends
mainly on �N and it induces a monotonous time dependence
of the observables. The latter term is present in all expressions,
regardless of the initial conditions.
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We have studied dependence of the amplitude and the
period of transient oscillations on the model parameters. We
have shown that under specific initial conditions (assuming
either the empty and doubly-occupied initial QD configura-
tions) these oscillations are reminiscent of Rabi-type tran-
sitions, typical for a two-level system, which in our case
correspond to a pair of the Andreev states.

We have also checked influence of the phase difference φ

between superconducting reservoirs on transient phenomena.
For εσ = 0 the asymptotic occupancy of QD seems to be
independent on such phase difference. However, in the pres-
ence of the Zeeman splitting the occupancies nσ (t ) become
sensitive to φ and reveal an abrupt change of the QD mag-
netization n↑(t ) − n↓(t ). Right after the quench this feature is
obscured by transient phenomena, however, it becomes more
and more evident starting from t � 4

�N
(Fig. 3). Finally, we

have analyzed the time-dependent differential conductance
of the charge current induced by the bias voltage applied to
the normal lead. Its phase dependence exhibits the two-peak
structure (typical for the stationary limit) which gradually
develops within a finite time interval. This characteristic time

scale increases with respect to the phase difference φ and
can be spin dependent in the presence of the Zeeman split-
ting. Unexpectedly, we have found a puzzling particle-hole
asymmetric development of the subgap quasiparticles, which
ultimately become symmetric and spin independent in the
asymptotic limit t → ∞.

Since transient currents are measurable by the present-
day experimental resolution in the subpicosecond regime, we
hope that such spectroscopy could precisely determine all
time scales, characteristic for the subgap quasiparticles of
the proximitized quantum dots. They could be also extended
onto heterostructures with topological superconductors, prob-
ing the dynamical properties of more exotic Majorana-type
quasiparticles.
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