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Buildup and transient oscillations of Andreev quasiparticles
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We study transient effects in a setup where the quantum dot is abruptly sandwiched between the metallic
and superconducting leads. Focusing on the proximity-induced electron pairing manifested by the in-gap bound
states, we determine characteristic timescales needed for these quasiparticles to develop. In particular, we derive
analytic expressions for (i) charge occupancy of the quantum dot, (ii) amplitude of the induced electron pairing, and
(iii) the transient currents under equilibrium and nonequilibrium conditions. We also investigate the correlation
effects within the Hartree-Fock-Bogolubov approximation, revealing a competition between the Coulomb
interactions and electron pairing.
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I. INTRODUCTION

Quantum impurity hybridized with any superconducting
bulk material is influenced by the Cooper pairs which leak
into its region, developing the quasiparticle states in the
subgap spectrum |ω| � � (where � is the energy gap of
superconducting reservoir) [1,2]. These Andreev (or Yu-Shiba-
Rusinov) states have been observed in numerous scanning
tunneling microscopy studies, using impurities deposited on
superconducting substrates [3,4] and in tunneling experiments
via quantum dots (QDs) arranged in the Josephson [5], Andreev
[6], and more complex (multiterminal) configurations [7,8].
Since measurements can be nowadays done with state-of-the-
art precision probing the time-resolved properties, we address
this issue here and determine some characteristic temporal
scales of the in-gap quasiparticles.

Any abrupt change of the model parameters (quantum
quench) is usually followed by a time-dependent thermal-
ization of the many-body system, where continuum states
play a prominent role [9]. Dynamics of these processes has
been recently explored in the solid state and nanoscopic
physics [10]. From a practical point of view, especially
useful could be nanoscopic heterostructures with the corre-
lated QD embedded between external (metallic, ferromag-
netic, or superconducting) leads, which enables measure-
ments of the transport properties under tunable nonequilibrium
conditions [11].

Transport phenomena through QD coupled between the
normal or superconducting leads have been so far explored
predominantly in the static cases. Since new experimental
methods allow us to study the QDs subjected to voltage pulses
or abrupt changes of the system parameters, it would be very
desirable to calculate the time-dependent currents and their
conductances. In particular, one can ask the question: How fast
does the QD respond to an instantaneous perturbation? For this
purpose, analytical estimation of the transient oscillations and
long-time (asymptotic) behavior of the measurable quantities
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would be very useful. Some early theoretical works have
investigated time-dependent transport via QD between the
normal and superconducting leads [12–15], however, analytic
results are hardly available. As regards the QD coupled to
both normal leads, the transient current and charge occu-
pancy have been determined for abrupt voltage pulses or
after an instantaneous switching of constituent parts of the
system [16–32].

Time-resolved techniques could provide an insight into
the many-body effects. For instance, the pump-and-probe
experiments [33] and the time-resolved angle resolved photo-
emission spectroscopy [34] have determined the lifetime of
the Bogoliubov quasiparticles in the high-temperature su-
perconductors. Transient effects have been investigated in
nanoscopic systems, considering mainly the QDs hybridized
with the conducting (metallic) leads. There has been studied the
timescale needed for the Kondo peak to develop at the Fermi
energy [35], dynamical correlations in electronic transport via
the QDs [36], or oscillatory behavior in the charge transport
through the molecular junctions [37].

Dynamical phenomena of the QDs attached to supercon-
ducting bulk reservoirs have been studied much less inten-
sively. There have been analyzed: photon-assisted Andreev
tunneling [38], response time on a steplike pulse [39], temporal
dependence of the multiple Andreev reflections [40], time-
dependent sequential tunneling [41], transient effects caused
by an oscillating level [42], time-dependent bias [43], waiting
time distributions in nonequilibrium transport [44–47], short-
time counting statistics [48–50], metastable configurations of
the Andreev bound states in a phase-biased Josephson junction
[9,51], finite-frequency noise [52], superconducting proximity
effect in interacting QD, and double-dot systems [53,54]. None
of these studies, however, addressed the timescale typical for
development of the subgap quasiparticle states in a setup,
comprising the QD coupled to the normal lead (N) on one
side and to the isotropic (s-wave) superconductor (S) on
the other side. Our present study reveals that a continuous
electronic spectrum of the metallic lead enables a relaxation
of the Andreev states, whereas the superconducting electrode
induces the (damped) quantum oscillations with a period
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FIG. 1. Schematics of the setup, comprising the quantum dot
(QD) coupled to the normal (N) and superconducting (S) electrodes.
Sudden coupling to the continuum states triggers the relaxation
processes, whereas the superconductor induces the in-gap bound
states, giving rise to quantum oscillations.

sensitive to the energies of the in-gap quasiparticles. In what
follows, we evaluate the timescale at which such Andreev
quasiparticle start to form, and another when they are finally
established.

The paper is organized as follows. In Sec. II, we intro-
duce the microscopic model and discuss the method for the
time-dependent phenomena. Section III presents analytical
results for the uncorrelated QD, such as (i) charge occupancy,
(ii) complex order parameter, and (iii) charge current for the
unbiased and biased heterojunction. In Sec. IV, we discuss
the correlation effects and, finally, in Sec. V we summarize the
main results.

II. MICROSCOPIC MODEL

For a description of the N-QD-S heterostructure (see Fig. 1),
we use the single impurity Anderson Hamiltonian

Ĥ =
∑

σ

εσ d̂†
σ d̂σ + U n̂↑n̂↓ +

∑
β

(Ĥβ + V̂β−QD), (1)

where β refers to the normal (N ) and superconducting (S)
electrodes, respectively. As usual, d̂σ (d̂†

σ ) is the annihilation
(creation) operator for the QD electron with spin σ and
energy εσ . Potential of the Coulomb repulsion between the
opposite spin electrons is denoted by U . We treat the external
metallic lead as free fermion gas ĤN =∑k,σ εkĉ

†
kσ ĉkσ , and

describe the isotropic superconductor by the BCS model ĤS =∑
q,σ εqĉ

†
qσ ĉqσ −∑q �(ĉ†q↑ĉ

†
−q↓ + ĉ−q↓ĉq↑), where εk(q) is

the energy measured from the chemical potential μN (S), and
� denotes the superconducting energy gap. Hybridization
between the QD electrons and the metallic lead is given
by V̂N−QD =∑k,σ (Vk d̂†

σ ĉkσ + H.c.) and V̂S−QD can be ex-
pressed by interchanging k ↔ q.

Since our study refers to the subgap quasiparti-
cle states, we assume the constant couplings �N (S) =
2π
∑

k(q) |Vk(q)|2 δ(ω − εk(q) ). In the deep subgap regime
|ω| � � (the so-called superconducting atomic limit), the
coupling �S/2 can be regarded as a qualitative measure of
the induced pairing potential, whereas �N controls the inverse
lifetime of the in-gap quasiparticles. As we shall see, both
these couplings play important (though quite different) roles
in transient phenomena.

We assume that all three constituents of the N-QD-S het-
erostructure are disconnected from each other until t � 0. Let
us impose the external (N, S) reservoirs to be suddenly coupled

to the quantum dot

Vk(q)(t ) =
{

0 for t � 0,

Vk(q) for t > 0,
(2)

inducing the transient effects. Later on, we shall relax this
assumption. Our problem resembles the Wiener-Hopf method
[55] applied earlier in the studies of x-ray absorption and
emission of metals [56].

In what follows, we explore the time-dependence of phys-
ical observables Ô, based on the Heisenberg equation of
motion ih̄ d

dt
Ô = [Ô, Ĥ ]. In particular, we shall investigate

expectation values of the QD occupancy 〈d̂†
σ (t )d̂σ (t )〉, the

induced on-dot pairing 〈d̂↓(t )d̂↑(t )〉, and the transient charge
currents flowing between the QD and external electrodes (both
under equilibrium and nonequilibrium conditions).

Our strategy is based on the following three steps: First, we
formulate the differential equations of motion for the annihila-
tion d̂σ (t ) and creation d̂†

σ (t ) operators of QD and similar ones
for the mobile electrons ĉk(q)σ (t ) and ĉ

(†)
k(q)σ (t ), respectively.

Next, we solve them using the Laplace transformations, e.g.,
for d̂σ (t ) we denote

d̂σ (s) =
∫ ∞

0
e−st d̂σ (t )dt ≡ L{d̂σ (t )}(s). (3)

For the uncorrelated QD, the analytical expressions for d̂σ (s)
and d̂†

σ (s) can be obtained (see Appendix A). Finally, using
the corresponding inverse Laplace transforms, we compute the
time-dependent expectation values of the QD occupancy, the
QD pair amplitude, and currents flowing between QD and both
leads. For example, QD occupancy nσ (t ) ≡ 〈d̂†

σ (t )d̂σ (t )〉 is
given by

nσ (t ) = 〈L−1{d̂†
σ (s)}(t ) L−1{d̂σ (s)}(t )〉, (4)

where L−1{d̂σ (s)}(t ) stands for the inverse Laplace transform
of d̂σ (s).

In our calculations, we make use of the wide-band-limit ap-
proximation (�β = const) and set e = h̄ = kB ≡ 1, so that all
energies, currents, and time are expressed in units of�S , e�S/h̄,
and h̄/�S , respectively. We also treat the chemical potential
μS = 0 as a convenient reference energy point and perform the
calculations for zero temperature. For experimentally available
value �S ∼ 200 μeV [57–59], the typical times and current
units would be ∼3.3 psec and ∼48 nA, respectively.

III. UNCORRELATED QD CASE

We start by addressing the transient effects of the uncorre-
lated quantum dot (U = 0), focusing on the superconducting
atomic limit (� = ∞) for which analytical expressions can
be obtained. More general considerations are presented in
Appendix A.

A. Time-dependent QD charge

Let us inspect the time-dependent occupancy nσ (t ) driven
by an abrupt coupling of the QD to both external leads. This
quantity, defined in Eq. (4), can be determined explicitly
for arbitrary � (derivation is presented in Appendix A).
Here we shall consider the formula Eq. (A12) simplified for
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the superconducting atomic limit:

n↑(t ) = e−�N t

{
n↑(0) + [1 − n↑(0) − n↓(0)] sin2

(√
δ

2
t

)
�2

S

δ

}

+ �N

2π

∫ ∞

−∞
dω fN (ω) L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iω)

}
(t ) L−1

{
s − iε−σ + �N/2

(s − s3)(s − s4)(s + iω)

}
(t )

+
(

�S

2

)2
�N

2π

∫ ∞

−∞
dω [1 − fN (ω)] L−1

{
1

(s − s1)(s − s2)(s + iω)

}
(t ) L−1

{
1

(s − s3)(s − s4)(s − iω)

}
(t ), (5)

where fN (ω) is the Fermi-Dirac distribution function of the
normal lead and we defined auxiliary parameters

s1,2 = i

2
[(ε↑ − ε↓) + i�N ±

√
δ], (6)

s3,4 = i

2
[−(ε↑ − ε↓) + i�N ±

√
δ], s34, (7)

δ = (ε↑ + ε↓)2 + �2
S. (8)

The occupancy n↓(t ) can be obtained from the same expression
Eq. (5) upon replacing the set (s1, s2, s3, s4) by (s3, s4, s1, s2).
Expressions given in the second and third lines of Eq. (5) could
be presented in a more compact analytical form in the case εσ =
0 [see Eqs. (A14)–(A16)]. In the general case, they are rather
lengthy (even though accessible), therefore we skip them.

Another simplification of Eq. (5) is possible upon neglecting
the normal lead (�N = 0). QD occupancy is then characterized
by nonvanishing quantum oscillations:

nσ (t ) = nσ (0) + [1 − nσ (0) − n−σ (0)] sin2

(√
δ

2
t

)
�2

S

δ
.

(9)

For εσ = 0, Eq. (9) reduces to

nσ (t ) = cos2

(
�S

2
t

)
nσ (0) + sin2

(
�S

2
t

)
[1 − n−σ (0)],

(10)

implying the period of transient oscillations T = 2π/�S ,
except of the initial conditions nσ (0) = 1 and n−σ (0) = 0
when the QD occupancy is preserved.

The formula Eq. (10), obtained in the case �N = 0, re-
sembles the Rabi oscillations of a typical two-level quantum
system. Indeed, the proximitized QD is fully equivalent to such
scenario. To prove it, let us consider the effective Hamiltonian
Ĥ =∑σ εσ n̂σ + �S

2 (d̂†
↑d̂

†
↓ + H.c.), assuming that at t = 0 the

QD is empty n↑(0) = 0 = n↓(0). For arbitrary time t > 0, we
can calculate the probability P (t ) of finding the QD in the
doubly occupied configuration n↑(t ) = 1 = n↓(t ) within the
standard treatment of a two-level system [60]. This probability
is given by

P (t ) = �2
S

(E1 − E2)2 + �2
S

sin2

(
t

2

√
(E1 − E2)2 + �2

S

)
,

(11)
where E1 = 0 and E2 = ε↑ + ε↓ are the energies of empty
and doubly occupied configurations, respectively. This result
exactly reproduces our expression Eq. (10).

For the QD suddenly coupled to both the normal and
superconducting leads (�N,S �= 0), such oscillations become
damped (see Fig. 2). This effect comes partly from the expo-
nential factor exp(−�Nt ) appearing in front of the first term in
Eq. (5) and partly from the second and third contributions. This
can be illustrated by considering the case εσ = 0, μN = 0, for
which Eq. (5) implies

nσ (t ) = e−�N t

{
cos2

(
�S

2
t

)
nσ (0)

+ sin2

(
�S

2
t

)
[1 − n−σ (0)]

}
+ 1

2
(1 − e−�N t ). (12)

Under such circumstances, the QD occupancy approaches
asymptotically a half-filling, limt→∞ nσ (t ) = 1

2 . Figure 2 dis-
plays n↑(t ) obtained in absence of external voltage for several
values of �N , assuming εσ = 0 and nσ (0) = 0 for both spins.
The quantum oscillations occur with a period 2π/�S and
their damping is governed by the envelope function e−�N t

indicating that a continuous spectrum of the metallic lead is
responsible for the relaxation processes. For a weak enough
coupling �N , these oscillations could indirectly probe the
dynamical transitions between the subgap bound states, as
recently emphasized by J. Gramich et al. [8].

Figure 3 shows the QD occupancies obtained for several ini-
tial conditions, assuming μN = μS = 0 and εσ = 0. The case
n↓(0) = 0 = n↑(0) allows quantum oscillations between two
eigenstates of the proximitized QD, which are damped due to
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FIG. 2. Time-dependent occupancy n↑(t ) = n↓(t ) obtained for
εσ = 0, assuming the initial occupancy n↑(0) = 0 = n↓(0) in absence
of external voltage (μN = μS = 0). Different lines correspond to
various ratios �N/�S , indicated in the legend. Inset shows the QD
occupancies nσ (t ) for the finite Zeeman splitting ε↓ − ε↑ = �S ,
assuming �N/�S = 0.1.
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FIG. 3. The time-dependent QD occupancy n↑(t ) obtained in
absence of external voltage for εσ = 0, �N = 0.1�S . Different curves
refer to various initial occupancies (n↑(0), n↓(0)) indicated in the
legend.

coupling to the normal lead (see Fig. 2). For the initial condition
nσ (0) = 1, n−σ (0) = 0, the transient effects are completely
different. The first term in Eq. (12) for (n↑(0), n↓(0)) = (1, 0)

or (0,1) equals e−�N t or vanishes and together with the last
term they yield 1

2 (1 − e−�N t )—see the upper curve in Fig. 3
or 1

2 (1 + e−�N t )—the lower curve, respectively. This stems
from the fact that proximity-induced pairing affects only the
empty and doubly occupied configurations and it is inefficient
in the case considered here. In consequence, the quantum
oscillations are absent and the QD occupancy exponentially
evolves towards a half-filling. Let us also remark that for
�S = 0, Eq. (5) simplifies to the standard formula obtained
by the nonequilibrium Green’s function method [61] [see
Eq. (A17)].

B. Development of the proximity effect

Occupancy of the QD only indirectly tells us about emer-
gence of the subgap bound states. To get some insight into
the superconducting proximity effect, we shall study here the
time evolution of the order parameter χ (t ) = 〈d̂↓(t )d̂↑(t )〉. The
general formula is explicitly given by Eq. (A21). Expressing
its first two terms (which depend on the initial QD occupancy)
the pair correlation function can be written as

χ (t ) =
[
(ε↑ + ε↓)

(
1 − cos

(√
δ t
))

+ i
√

δsin
(√

δ t
)]

e−�N t�S

(n↑(0) + n↓(0) − 1)

2δ
− i

�N�S

4π
�∗

↑, (13)

where

�σ = −
∫ ∞

−∞
dεfN (ε)L−1

{
s + iε−σ + �N

2

(s − s1)(s − s2)(s − iε)

}
(t )L−1

{
1

(s − s3)(s − s4)(s + iε)

}
(t )

+
∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
1

(s − s1)(s − s2)(s + iε)

}
(t )L−1

{
s + iεσ + �N

2

(s − s3)(s − s4)(s − iε)

}
(t ). (14)

In Appendix A, we show that for μN = 0, the real part
of �↑ vanishes. Let us next analyze Eq. (13) for different
initial conditions and values of the QD energy levels. For
nσ (0) = 0, n−σ (0) = 1 and μN = 0 the function 〈d̂↓(t )d̂↑(t )〉
is real and nonoscillating in time and is equal to −�N �S

4π
Im�↑,

regardless of εσ . However, for μN �= 0, also the imaginary
part of 〈d̂↓(t )d̂↑(t )〉 equals −�N �S

4π
Re�↑ and is nonoscillating

function. For the initial conditions (nσ (0), n−σ (0)) = (0, 0)
or (1,1), the picture is completely different. Depending on
the value of ε↑ + ε↓, the real part of 〈d̂↓(t )d̂↑(t )〉 oscillates
for ε↑ + ε↓ = 0 or is a smooth function of time for ε↑ +
ε↓ �= 0. Simultaneously, the imaginary part of the QD on-dot
pairing oscillates irrespective of εσ . The oscillatory parts of
〈d̂↓(t )d̂↑(t )〉 are dumped via e−�N t factor, emphasizing the
crucial role of continuum states of the normal electrode in
relaxation processes.

In Fig. 4, we show the imaginary part of the on-dot pairing
〈d̂↓(t )d̂↑(t )〉, assuming the initial QD occupancy nσ (0) = 0.
Period T of the damped quantum oscillations depends on the
excitation energy between the subgap Andreev quasiparticles
[8] via T = 2π/

√
(ε↓ + ε↑)2 + �2

S . For μN = 0, these os-
cillations are related to the transient current jSσ (t ) flowing
between the proximitized QD and the superconducting lead
(see Sec. III C) in analogy to the Josephson junction comprising
two superconducting pieces, differing in phase of the order

parameter. On the other hand, the real part (Fig. 5) evolves
monotonously to its asymptotic value, except of one particular
case �N = 0, when the real part of 〈d̂↓(t )d̂↑(t )〉 vanishes.

C. Transient currents for unbiased system

So far, we have discussed the quantities which are important,
but unfortunately they are not directly accessible experimen-
tally. Let us now consider the measurable currents jNσ (t ) and
jSσ (t ), flowing from the QD to the external leads. Formally, the

-0.4
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 0.4

 0  10  20  30  40  60t  [1/ΓS]

- Im χ(t)
ΓN / ΓS = 0.1

0.25
0.5

1

FIG. 4. The imaginary part of the induced on-dot pairing
〈d̂↓(t )d̂↑(t )〉 obtained for the same parameters as in Fig. 2.
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FIG. 5. The time-dependent real part of 〈d̂↓(t )d̂↑(t )〉 obtained for
�S = 1 and the same parameters as in Fig. 2.

transient current is defined by jβσ (t ) = 〈 dN̂β (t )
dt

〉, where N̂β (t )
counts the total number of electrons in electrode β = N, S.
For instance, jNσ (t ) simplifies to the standard formula [61]

jNσ (t ) = 2 Im
∑

k

Vk〈d̂†
σ (t )ĉkσ (t )〉. (15)

Assuming the energies of itinerant electrons to be static
εkσ (t ) = εkσ , one obtains

ĉkσ (t ) = ĉkσ (0)e−iεkσ t − i

∫ t

0
dt ′Vke

−iεkσ (t−t ′ )d̂σ (t ′), (16)

and within the wide-band-limit approximation, it yields

jNσ (t ) = 2Im

(∑
k

Vke
−iεk t 〈d̂†

σ (t )ĉkσ (0)〉
)

− �Nnσ (t ).

(17)

Finally, inserting the time-dependent operator d̂†
σ (t ) [Eq. (A8)]

to Eq. (15), we obtain

jNσ (t ) = −�Nnσ (t ) + �N

π
Re

(∫ ∞

−∞
dωfN (ω)e−iωt

× L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iω)

}
(t )

)
. (18)

To compute the transient current of opposite spin electrons,
jN−σ (t ), one should replace the set of auxiliary parameters
(s1, s2, s3, s4) by the following one (s3, s4, s1, s2). In particular,
for εσ = 0 we get

jNσ (t ) = �N

π

∫ ∞

−∞
dωfN (ω)

{
e−�N t/2 1

2

∑
p=±

ωpsin(ωpt ) − �N

2 cos(ωpt )(
�N

2

)2 + ω2
p

+ �N

[(
�N

2

)2 + (�S

2

)2 + ω2
]

[(
�N

2

)2 + ω2−
][(

�N

2

)2 + ω2+
]
}

− �Nnσ (t ), (19)

where ω± = �S

2 ± ω. In absence of the superconducting lead,
this formula is identical with the result obtained by means of
the nonequilibrium Green’s function method.

In Fig. 6, we present transient behavior of the current jN↑(t )
induced by an abrupt coupling of the QD to both external leads
for μN = μS = 0 (i.e., without any bias). Similar to the time-
dependent QD occupancy (Fig. 2), we observe the quantum
oscillations of the period 2π/�S exponentially decaying with
the envelope coefficient e−�N t . Large value of the current
at t = 0+ (equal to e�N/2h) is artifact of the wide band
limit approximation [19] in presence of abrupt switching,
Eq. (2). In realistic experimental situations, this effect would
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FIG. 6. Transient current between the QD and the normal lead
induced by a sudden coupling in absence of any bias. Results are
obtained for the same parameters as in Fig. 2. The inset shows the
transient current obtained for the sinusoidal coupling profiles Vk,q(t ),
assuming �N/�S = 0.1.

not be observed. To check how a smooth (gradual) coupling
process does affect our predictions, we have computed the
transient currents, assuming the sinusoidal switching profile
Vk,q(t ) = Vk,q

2 (sin (π�Nt − π/2) + 1) for 0 < t � 1/�N and
keeping constant value Vk,q for t > 1/�N . We have solved
this problem numerically. Some representative results (for
�N/�S = 0.1) are displayed in the inset in Fig. 6. We noticed
that for t > 1/�N all the time-dependent quantities are not
particularly affected. The only difference (in comparison to
the abrupt coupling) is in the early time region 0 < t < 1/�N .
For instance, the transient current jN↑(t ) smoothly evolves
from zero to its asymptotic behavior with the same period of
quantum oscillations.

In similar steps, we have also determined the transient
current jSσ (t ) = 2 Im

∑
k Vq〈d̂†

σ (t )ĉqσ (t )〉. Effective quasi-
particles in superconductors are represented by a coherent
superposition of the particle and hole degrees of freedom, so
for this reason the time-dependent operator ĉqσ (t ) consists
of four contributions [see Eq. (A10)]. Final expression for
jSσ (t ) becomes rather lengthy, therefore we present it in
Appendix A 4. However, in absence of external voltage the
current Eq. (A26) simplifies to

jSσ (t ) = �2
S

2
√

δ
sin(

√
δt )e−�N t

[
1 −

∑
σ ′

nσ ′ (0)

]
. (20)

When the QD is initially empty/full the transient current

jSσ = ± �2
S

2
√

δ
sin(

√
δt )e−�N t reveals the damped oscillations.

Contrary to this behavior, for the initial occupancies nσ (0) = 0
and n−σ (0) = 1 the current Eq. (20) vanishes. We assign this
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feature to inefficiency of the proximity effect whenever the QD
is singly occupied, because electron pairing operates only by
mixing the empty with the doubly occupied QD configurations.
Initial conditions have thus important influence on transient
phenomena.

Furthermore, Eq. (A21) for 〈d̂↓(t )d̂↑(t )〉 and Eq. (A26)
imply the exact relationship jSσ (t ) = −�SIm〈d̂↓d̂↑〉, which is
popular in considerations of charge transport through Joseph-
son junctions [62]. The transient current jSσ (t ) can hence be
simply inferred from Fig. 4. At this point we emphasize that the
charge conservation of our heterostructure is properly satisfied:

d

dt
nσ (t ) = jSσ (t ) + jNσ (t ) ≡ jdis,σ (t ), (21)

where jdis,σ (t ) stands for the transient displacement current
(see, e.g., Refs. [19,22]).

D. Transient currents for biased system

We have seen so far that time-dependent QD occupancy
and transient currents provide indirect information about
the subgap quasiparticle energies and dynamical transitions
between them. In absence of any voltage (μN = μS = 0),
these transient currents finally vanish, with a rate dependent
on the relaxation processes caused by the coupling �N with
a continuum of metallic lead. From the practical point of
view, a much more convenient way for probing the timescales
characteristic for the Andreev/Shiba quasiparticles could be
provided by transient properties of the biased system μN �=
μS . Following the steps discussed in previous Sec. III C,
we shall study here the time-dependent differential conduc-
tance Gσ (μ, t ) ≡ d

dμ
jNσ (t ) as a function of external voltage

μ ≡ μN (throughout this paper, the superconducting lead is
assumed to be groundedμS = 0). At zero temperature, Eq. (18)
implies

Gσ (μ, t ) = �N Re

[
e−iμtL−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iμ)

}
(t )

]
− �2

N

2
L−1

{
s + iε−σ + �N/2

(s − s1)(s − s2)(s − iμ)

}
(t ) L−1

×
{

s − iε−σ + �N/2

(s − s3)(s − s4)(s + iμ)

}
(t ) + �2

N�2
S

8
L−1

{
1

(s − s1)(s − s2)(s + iμ)

}
(t )L−1

{
1

(s − s3)(s − s4)(s − iμ)

}
(t ),

(22)

where the conductance is expressed in units of 2e2

h
. Expression for G↓(μ, t ) can be obtained by the replacement (s1, s2, s3, s4) →

(s3, s4, s1, s2). Using the corresponding inverse Laplace transforms, we find (for εσ = 0, G↑ = G↓ = G)

G(μ, t ) = �N

{
e−�N t/2

2

∑
p=+,−

μp sin(μpt ) − �N

2 cos(μpt )(
�N

2

)2 + μ2
p

+
(

�N

2

)[(
�N

2

)2 + (�S

2

)2 + μ2
]

[(
�N

2

)2 + μ2+
][(

�N

2

)2 + μ2−
]
}

− �2
N

2
F1(μ, t ) + �2

N�2
S

8
F2(μ, t ),

(23)

where F1(μ, t ) and F2(μ, t ) are given in Eqs. (A15) and (A16),
and μ+/− = μ ± �S/2. In the steady limit, t → ∞ and for
εσ = 0, keeping only terms that survive at late times, we obtain
the expression identical with the result derived for the same
setup within the Büttiker-Landauer approach [63]

G(μ,∞) = �2
N�2

S

4
[(

�N

2

)2 + μ2−
][(

�N

2

)2 + μ2+
] . (24)

For �S � �N , the local extrema of this expression occur at
μ = ±�S

2 and they correspond to the energies of subgap bound
states. For an arbitrary set of model parameters, such infor-
mation is encoded in Eq. (22) which quantitatively specifies
development of the in-gap states driven by the sudden switch-
ing at t = 0. In Fig. 7, we present the differential conductance
obtained numerically for �N/�S = 0.1 and 0.7. Let us notice
that differential conductance approaches its steady-limit shape
G↑(μ, t = ∞) characterized by two Lorentzian quasiparticle
peaks centered at ∼ ± �S

2 . Their broadening �N is related to
the inverse lifetime.

More careful examination of G↑(μ, t ) indicates that devel-
opment of the subgap quasiparticles proceeds in three steps
with typical timescales τ1, τ2 and τf , as can be deduced
from Figs. 7 and 8. In Fig. 8, we show how the position
of the quasiparticle maxima develops in time for different

�N . At t = τ1, there emerge two maxima from the single
broad structure where τ1 changes approximately from 5 (for
�N = 0.2) up to 10 (for�N = 0.9) units of time. These maxima
move rapidly (essentially during 1–2 units) from μ = 0 up to
some value of μ which depends on �N . Next, the position of the
quasiparticle peaks evolve continuously to their steady-limit
position μ = ±

√
�2

S − �2
N with τ2 approximately changing

from 15 (for �N = 0.9) up to 30 (for �N = 0.2) units of time.
Finally, the asymptotic quasiparticle feature is achieved with
the evolve function 1 − exp(−t/τf ) where τf = 2/�N , see
Eqs. (23), (A15), and (A16), where the terms proportional to
exp(−�Nt/2) are responsible for such asymptotic behavior.
We also clearly see that, near the quasiparticle peaks, the
total differential conductance

∑
σ G(μ, t → ∞) acquires its

optimal value 4e2/h known from the previous studies (see,
e.g., Ref. [2]).

IV. CORRELATION EFFECTS

Local repulsive interactions Un̂↑n̂↓ compete with the
proximity-induced electron pairing. This issue has been ad-
dressed in the steady limit by numerous methods [2]. In
particular, it has been shown [64] that effective pairing (man-
ifested by the in-gap states) is predominantly sensitive to
the ratio U/�S and depends on the energy level εσ . Various
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FIG. 7. The time-dependent differential conductance G↑(μ, t ) =
G↓(μ, t ) (in units of 4e2

h
) obtained for εσ = 0, �N = 0.1 (top panel)

and �N = 0.7 (bottom panel).

experimental realizations of the correlated QD in N-QD-S
geometry [57,58,65,66] indicated that the Coulomb potential
U safely exceeds (at least one order of magnitude) the su-
perconducting energy gap �. Under such circumstances, the
correlation effects show up in the subgap regime |ω| < �

merely by a quantum phase transition (or crossover) from the
spinless (BCS-type) state u|0〉 + v|↑↓〉 to the spinful (singly
occupied) configuration |σ 〉. This changeover occurs upon
increasing the ratio U/�S and, above some critical value of the
Coulomb potentialUcr, there can be observed the subgap Kondo
effect (even in the superconducting atomic limit) [66,67]. We
shall briefly analyze some correlation effects, focusing on the
transient effects.

A. Competition between pairing and correlations

The aforementioned quantum phase transition can be
qualitatively captured already within the lowest order

 0
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t  
 [
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Γ N
 / 

Γ S
 =

 0
.9 0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

FIG. 8. Positions of the quasiparticle maxima vs. time and μ/�S

appearing in the differential conductance G↑(μ, t ) for a number of
ratios �N/�S , as indicated. For negative values of μ/�S the results
are symmetrical.

(Hartree-Fock-Bogoliubov) decoupling scheme:

d̂
†
↑d̂↑d̂

†
↓d̂↓ � n↑(t )d̂†

↓d̂↓ + n↓(t )d̂†
↑d̂↑ − n↑(t )n↓(t )

+χ∗(t )d̂†
↑d̂

†
↓ + χ (t )d̂↓d̂↑ − |χ (t )|2. (25)

Using this approximation Eq. (25) one can incorporate the
Hartree-Fock terms into the renormalized energy level ε̃σ ≡
εσ + Un−σ (t ), whereas the anomalous (pair source and drain)
terms rescale the effective pairing potential �̃S/2 ≡ �S/2 +
Uχ (t ). This decoupling procedure Eq. (25) can give a crossing
of the subgap quasiparticle energies at some critical ratio
U/�S , dependent also on εσ . In the Josephson junctions, such
effect would cause a reversal of the dc tunneling current, the so-
called 0 − π transition [62,68]. In our N-QD-S heterostructure,
its influence is noticeable but rather less spectacular.

Analytical determination of the dynamical observables (dis-
cussed in Sec. III) is unfortunately not feasible in the present
case, because the renormalized energy level ε̃σ (t ) and effective
pairing potential �̃S (t ) are time-dependent in a nonexplicit
way and the method used in the previous section is useful
only for consideration of systems with constant QD energy
levels and couplings with the leads. Therefore, in what follows,
we consider the Coulomb repulsion in the system of the
proximitized QD coupled only to the normal lead, applying the
Hartree-Fock-Bogoliubov approximation Eq. (25). We have
computed numerically nσ (t ), 〈d̂↓(t )d̂↑(t )〉 and jNσ (t ), solving
the closed set of differential equations for time-dependent func-
tions nσ (t ) and 〈d̂↓(t )d̂↑(t )〉, respectively (see Appendix B).
At intermediate steps, we had to compute additionally the
expectation values 〈d̂†

σ (t )ckσ (0)〉 and 〈d̂σ (t )ĉk−σ (0)〉. All these
quantities have been determined within the Runge-Kutta nu-
merical algorithm.

Figure 9 displays influence of the Coulomb potential U on
the induced order parameter χ (t ) for the unbiased system. The
imaginary part, which is strictly related to the transient cur-
rent, exhibits the damped quantum oscillations. Their period
and amplitude are substantially suppressed by the Coulomb
potential. We assign this fact to a competition between the
on-dot pairing and local Coulomb repulsion. The real part of
χ (t ) is characterized by the same quantum oscillations. The
asymptotic value of the complex order parameter χ (t → ∞)
with respect to the Coulomb potential U is shown in Fig. 10
for εσ = 0, �N/�S = 0.2. Such monotonously decreasing
Reχ (∞) confirms a competing relationship between the on-
dot pairing and the local repulsion.

In Fig. 11, we show influence of the Coulomb potential U

on the QD occupancy n↑(t ). Besides the quantum oscillations,
similar to the ones observed in the complex order parameter
(Fig. 9), we notice a partial reduction of the QD charge upon
increasing U . Apparently, this is caused by the Hartree term
Un−σ (t ) that lifts the renormalized QD level ε̃σ (t ). In the
next subsection we briefly discuss the time-dependent subgap
Kondo effect.

B. Subgap Kondo effect

In this subsection, we briefly discuss another characteristic
timescale, which could be related to the subgap Kondo effect.
Since we cannot account for this effect within the equation
of motion approach, we make some conjectures based on
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FIG. 9. Influence of the Coulomb potential U on the real (upper
panel) and imaginary (bottom panel) parts of the induced pairing
χ (t ) = 〈d̂↓d̂↑〉 obtained for the unbiased system, using εσ = 0, �N =
0.2 and �S ≡ 1.

(i) systematic study of the steady case [66–68] combined with
(ii) time-dependent analysis of the Kondo physics of normal
QDs [35]. Self-consistent treatment of this phenomenon, which
is beyond the scope of the present paper, would be very much
welcome.

When the Coulomb potential U is sufficiently large in
comparison to �S , the QD ground state evolves towards the
spinful (doublet) configuration |σ 〉. Under such conditions, the
effective spin exchange between the correlated QD and mobile
electrons of the metallic lead activate the subgap Kondo effect.
It has been analyzed by many groups, using various techniques
[2]. In the present context, we shall make use of basic facts
pointed out recently by R. Žitko et al. [66] and independently
by one of us [67,68].

The exchange interaction −∑k,p Jk,p Ŝd · Ŝkp between the

QD spin Ŝd and spins Ŝkp of the mobile electrons in the normal
lead can be determined by means of the generalizing canonical

0
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 0.3

 0.4

0 2.5 5 7.5 10
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− Re χ(∞)

0

 0.1
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FIG. 10. Asymptotic value of complex on-dot pairing χ (t → ∞)
suppressed by the Coulomb repulsion U obtained for the same model
parameters as in Fig. 9.
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FIG. 11. The time-dependent occupancy of the correlated quan-
tum dot for εσ = 0, �N = 0.2, �S = 1 in absence of external voltage.

Schrieffer-Wolff transformation. Adopting it to the N-QD-S
setup, it has been found that for the superconducting atomic
limit, the exchange coupling near the Fermi energy JkF ,kF

is
equal to [67]

JkF ,kF
= U |VkF

|2
εσ (εσ + U ) + (�S/2)2

. (26)

For a spinful configuration, the Kondo temperature can
be estimated, e.g., using the Bethe-Ansatz formula TK ∝
exp{−1/[2ρ(εF )JkF kF

]}, where ρ(εF ) is the density of states
of the normal lead at the Fermi level. We have compared such
results with the unbiased NRG calculations and it has been
found that the Kondo temperature is expressed by [67]

TK = η

√
�NU

2
exp

[
π

εσ (εσ + U ) + (�S/2)2

�NU

]
, (27)

with η ≈ 0.6. In particular, for the half-filled QD (εσ =
−U/2), the exchange coupling Eq. (26) simplifies to

JkF ,kF
= J

(N )
kF ,kF

U 2

U 2 − �2
S

, (28)

where J
(N )
kF ,kF

stands for the normal case (�S = 0). Upon ap-
proaching a transition from the spinful doublet to the BCS-like
(spinless) ground state, the Kondo temperature is substantially
enhanced [66,67]

TK = T
(N )
K exp

[
π

�NU

(
�S

2

)2
]
. (29)

To get some insight into the transient phenomena related
with the subgap Kondo regime, we make use of the final
conclusions inferred in Ref. [35] from the time-dependent
noncrossing approximation study. The characteristic time τK

needed for the Abrikosov-Suhl peak to emerge at the Fermi
level has been found to scale inversely with the Kondo
temperature, i.e., τK ∼ 1/TK . This information adopted to
our N-QD-S setup implies the following relative ratio for the
half-filled QD:

τK = τ
(N )
K exp

[
− π

�NU

(
�S

2

)2
]
, (30)

where τ
(N )
K stands for the normal state value (�S = 0). We plot

this scaling in Fig. 12. Let us remark that many-body screening,
Eq. (26), of the QD spin can be practically realized only in the
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FIG. 12. Characteristic timescale τK ∼ 1/TK of the subgap
Kondo effect obtained for the half-filled QD using U = 10�N with
respect to varying ratio �S/U . In this case, the spinful ground state
exists in the region �S ∈ (0, U ).

doublet ground state (which for the half-filled QD occurs when
�S < U ). By increasing the ratio �S/U , the Andreev bound
states tend to their crossing and simultaneously the Abrikosov-
Suhl peak Eq. (29) quickly broadens [66,67]. This explains why
the characteristic timescale τK strongly decreases with respect
to �S/U .

V. SUMMARY

We have investigated transient effects driven by a sudden
coupling of the QD to the metallic and superconducting leads.
Our study has revealed a gradual buildup of the subgap Andreev
quasiparticle states, which is controlled by the coupling �N to
a continuous spectrum of the metallic lead. Depending on the
initial QD occupancy, we have also found the damped quantum
oscillations of the charge occupancy nσ (t ), the complex order
parameter χ (t ), and the transient currents jNσ (t ), jSσ (t ). A
period of these oscillations would be sensitive to the Andreev
quasiparticle energies, which can be indirectly controlled via
a coupling �S to the superconducting reservoir.

Analogous effects (relaxation and quantum oscillations)
have been recently reported in Refs. [9,51] in studies of the
metastable subgap states for the Josephson junction, consid-
ering finite value of the superconducting gap. We estimate
that in realistic systems, where �S ∼ 0.2 meV, the period of
quantum oscillations would be a fraction of nanoseconds or in
picoseconds regime (hence should be empirically detectable).
Buildup of the subgap Andreev quasiparticle states is expected
to be formed in N-QD-S junctions on a much longer timescale,
corresponding to a microsecond regime. Our estimations seem
to reliable, when comparing them with dynamical transi-
tions between the subgap bound states of nanotubes [8] and
parity switchings observed in the superconducting atomic
contacts [69].

We also addressed the correlation effects by means of
the Hartree-Fock-Bogoliubov approximation, revealing that
the repulsive Coulomb potential U suppresses the proximity-
induced electron pairing. We have explored some time-
dependent signatures of this competition. In particular, we
have found that �N controls the rate at which the stationary
limit behavior is achieved, whereas the period of the damped
quantum oscillations is dependent on the Coulomb potential
due to its influence of the Andreev quasiparticle energies [64].

Finally, we have tried to evaluate the characteristic timescale
τK needed for the subgap Kondo effect to develop. Upon
approaching the quantum phase transition from the (spinful)
doublet side, we predict the strong reduction of this scale τK ,
originating from a subtle interplay between the induced on-dot
pairing and the Coulomb repulsion [66,67]. We hope that such
variety of dynamical effects of the proximitized QDs could be
verified experimentally.
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APPENDIX A

In this Appendix, we derive the Laplace transforms d̂σ (s)
and ĉqσ (s), which are needed for calculating the statistically
averaged physical quantities discussed in this work. We present
explicit formulas for the QD occupancy, the pair correlation
function, and the transient currents flowing between QD and
external reservoirs for the case � = ∞ and U = 0.

1. Laplace transforms

To calculate expectation values of the quantities studied
in this paper, we need the time-dependent operator d̂σ (t ).
We can obtain it by computing the corresponding inverse
Laplace transform L−1{d̂σ (s)}(t ). To determine d̂σ (s), we use
a closed set of the equations of motion for the operators:
d̂σ (t ), d̂†

−σ (t ), ĉkσ (t ), ĉ
†
k−σ (t ), ĉqσ (t ), ĉ

†
−q−σ (t ), ĉ

†
q−σ (t ), and

ĉ−qσ (t ). Laplace transforms of these differential equations for
σ = ↑ (assuming arbitrary energy gap � and neglecting the
correlations) take the following form:

(s + iε↑)d̂↑(s) = −i
∑
k/q

Vk/qĉk/q↑(s) + d̂↑(0), (A1a)

(s + iεk )ĉk↑(s) = −iVkd̂↑(s) + ĉk↑(0), (A1b)

(s + iεq)ĉq↑(s) = −iVqd̂↑(s) − i�ĉ
†
−q↓(s) + ĉq↑(0),

(A1c)

(s − iεq)ĉ†−q↓(s) = iVqd̂
†
↓(s) − i�ĉq↑(s) + ĉ

†
−q↓(0),

(A1d)

(s − iε↓)d̂†
↓(s) = i

∑
k/q

Vk/qĉ
†
k/q↓(s) + ĉ

†
↓(0), (A1e)

(s − iεk )ĉ†k↓(s) = iVkd̂
†
↓(s) + ĉ

†
k↓(0), (A1f)

(s − iεq)ĉ†q↓(s) = iVqd̂
†
↓(s) − i�ĉ−q↑(s) + ĉ

†
q↓(0),

(A1g)

(s + iεq)ĉ−q↑(s) = −iVqd̂↑(s) − i�ĉ
†
q↓(s) − ĉ−q↑(0).

(A1h)
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Here we have assumed εqσ = εq, εq = ε−q and the sub-
script k(q) corresponds to the normal (superconducting)
electrode.

To obtain d̂↑(s), we have to calculate ĉ
†
−q↓(s) from

Eq. (A1d) and insert it into Eq. (A1c) for the operator ĉq↑(s).
In a next step, we use ĉq↑(s) in the expression for d̂↑(s) given
in Eq. (A1a) along with ĉk↑(s) obtained from Eq. (A1b). In

consequence, we get

d̂↑(s)M (+)
↑ (s) = Â(s) − iK (s)d̂†

↓(s). (A2)

Next, we repeat this procedure, Eqs. (A1e)–(A1h), obtaining

d̂
†
↓(s)M (−)

↓ (s) = B̂(s) − iK (s)d̂↑(s), (A3)

where

M (±)
σ (s) = s ± iεσ +

∑
k

V 2
k

s ± iεk
+
∑

q

V 2
q (s ∓ iεq)

s2 + ε2
q + �2

, (A4)

K (s) =
∑

q

V 2
q �

s2 + ε2
q + |�|2 , (A5)

Â(s) = −i
∑

k

Vk ĉk↑(0)

s + iεk
−
∑

q

Vq

s2 + ε2
q + �2

(�ĉ
†
−q↓(0) + i(s − iεq)ĉq↑(0)) + d̂↑(0), (A6)

B̂(s) = i
∑

k

Vkĉ
†
k↓(0)

s − iεk
+
∑

q

Vq

s2 + ε2
q + �2

(�ĉ−q↑(0) + i(s + iεq)ĉ†q↓(0)) + d̂
†
↓(0). (A7)

Equations (A2) and (A3) yield

d̂↑(s) = M
(−)
↓ (s)Â(s) − iK (s)B̂(s)

M
(+)
↑ (s)M (−)

↓ (s) + K2(s)
. (A8)

To determine d̂↓(s), one should repeat the same procedure for a set of equations of motion for the operators:
d̂↓, d̂

†
↑, ĉk↓, ĉ

†
k↑, ĉq↓, ĉ

†
−q↑, ĉ

†
q↑ and ĉ

†
−q↓(t ), respectively. Effectively, we get

d̂↓(s) = M
(−)
↑ (s)B̂†(s) + iK (s)Â†(s)

M
(+)
↓ (s)M (−)

↑ (s) + K2(s)
. (A9)

In similar steps, we can compute ĉqσ (s), which is needed in expression for the current flowing between the QD and the
superconductor. From Eqs. (A1a)–(A1h), we obtain

ĉqσ (s) = 1

s2 + ε2
q + |�|2 (−iVq(s − iεq)d̂σ (s) + α�Vqd̂

†
−σ (s) − iα�ĉ

†
−q−σ (0) + (s − iεq)ĉqσ (0)), (A10)

where α = +(−) for σ = ↑(↓). Laplace transforms of d̂†
σ (s) can be obtained taking the Hermitian conjugate of the operators

d̂σ (s) given in Eqs. (A8) and (A9). Note that in the wide-band-limit approximation, the functions M (±)
σ (s) and K (s) simplify in

the superconducting atomic limit � = ∞ to s ± iεσ + �N/2 and �S/2, respectively. As an example, we present here the explicit
form of the Laplace transform for d̂↑(t ):

d̂↑(s) = 1

(s − s3)(s − s4)

{(
s − iε↓ + �N

2

)[
d̂↑(0) − i

∑
k

Vk ĉk↑(0)

s + iεk
− i
∑

q

Vq(s − iεq)ĉq↑(0)

s2 + ε2
q + �2

−
∑

q

Vq�ĉ
†
−q↓(0)

s2 + ε2
q + �2

]

− i
�S

2

[
d̂
†
↓(0) + i

∑
k

Vk ĉ
†
k↓(0)

s − iεk
+ i
∑

q

Vq(s + iεq)ĉ†q↓(0)

s2 + ε2
q + �2

+
∑

q

Vq�ĉ−q↑(0)

s2 + ε2
q + �2

]}
. (A11)

The creation operator d̂
†
↑(s) can be simply obtained from the Hermitian conjugate of Eq. (A11) and using the replacement

(s3, s4) ↔ (s1, s2). Note, that the operators d̂σ (s) and d̂†
σ (s) depend on the superconducting energy gap �. In the main part of

this paper, we have focused on the superconducting limit � → ∞, calculating the average values of 〈d̂†
σ (t )d̂σ (t )〉, 〈d̂σ (t )d̂−σ (t )〉,

and 〈d̂†
σ (t )ĉk′σ (t )〉.
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2. QD occupancy

Let us determine the QD occupancy, nσ (t ), expressed by the formula Eq. (4) computing expectation value of a product of the
corresponding inverse Laplace transforms. Initially, at t = 0, the QD is decoupled from both external reservoirs, therefore the
only nonvanishing terms comprise the following averages 〈d̂†

σ (0)d̂σ (0)〉 = nσ (0), 〈d̂σ (0)d̂†
σ (0)〉 = 1 − nσ (0), 〈ĉ†kσ (0)ĉk′σ (0)〉 =

δk,k′fN (εk ), and 〈ĉkσ (0)ĉ†k′σ (0)〉 = δk,k′[1 − fN (εk )], where fN (εk ) is the Fermi-Dirac distribution of the normal lead. Other
terms, corresponding to itinerant electrons of the superconducting lead, can be neglected in the limit � = ∞, but they could be
also included when considering the finite energy gap (we shall return to this issue later on). Using Eq. (A8), we obtain the QD
occupancy given by

nσ (t ) = L−1

{
s + iε−σ + �N

2

(s − s1)(s − s2)

}
(t )L−1

{
s − iε−σ + �N

2

(s − s3)(s − s4)

}
(t ) 〈d̂†

σ (0)d̂σ (0)〉

+
(

�S

2

)2

L−1

{
1

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

}
(t ) 〈d̂−σ (0)d̂†

−σ (0)〉

+
(

�S

2

)2∑
k,k′

VkVk′L−1

{
1

(s − s1)(s − s2)(s + iεk )

}
(t )L−1

{
1

(s − s3)(s − s4)(s − iεk′ )

}
(t )〈ĉk−σ (0)ĉ†k′−σ (0)〉

+
∑
k,k′

VkVk′L−1

{
s + iε−σ + �N

2

(s − s1)(s − s2)(s − iεk )

}
(t )L−1

{
s − iε−σ + �N

2

(s − s3)(s − s4)(s + iεk′ )

}
(t )〈ĉ†kσ (0)ĉk′σ (0)〉. (A12)

For σ = ↓, one should make the replacement (s1, s2, s3, s4) → (s3, s4, s1, s2). Using the wide-band limit approximation, we can
recast summations over momenta of the third and fourth terms in Eq. (A12) by the integrals

�2
S

4

�N

2π

∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
1

(s − s1)(s − s2)(s + iε)

}
(t )L−1

{
1

(s − s3)(s − s4)(s − iε)

}
(t )

+�N

2π

∫ ∞

−∞
dεfN (ε)L−1

{
s + iε−σ + �N

2

(s − s1)(s − s2)(s − iε)

}
(t )L−1

{
s − iε−σ + �N

2

(s − s3)(s − s4)(s + iε)

}
(t ). (A13)

The final formula for nσ (t ) is quite lengthy, therefore we present its simpler explicit form, corresponding to εσ = 0:

nσ (t ) = nσ (0)e−�N t + [1 − nσ (0) − n−σ (0)]e−�N t sin2

(
�S

2
t

)

+ �N

2π

∫ ∞

−∞
dε fN (ε) F1(ε, t ) + �N

2π

�2
S

4

∫ ∞

−∞
dε [1 − fN (ε)]F2(ε, t ). (A14)

Functions F1(ε, t ) and F2(ε, t ) are defined by

F1(ε, t ) = 1

A(ε)

{
�2

N

4
+ ε2 + e−�N t

2

[(
�2

N

4
− �2

S

4
+ ε2

)
cos(�St ) − �N�S

2
sin(�St ) + �2

N

4
+ �2

S

4
+ ε2

]

− e−�N t/2

[
2

(
�2

N

4
+ ε2

)
cos(εt ) cos

(
�S

2
t

)
− �N�S

2
cos(εt ) sin

(
�S

2
t

)
+ �Sε sin(εt ) sin

(
�S

2
t

)]}
, (A15)

F2(ε, t ) = 1

�SA(ε)

{
e−�N t

[−2

�S

(
�2

N

4
− �2

S

4
+ ε2

)
cos(�St ) + �N sin(�St ) + 2

�S

(
�2

N

4
+ �2

S

4
+ ε2

)]

+ e−�N t/2[2(ε− cos(ε+t ) − ε+ cos(ε−t )) − �N (sin(ε+t ) − sin(ε−t ))] + �S

}
, (A16)

and A(ε) = ( �2
N

4 + ε2
−)( �2

N

4 + ε2
+), where ε+/− = ε ± �S

2 . It should be noted that for �S = 0 the formula Eq. (A12) coincides with
the standard expression

nσ (t ) = nσ (0)e−�N t + �N

π
e−�N t/2

∫ ∞

−∞
dε fN (ε)

cosh(�Nt/2) − cos((ε − εσ )t )
�2

N

4 + (ε − εσ )2
(A17)

obtained by the nonequilibrium Green’s function (NEGF) technique [61]. We are not aware of any results available for �S �= 0,
but it seems that our approach would be simpler in comparison to the NEGF method in which the QD occupancy is formally

075420-11
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expressed via the lesser Green’s function nσ (t ) = −iG<(t, t ). In practice, it can be determined from the Keldysh equation

G< = (1 + Gr�r )G<
0 (1 + �aGa ) + Gr�<Ga. (A18)

In particular, for nσ (0) = 0 Eq. (A18) simplifies to G< = Gr�<Ga (because G<
0 = 0 [19,61]). In other cases, however,

determination of the lesser Green’s function is much more demanding.
We now return to the discussion of the terms appearing in formula Eq. (4), which contain the operators ĉqσ . Let us analyze

one of such terms, e.g.,〈
L−1

{
s + iε↓ + �N

2

(s − s1)(s − s2)

∑
q

Vq(s + iεq)ĉ†q↑(0)

s2 + ε2
q + �2

}
(t )L−1

⎧⎨
⎩ s − iε↓ + �N

2

(s − s3)(s − s4)

∑
q′

Vq′ (s − iεq′ )ĉq′↑(0)

s2 + ε2
q′ + �2

⎫⎬
⎭(t )

〉
, (A19)

which can be reduced to the form

�S

2π

∫ +∞

−∞
dεfS (ε)L−1

{ (
s + iε↓ + �N

2

)
(s + iε)

(s − s1)(s − s2)(s2 + ε2 + �2)

}
(t )L−1

{ (
s − iε↓ + �N

2

)
(s − iε)

(s − s3)(s − s4)(s2 + ε2 + �2)

}
(t ), (A20)

where we made use of the equality 〈ĉ†q↑(0)ĉq′↑(0)〉 = δqq′fs (εq). We have checked (by numerically integrating the product of
the corresponding inverse Laplace transforms) that this integral becomes smaller and smaller upon increasing �, and it finally
diminishes to zero in the limit � = ∞. Similarly, we have checked that all other terms comprising the operators ĉqσ (0) disappear
for � = ∞ as well.

3. QD pair correlation function

Using the explicit formulas for d̂σ (s), presented in Eqs. (A8) and (A9) and performing similar calculations as for the QD
occupancy, we obtained the induced on-dot pairing given by

〈d̂↓(t )d̂↑(t )〉 = i
�S

2

[
n↑(0) L−1

{
1

(s − s1)(s − s2)

}
(t )L−1

{
s − iε↓ + �N

2

(s − s3)(s − s4)

}
(t )

− (1 − n↓(0)) L−1

{
s − iε↑ + �N

2

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

}
(t )

− �N

2π

∫ ∞

−∞
dω[1 − fN (ω)]L−1

{
s − iε↑ + �N

2

(s − s1)(s − s2)(s + iω)

}
(t )L−1

{
1

(s − s3)(s − s4)(s − iω)

}
(t )

+ �N

2π

∫ ∞

−∞
dωfN (ω)L−1

{
1

(s − s1)(s − s2)(s − iω)

}
(t )L−1

{
s − iε↓ + �N

2

(s − s3)(s − s4)(s + iω)

}
(t )

]
. (A21)

4. Transient current from superconducting lead

In analogy to Eq. (15), we can define the transient current flowing from the superconductor to the quantum dot

jSσ (t ) = 2Im
∑

q

Vq〈L−1{d̂†
σ (s)}(t )L−1{ĉqσ (s)}(t )〉. (A22)

Laplace transforms of d̂†
σ (s) and ĉqσ (s) are given in Eqs. (A8) and (A10), so we can repeat the calculations similar to the ones

discussed in preceding subsections. Let us consider the term proportional to n↑(0), which takes the form

2n↑(0)Im

{
−i
∑

q

VqL−1

{
s + iε↓ + �N

2

(s − s1)(s − s2)

}
(t )

×
[
L−1

{
Vq(s − iεq )

(
s − iε↓ + �N

2

)
(s − s3)(s − s4)

(
s2 + ε2

q + �2
)
}

(t ) + �S

2
L−1

{
Vq�

(s − s3)(s − s4)
(
s2 + ε2

q + �2
)
}

(t )

]}
. (A23)

For � = ∞, the first term in the bottom part of this equation vanishes and we can calculate the second term by interchanging
summation over q with the Laplace transformation:

2n↑(0)Im

[
−i

�S

2
L−1

{
s + iε↓ + �N

2

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

∑
q

V 2
q �(

s2 + ε2
q + �2

)
}

(t )

]
. (A24)
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Since lim�=∞
∑

q
V 2

q �

(s2+ε2
q+�2 ) = �S

2 the term proportional to n↑(0) simplifies to

2n↑(0)
�2

S

4
Im

[
−iL−1

{
s + iε↓ + �N

2

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

}
(t )

]
. (A25)

In the same manner, we calculate the terms proportional to 〈d̂↑(0)d̂†
↑(0)〉, 〈ĉ†k↑(0)ĉk′↑(0)〉, and 〈ĉk↑(0)ĉ†k′↑(0)〉, respectively. Any

other terms containing expectation values of two superconducting lead electron operators vanish in the limit � = ∞. Finally, we
get the transient current

jSσ (t ) = �2
S

2
Re

[
−nσ (0) L−1

{
s + iε−σ + �N

2

(s − s1)(s − s2)

}
(t )L−1

{
1

(s − s3)(s − s4)

}
(t )

+ (1 − n−σ (0)) L−1

{
1

(s − s1)(s − s2)

}
(t )L−1

{
s + iεσ + �N

2

(s − s3)(s − s4)

}
(t ) + �N

2π
�σ

]
, (A26)

with �σ defined in Eq. (14). For σ = ↓, one should use the replacement (s1, s2, s3, s4) → (s3, s4, s1, s2). In theequilibrium case
(for μN = 0), the formula Eq. (A26) can be simplified, because Re�σ = 0. To prove this property, let us focus on the case εσ = 0,
when we can express �σ =∑4

j=1

∫∞
−∞ dε(1 − 2fN (ε))Aj (ε) using the coefficients

A1(ε) = −ie−�N t

2�S

[
ei�S t(

�N

2 − iε+
)(

�N

2 + iε−
) − e−i�S t(

�N

2 − iε−
)(

�N

2 + iε+
)
]
,

A2(ε) = ie−�N t ε(
�2

N

4 + ε2+
)(

�2
N

4 + ε2−
) ,

A3(ε) = −
�N

2 + iε(
�2

N

4 + ε2−
)(

�2
N

4 + ε2+
) ,

A4(ε) = −e−�N t/2

2

⎡
⎣ e−iε+t(

�2
N

4 + ε2+
)(

�N

2 − iε−
) + e−iε−t(

�2
N

4 + ε2−
)(

�N

2 − iε+
)
⎤
⎦

− ie−�N t/2

�S

(
�N

2
+ iε

)⎡⎣ −eiε+t(
�2

N

4 + ε2+
)(

�N

2 + iε−
) + eiε−t(

�2
N

4 + ε2−
)(

�N

2 + iε+
)
⎤
⎦ , (A27)

and ε+/− = ε ± �S

2 . At zero temperature, this function can be given as �σ =∑4
j=1

∫∞
0 dε(Aj (ε) − Aj (−ε)), using the following

properties: A1(ε) = A1(−ε), A2(ε) = −A2(−ε), ReA3(ε) = ReA3(−ε) and A4(−ε) = A∗
4(ε), which imply that Re�σ = 0. The

same conclusion is valid for εσ �= 0 as well.

APPENDIX B: MEAN FIELD APPROXIMATION

In this brief Appendix, we consider the effective Hamiltonian of the proximitized QD coupled to the normal lead, treating
electron correlations within the Hartree-Fock-Bogoliubov approximation:

Ĥ =
∑

σ

(εσ + Un−σ (t ))d̂†
σ d̂σ +

[(
�S

2
+ Uχ (t )

)
d̂
†
↑d̂

†
↓ + H.c.

]
+
∑
k,σ

[Vkd̂
†
σ ĉkσ + H.c.] +

∑
k,σ

εkσ ĉ
†
kσ ĉkσ . (B1)

In general, all parameters εσ , �S, Vk, εkσ can be time-dependent. In what follows, we outline the algorithm for numerical
computation of the QD charge nσ (t ) and the induced on-dot pairing χ (t ) = 〈d̂↓(t )d̂↑(t )〉. We have to solve numerically the
following set of coupled equations of motion:

dnσ (t )

dt
= 2Im

(∑
k

Vke
iε�k t 〈d̂†

σ (t )ĉkσ (0)〉 − �̄∗(t )χ (t ) − �Nnσ (t )

)
, (B2)

dχ (t )

dt
= i

∑
k

Vke
−iεk t (〈d̂↑(t )ĉk↓(0)〉 − 〈d̂↓(t )ĉk↑(0)〉) − [i(ε̄↑(t ) + ε̄↓(t )) + �N ]χ (t ) − i�̄(t )(1 − n↓(t ) − n↑(t )), (B3)
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where ε̄σ (t ) = εσ + Un−σ (t ) and �̄(t ) = �S

2 + Uχ (t ). In the wide-band-limit approximation and assuming εkσ to be time-
independent, the mixed functions appearing in Eqs. (B2) and (B3) can be determined from the equations of motion:

d

dt
〈d̂†

σ (t )ĉkσ (0)〉 =
(

iε̄σ (t ) − �N

2

)
〈d̂†

σ (t )ĉkσ (0)〉 + iα�̄∗(t )〈d̂−σ (t )ĉkσ (0)〉 + iVke
iεk t fN (εk ), (B4)

d

dt
〈d̂σ (t )ĉk−σ (0)〉 = −

(
iε̄σ (t ) + �N

2

)
〈d̂σ (t )ĉk−σ (0)〉 − iα�̄(t )〈d̂†

σ (t )ĉkσ (0)〉, (B5)

where α = +(−) for σ = ↑(↓) and fN (εk ) is the Fermi-Dirac distribution of mobile electrons in the normal lead.
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