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Controlling the bound states in a quantum-dot hybrid nanowire
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Recent experiments using the quantum dot coupled to the topological superconducting nanowire [Deng et al.,
Science 354, 1557 (2016)] revealed that the zero-energy bound state coalesces from the Andreev bound states.
Such quasiparticle states, present in the quantum dot, can be controlled by magnetic and electrostatic means. We
use a microscopic model of the quantum-dot–nanowire structure to reproduce the experimental results, applying
the Bogoliubov–de Gennes technique. This is done by studying the gate voltage dependence of the various types
of bound states and mutual influence between them. We show that the zero-energy bound states can emerge from
the Andreev bound states in the topologically trivial phase and can be controlled using various means. In the
nontrivial topological phase we show the possible resonance between these zero-energy levels with Majorana
bound states. We discuss and explain this phenomenon as a result of dominant spin character of discussed bound
states. Presented results can be applied in experimental studies by using the proposed nanodevice.
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I. EXPERIMENTAL INTRODUCTION

Boundaries of the low-dimensional topological supercon-
ductors can host the zero-energy Majorana bound states
(MBS) [1–3]. Topological protection and non-Abelian statis-
tics obeyed by such exotic quasiparticles make them appealing
candidates for realization of stable qubits which could be
useful for quantum computing [4–10]. Intensive studies of the
topological superconductors provided evidence for the MBS
in various nanodevices [11–24] which are tunable by the gate
potentials and magnetic field, as have been demonstrated by
Deng et al. in Ref. [24].

In practice the topologically nontrivial phase can be induced
in nanoscopic systems via the superconducting proximity
effect in cooperation with some additional effects, e.g., the
spin-orbit coupling (SOC) and Zeeman splitting for semi-
conducting nanowires [20,21]. Such phenomena have been
indeed reported for InAs-Al semiconductor-superconductor
nanostructures [21] or at the interface between the semicon-
ducting InSb nanowire and the NbTiN superconductor [23].
Another possible setup for this phenomenon is a nanowire with
a proximity induced superconducting gap, due to the adatom
deposition on a surface of the superconductor [25]. This has
been reported, i.e., in the case of Fe [19,26] or Co [27] atoms
on the Pb surface.

The Andreev bound states (ABSs) induced in the nanowire
spectrum can be varied by the external magnetic field [28,29].
In some range of parameters [30–32], the above critical
magnetic field transition from trivial to nontrivial topological
phase occurs. One pair of such ABS merges at zero energy,
giving rise to the (double degenerate) MBS, which is localized
near the nanowire ends.

Recent experimental results of the Copenhagen group [24],
showed that the ABS/MBS can be induced in a control-
lable way in the quantum-dot region side-coupled to the
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semiconductor-superconductor hybrid nanowire. A schematic
of this structure is displayed in Fig. 1. The semiconducting
InAs wire was epitaxially covered by the conventional Al
superconductor [33], except for a small piece of wire which
was interpreted as the quantum dot (QD). The thickness of the
superconducting shell should be comparable to its coherence
length, as some nontrivial finite-size effects can occur if this
condition is not met [34]. Upon varying the magnetic field and
the gate potential there have been induced the bound states
of either the Andreev (Shiba) or the exotic Majorana type, as
shown by peaks in the differential conductance of the tunneling
current [35–37]. In particular, the QD energy levels can be
varied by the gate voltage eventually leading to emergence of
the zero-energy Majorana mode.

The main purpose of this paper is to explore the Andreev and
Majorana bound states of the single and multiple quantum dots
coupled to the hybrid nanowire. We study their evolution with
respect to the electrostatic (gate) potential, magnetic field, and
the chemical potential. This paper is organized as follows. In
Sec. II we introduce the model and present some computational
details concerning the Bogoliubov–de Gennes technique.

FIG. 1. Schematic representation of the experimental system
discussed in Ref. [24]. InAs wire (green) is epitaxially covered by
the superconducting Al (yellow). The quantum dot (InAs) is formed
between the normal contact (dark orange) and the epitaxial Al shell
(inside dashed circle). Magnetic field applied parallel to the wire
axis can control the bound states. Measurements of the differential
conductance have been done using the STM tip (blue), whereas the
quantum-dot energy levels have been tuned by the gate potential.
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Next, in Sec. III we describe basic properties and main termi-
nology in relation to the studied problem. Thorough discussion
of the quasiparticle spectrum of the single QD is presented in
Sec. IV. Revision of a more general system with a higher
number of sites in QD, is performed in Secs. V and VI, which
are devoted to the double and multisite QD cases, respectively.
In Sec. VII we propose a feasible quantum device, which could
enable an experimental realization of various tunable bound
states. Finally, in Sec. VIII we summarize the results.

II. MODEL AND METHODS

For description of the nanostructure shown in Fig. 1, we will
use a microscopic model in real space with Hamiltonian H =
Hw + Hprox + Hsoc + Hdot. The first term describes mobile
electrons in the wire,

Hw =
∑
ijσ

{−tδ〈i,j〉 − (μ + σh)δij }c†iσ cjσ , (1)

where t denotes a hopping integral between the nearest-
neighbor sites, μ is a chemical potential, and h denotes a
magnetic field parallel to the whole wire. Here c

†
iσ (ciσ )

describes the creation (annihilation) operator in site ith with
spin σ . The second term accounts for the proximity effect,

Hprox =
∑

i

�(ci↓ci↑ + c
†
i↑c

†
i↓), (2)

and we assume the uniform energy gap � induced by the
epitaxially covered classical superconductor. The spin-orbit
coupling (SOC) term is given by

Hsoc = −iλ
∑
iσσ ′

c
†
iσ (σy)σσ ′ci+1,σ ′ , (3)

where σy stands for the y component of the Pauli matrix and
λ is the SOC coupling along the chain. Then we treat the QD
as part of a nanowire not covered by the superconductor. The
last part,

Hdot =
∑

i∈dot,σ

Vgc
†
iσ ciσ , (4)

describes the electrostatic energy contributed by the gate
potential Vg (see Fig. 2). In what follows we shall consider
the quantum-dot region comprising one, two, and multiple
sites coupled to the superconducting nanowire.

FIG. 2. Schematic idea of the described system. The sites of
the quantum dot (green) are side-attached to the superconducting
nanowire (yellow) with the proximity-induced electron pairing. Using
the STM tip (blue) we can measure the LDOS at each site of the
system. Parameter �0 denotes the coupling strength between the STM
tip and the probed atom.

Hamiltonian H of the entire chain can be diagonalized by
the Bogoliubov-Valatin transformation [38],

ciσ =
∑

n

(uinσ γn − σv∗
inσ γ †

n ), (5)

where γn, γ †
n are the quasiparticle fermionic operators and uinσ

and vinσ are the Bogoliubov–de Gennes (BdG) eigenvectors,
respectively. Such unitary transformation implies

En

⎛
⎜⎝

uin↑
vin↓
uin↓
vin↑

⎞
⎟⎠

=
∑

j

⎛
⎜⎜⎜⎝

Hij↑ Dij S
↑↓
ij 0

D∗
ij −H ∗

ij↓ 0 S
↓↑
ij

S
↓↑
ij 0 Hij↓ Dij

0 S
↑↓
ij D∗

ij −H ∗
ij↑

⎞
⎟⎟⎟⎠

⎛
⎜⎝

ujn↑
vjn↓
ujn↓
vjn↑

⎞
⎟⎠, (6)

where Hijσ = −tδ〈i,j〉 − (μ + σh − VGδi∈dot)δij is the single-
particle term, Dij = �δij refers to the induced on-site pairing,
and the SOC term (mixing the particles with different spins)
is given by Sσσ ′

ij = −iλ(σy)σσ ′δ〈i,j〉, where S
↓↑
ij = (S↑↓

ji )∗.
To study our system, we will use the local density

of states (LDOS) defined as ρi(ω) = − 1
π

∑
σ Im〈〈ciσ |c†iσ 〉〉.

From numerical solution of the BdG equations (6) we obtain
the Green’s function 〈〈ciσ |c†iσ 〉〉, which formally gives

ρi(ω) =
∑
nσ

[|uinσ |2δ(ω − En) + |vinσ |2δ(ω + En)]. (7)

These physical quantities can be measured experimentally in
a relatively simply way [39,40]. In practice this spatially and
energy-dependent spectrum can be also probed by a differential
conductance Gi(V ) = dIi(V )/dV of the tunneling current
Ii(V ), which depends on the coupling between the ith atom of
the wire and the STM tip [41] (indicated by �0 in Fig. 2).

We have solved the BdG equations (6) for a chain with
N = 200 sites, choosing �/t = 0.2, λ/t = 0.15, μ/t = −2.
For numerical purposes we have also replaced the Dirac
delta functions appearing in Eq. (7) by a Lorentzian δ(ω) =
ζ/[π (ω2 + ζ 2)] with a small broadening ζ = 0.0025t .

III. BASIC PROPERTIES

In this section, we will briefly describe basic physical
properties of the nanowire without coupled QD. We will also
define terminology which will be used in later sections of
manuscript.

As we mentioned in Sec. I, in a case of wires with SOC and
superconductivity induced by the proximity effect, for some
magnetic field hc phase transition from trivial to nontrivial
topological phase occurs. In a case of a one-dimensional chain
described by the Hamiltonian H defined in Sec. II we have
hc =

√
�2 + (2t ± μ)2 [30,31]. For chosen parameters we

have hc/t = 0.2.
Change in magnetic field h leads to the typical evolution

of the total density of states (DOS) for this case. Numerical
calculation for chosen parameters is shown in Fig. 3. In
consequence, due to the finite size effect, we can observe a
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FIG. 3. Total DOS for chain in magnetic field. Result for
kBT = 0t , μ = −2t , λ = 0.15t , and � = 0.2t with Vg = 0t . Black
arrows represent specific values of h, indicated for further analysis.
Green lines specify the regions of the Zeeman shifted induced
superconducting gap by proximity effect.

separate line in the DOS. This line corresponds to a singular
state of wire [29]. Characteristic structure of the DOS restricted
by the asymptotic line (shown by the dashed green line) will be
explained below. As we can see, when magnetic field crosses
the critical value hc, the previously closed superconducting
gap is reopened partly as a topological gap [42].

Now we will introduce previously mentioned terminology,
by referring to Fig. 4(a), which schematically shows a change
of the DOS by magnetic field h. In the described system, the
superconducting gap � in wire experimentally corresponds
to the hard gap induced by proximity effects [21–23], whose
value depends on the coupling between the semiconductor wire
with the superconducting shell or base [43]. In consequence

(a) (b)

(c) (d)

FIG. 4. (a) Schematic representation of the shifted superconduct-
ing gaps by magnetic field h, where 2�e and 2�i denote exterior
and interior gaps, respectively. Region for magnetic fields smaller
(bigger) than hc describes the trivial (nontrivial) topological phase.
(b)–(d) Band structure obtained in presence of the magnetic field
without (b) and with (c,d) superconductivity In the case of trivial
(c) and nontrivial (d) topological phases, where the green region 2�

represents the superconducting gap. Gray dashed line represents band
structure in absence of the magnetic field (b) and superconductivity
(c,d).

of this, for h = 0 we observe a 2� gap in the DOS. Increasing
h leads to energy levels ω = ±� shift (red lines). In this
situation, similar to Ref. [42], we can define exterior gap
2�e = 2(� + h) and interior gap 2�i = 2(� − h) as an
energy spacing between external and internal asymptotic line,
respectively (blue double-arrows). For 0 < h < hc the interior
gap decreases, creating soft gap with value smaller than hard
gap. Finally, interior superconducting gap is closed in hc,
while for h > hc topological gap reopens (yellow region
between dashed red lines). Note that increasing the SOC leads
to increased topological gap [5].

Experimentally observed hard gap depends on magnetic
field [12], which is approximately described by the BCS-like
relation �(h) 
 �

√
1 − (h/hc2)2 [44], where hc2 denotes

upper critical magnetic field of superconductor (magnetic field
in which hard gap will be closed). This dependence effectively
leads to experimentally observed suppression of in-gap bound
states. However, we assume constant value of �, which does
not change interpretation of the presented results.

Phase transition from trivial to nontrivial phase, character-
ized by Z2 topological invariant [45–47], can be described
in relation to band structure of infinite wire with periodic
boundary conditions [Figs. 4(b)–4(d)] [12,42,48,49]. In the
absence of the superconducting gap, the external magnetic
field h leads to the gap opening and lifts spin degeneracy at mo-
mentum k = 0 [Fig. 4(b)]. Induction of the superconductivity
in the wire opens additional gap around the Fermi level E = 0
(horizontal axis). The relation between � and h, corresponding
to the gap opening due to superconductivity and magnetic field,
respectively, defines the topologically trivial [Fig. 4(c)] and
nontrivial [Fig. 4(d)] regimes. In the trivial topological phase
h < hc [Fig. 4(c)], a new gap at the Fermi momentum ±kF

emerges and also increases gap at the k = 0 because � > h

(in accord with “positive” value of the interior gap 2�i). The
situation looks differently in a nontrivial topological phase
regime h > hc [Fig. 4(d)], when � < h (what corresponds to
a “negative” value of 2�i). In this situation, opening of the
superconducting gap at ±kF does not change the character of
the gap at k = 0. Moreover, from a formal point of view, in
our system a nontrivial p-wave pairing between quasiparticles
from this same band is induced. This possibility has been
described before [30,31,50–54].

However, in the absence of the boundary conditions (finite
wire), discussion of the band structure is unreasonable because
momentum is not a good quantum number. Moreover, energy
of bound states occurring at the boundaries of the wire,
has symmetrical shape with respect to Fermi energy ω = 0.
Nonzero magnetic field applied in the system leads to emer-
gence of ABS in-gap states (with energies � > |ω| > � − h)
and ABS with lowest energy defines the boundary of the inte-
rior gap. Increasing h to a value above hc allows the MBS to
form from the two lowest energy ABSs. Simultaneously, when
the lowest energy ABSs merged into MBS, the topological gap
is created between the new lowest energy ABSs.

In the nontrivial topological phase (h > hc) the zero-energy
MBS can be experimentally observed, i.e., in the form of
zero-bias peaks in the tunneling conductance measurement
[36,40,55,56]. In this type of experiment, the MBS is observed
in the form of the zero-bias conductance peak G0 = 2e2/h at
zero temperature. However, in the finite temperature regime
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conductance is significantly reduced, which has been observed
experimentally [18] and discussed theoretically [44,56–59].
Therefore, local density of states presented here is a good
indicator for the differential conductance [37], however, it
strongly depends on temperature and coupling between tip
and nanowire [18,49,58–62].

Moreover, the MBS are physically localized at the end of
the wire. Length of the wire plays an important role in the
realization of MBS wave-function oscillation in space, which
is connected to the MBS nonlocality [63]. When considering
a sufficiently short wire, overlapping of the two Majorana
wave functions is too extensive and the “true” zero-energy
MBS cannot be realized, as the MBS annihilate [64–66]. This
system requires a meticulously made nanowire [67], because
any disorder has a destructive role on the topological phase
[47,68–71]. However, local impurity can lead to MBS separa-
tion into the pair of new MBS at the newly created boundaries
of the homogeneous system in topological states [66,72–75].

As we mentioned in Sec. I, the ABSs can be experimentally
controlled. Moreover, for some experimental parameter the
ABS can coalesce [24] into a zero-energy bound state (ZEBS).
This feature is realized only in the nontrivial topological phase
(h < hc). Because the ZEBS and MBS are zero-energy states,
we must mention the differences between those two similar
kinds of bound states. First, magnetic field in which ZEBS
(h < hc) coalesce is smaller than the one required for MBS
to emerge (h > hc). Second, what is more important from a
practical point of view, ZEBS do not obey the non-Abelian
statistics which is a consequence of different parity with
respect to MBS [9,70].

IV. SINGLE QUANTUM DOT

Let us now inspect the superconducting wire comprising
N = 200 sites with one additional site, representing the normal
QD. Evolution of this QD spectrum with respect to the gate
voltage Vg is illustrated in Fig. 5 for several magnetic fields
h. In the absence of the magnetic field [Fig. 5(a)] and for
Vg/t � −1.8 the QD quasiparticles show up in LDOS as
the characteristic devil’s staircase [red ellipse in Fig. 5(a)].
This avoided crossing structure occurs as a consequence of
hybridization of the QD energy level with a finite number of
the nanowire energy levels. In the regime Vg/t ∈ (−1.8,0.8)
there appear two ABSs inside the hard gap, which never cross
each other (as is indicated by the pink double-arrow).

For the h < hc in the trivial topological phase [Fig. 5(b)],
we observe the Zeeman splitting of the initially single spin-
degenerate QD levels [white arrows in Fig. 5(b)]. In conse-
quence, the majority spin character for both levels has been
disjointed (character of “left” and “right” levels corresponds to
majority spin ↓ and ↑ quasiparticles, respectively). Moreover,
when magnetic field is strong enough, the ABS can cross each
other creating ZEBS at two different values of Vg , depending
on h (indicated by the green arrows). Characteristic spin-split
structure has been also observed [21,76–79].

For strong magnetic field h > hc, at the nontrivial topo-
logical phase [Figs. 5(c) and 5(d)], the MBS emerge in the
nanowire. Let us remark that such Majorana quasiparticles, for
some range of parameters, coexist with the conventional ABS
inside the topological gap, whose spectral weights depend

(a) (b)

(c) (d)

FIG. 5. Evolution of the quantum-dot spectral function with
respect to Vg for several magnetic fields, indicated by the black arrows
in Fig. 3. Results are obtained for kBT = 0t , μ = −2t , λ = 0.15t ,
� = 0.2t . Red ellipse in (a) indicates the devil’s staircase structure.

on h and Vg . Modification of the QD energy level with
dominant σ -spin character by Vg leads to two different kinds
of resonance with MBS. In the case of the ↑-like state (in the
region indicated by the yellow dashed arrow) leak of the MBS
into the QD has been observed, whereas for the ↓-like state
there is only a relatively weak resonance (yellow arrows).

It should be mentioned that the possible crossing of the
ABS in the absence of the magnetic field is possible when
ratio coupling between the QD and nanowire would induce a
hard gap (in our case t/�) that is smaller than one [78]. This
scenario can be also realized at the quantum phase transition
in the correlated quantum dot [63,78–80] but such an issue is
beyond the scope of the present study. For parameters chosen
in our system we have t/� � 1 and the gap between two ABSs
inside the hard gap could not observed (Fig. 6). In the case
studied here, the minimum of the gap mentioned above occurs
at Vg ∼ −1.3t , whereas its extreme value 2� is reached either

FIG. 6. Effective gap between the ABS (inside the hard gap)
versus the spin-orbit coupling λ and the gate potential Vg . Results are
obtained for the single quantum dot at zero temperature for μ = −2t ,
� = 0.2t , and h = 0.
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(a)

(e)

(i)

(j) (k) (l)

(m)

(n) (o) (p)

(f) (g) (h)

(b) (c) (d)

FIG. 7. Schematic representation of the resonance of the dot energy levels and the nanowire with increasing magnetic field (from top to
bottom). For every case in the most-left column, solid, dashed, and dotted lines represent occupied, unoccupied, and Andreev bound states,
respectively. Moreover, the gray dashed axis line shows the Fermi level and letters on those axes in the most-left column denote the specific gate
potential Vg on the quantum dot. In the rest of the columns a solid (dashed) line indicates quasiparticles with dominant particle (hole) character.
Colors (red/blue/violet) illustrate the dominant spin (↑/↓/degenerate case) of energetic levels. ABSs (f)–(h), (j)–(l), and (n)–(p) inside the
external gap become a mixture of spins, due to the spin-orbit coupling, hence the transition in colors representing energy levels. Labels 2�,
2�i, 2�e, and topo represent the hard gap, interior gap, exterior gap, and topological gap, respectively, which have been introduced in Sec. III.
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away when gate potential is insignificant or for the strong SOC
λ. As we can see in Fig. 5, the ABS crossing can be achieved for
some fixed gate potential Vg , in the presence of the magnetic
field h which is equal to one-half of the gap between the ABS
when magnetic field is absent.

A. Resonance of the quantum-dot levels
with Majorana bound states

Let us now explain in detail the asymmetry in the resonance
of the QD energy levels with nonowire energy levels, presented
previously in Fig. 5. We will do this using the schematic
representation of the QD energy levels and nanowire total
DOS shown in Fig. 7 and terminology introduced in Sec. III. In
the absence of magnetic field [Figs. 7(a)–7(d)], manipulation
of gate voltage Vg changes the spin degenerate dot energetic
levels with respect to the Fermi level (ω = 0). When states
are localized below the superconducting hard gap [Fig. 7(b)]
we can observe the devil’s staircase structure. This structure
is formed as a consequence of coupling between the QD and
nanowire energetic levels–spin conserved (t) and spin-flip (λ)
hoppings. ABSs emerge when the QD energy levels are near or
inside the hard gap [Figs. 7(c) and 7(d)]. The spectral weight
of the ABS is leaking from the occupied to the nonoccupied
(c → d) levels, converting its character [i.e., see also Fig. 5(a)].
Initially, the negative energy ABS is particle dominated,
whereas the positive energy one is hole dominated [Fig. 7(c)].
As the change in Vg progresses, occupation of states is inverted
[Fig. 7(d)]. For any nonzero magnetic field h [Figs. 7(e)–7(p)]
spin degeneracy is lifted by the Zeeman shift. When 0 < h <

hc, sharp structures of the ABS are observed in the hard gap,
creating the soft gap which is equal to the interior gap (2�i)
for this value of magnetic field. If the h is sufficiently small
[Fig. 7(e)], the ABS does not cross the Fermi level. When
both QD energy levels are localized below the exterior gap
[Fig. 7(f)], then we observe two separate levels with different
spin majority character [see Fig. 5(b)]. As we increase Vg ,
observed mirrored ABS resonances invert its dominant char-
acter from particle to hole (g → h). For high enough magnetic
field (but still smaller than hc) [Figs. 7(i)–7(l)] the ABSs start
to cross at zero-energy level. In consequence ABSs coalesce
into ZEBS at the Fermi level and the interior gap narrows
[Fig. 7(i)]. For some value of Vg [Fig. 7(j)] only one pair of
ABSs exists inside the exterior gap while the ↑ dominant spin
level of the QD resides below this gap. Before first coalescing
of ABSs [Fig. 7(k)] we observe a situation similar to Fig. 7(g).
However, for Vg between points of ABS coalescence (l) energy
levels invert. In a case of the h > hc [Figs. 7(m)–7(p)] the
topological gap opens and the MBS emerge at ω = 0. In this
nontrivial topological phase (with h > �) the dot-energy level
is shifted enough to treat it independently. For Vg at the point
[Fig. 7(n)] the QD energy levels with ↑(↓) dominant spin
character are located deep below (near) the topological gap. In
consequence we observe “in-topological-gap” ABS detached
from the ↓-spin QD energy level, which suits minority spin in
the whole system. Increase of Vg (o → p) leads to a position
of the QD energy level with majority ↑(↓)-spin character near
(far above) the topological gap, respectively. Additionally,
dominant spin component reverses during the topological
phase transition [81].

(a) (b) (c)

FIG. 8. Effect of the spin-orbit coupling λ on the induced
Majorana and Andreev bound states. (a) Inset shows the quasiparticle
energies for the zoomed region. Results are obtained for kBT = 0t ,
μ = −2t , h = 0.3t , and � = 0.2t .

We must have in mind that quasiparticles with the ↑(↓)-
spin character has a dominant (inferior) role in the whole
system due to the Zeeman splitting. In this sense MBS at zero-
energy level have ↑ spin polarization [9]. Stemming from this,
only remaining ↑ dominant spin character energy levels can
resonate with the MBS. Following this condition and keeping
in mind that the SOC is sufficiently strong in the system, a
characteristic structure of avoided crossing occurs, halting the
ABS emerged from the inferior ↓-spin QD energy level to cross
the zero-energy level. Simultaneously, the ↑-spin dominant
QD energy level can resonate with the MBS, which can be
clearly seen as an increasing of the spectral weight of the
MBS along the dashed arrows in Figs. 5(c) and 5(d).

As a result of the QD coupling to the wire by spin-conserved
t and spin-flip λ hopping, the resonance of the QD energy levels
with minority ↓-spin character and MBS with ↑ polarization,
depends strongly on the spin-orbit coupling. Role of the
spin-orbit influence on this behavior is shown Fig. 8, where
we compare the resonance of the QD energy levels with the
zero-energy MBS for several values of the SOC λ. For any
nonzero value of λ, the system supports both the MBS and
ABS, coexisting inside the topological gap. It can be noticed,
that the ABS become gapped [see the inset in Fig. 8(a)] and
their avoided crossing behavior becomes significant with an
increase of SOC strength λ. At the same time, the MBS gain
more and more spectral weight. Furthermore, we also observe
constructive influence of the SOC λ on the devil’s staircase
structure, existing outside the topological gap. In relation to
the previous paragraph, this is a consequence of spin-flip
hybridization between QD and wire, supporting the resonance
of the ABS and opposite spin character MBS.

B. Different types of zero-energy bound states

We have shown that the ABS can coexist with MBS
and sometimes their energies are identical (resonant). Such
resonance depends on the quantum-dot energy level, which
can by modified by the global Fermi level (i.e., the chemical
potential μ), the gate voltage Vg , and the magnetic field h.
These quantities affect the ABS and for trivial topological
phase (h < hc) lead to emergence of the ZEBS. Here we
should remind one that the ZEBS and the MBS are zero-energy
states, but emerge in different topological phases (trivial and

195430-6



CONTROLLING THE BOUND STATES IN A QUANTUM-DOT . . . PHYSICAL REVIEW B 96, 195430 (2017)

(a) (b)

FIG. 9. Modification of the zero-energy LDOS on the quantum-
dot site by change μ and Vg in the cases of the phase not supporting
(a) and supporting (b) realization of the MBS. Results for kBT = 0t ,
λ = 0.15t , and � = 0.2t .

nontrivial, respectively). It is illustrated in Fig. 9, where we
plot the LDOS of the dot region for ω = 0 versus μ and Vg .

These results refer to the following cases: (i) h < hc,
when MBS are not realized for any parameter of the system
[Fig. 9(a)]; (ii) h > hc, when for some values of μ, the system
can host the MBS [Fig. 9(b); the MBS supporting regime
exists between white arrows]. In the first case we can find
such regions, where ABSs coalesce into ZEBS [red kink in
Fig. 9(a)]. For the latter case, upon varying μ (or h) we can
distinguish two regimes: supporting (between white arrows)
and nonsupporting (outside white arrows) emergence of the
MBS. Inside the first region we can see realization of the
(asymmetric) resonance of the QD energy levels with the MBS
hosted at the ends of the nanowire. In the second region, similar
to previously discussed, we can only see a crossing of the ABS
in the ZEBS form. The difference between such resonances has
been discussed in previous sections.

The following results are discussed for the cross section
of Fig. 9 along Vg = −1.125t indicated by the yellow arrow.
Figure 10 shows the LDOS of the QD as a function of the
(global) chemical potential μ. We can clearly see that upon
varying of μ the coalescing ABS give rise to ZEBS [Fig. 10(a),
green arrow]. However, for the nontrivial topological phase
[Fig. 10(b)], ZEBS appear only beyond the MBS-supported
regime [green arrows outside the region marked by white
arrows in Fig. 10(b)]. These results are complementary to
Fig. 9(b). Inside this regime there exists the topologically

(a) (b)

FIG. 10. LDOS on the quantum dot versus the chemical potential
μ for the cases not supporting (a) and supporting (b) realization of
the MBS. The gate potential is Vg = −1.125t as indicated by the
right green arrow in Fig. 5(b). Results are obtained for kBT = 0t ,
λ = 0.15t , and � = 0.2t .

(a) (b)

(c) (d)

FIG. 11. Evolution of the quantum-dot spectrum with respect to
magnetic field h for several gate potentials Vg , as indicated. Results
are obtained for kBT = 0, μ = −2t , λ = 0.15t , and � = 0.2t .

protected Majorana states, while for other parameters the
ABSs create a new gap around ω = 0.

Further important effects can be seen if we investigate
the influence of magnetic field (Fig. 11). As we mentioned
previously, h detunes the energy levels of the states with
opposite spin character. This is true for the whole studied
system. We remind one that, in general, for h < hc we can
observe the ABS or the ZEBS coalesced from ABS, like
indicated by yellow arrow in Fig. 11(c), what is in agreement
with experimental results [24], whereas the zero-energy MBS
can be realized only for h > hc. Similarly to the previous
result, increase in h reveals asymmetry in resonance between
the QD energy levels with dominant σ -spin character and
MBS, what has been explained in Sec. IV A. In some range
of gate potential Vg (compare with Fig. 5), with changed
h, the dominant ↑- or ↓-spin character of the QD energy
levels are revealed. In the case of the energy levels with spin
majority character (↑), resonance between the QD energy level
and MBS is favored by spin-conserving hopping [Figs. 11(a)
and 11(b)]. For the energy levels with minority character (↓),
resonance of the QD level and the MBS is more energetically
expensive due the fact that the spin-flip hopping λ is smaller
than spin-conserved hopping t . As a result, we can observe
emergence of the ABS in-topological gap [Fig. 11(d)] and
weak resonance with the MBS (green arrow), depending on
λ (see Fig. 8). When the QD energy levels penetrate the hard
gap as the ABS [in weak magnetic field, Fig. 11(c)], the ZEBS
is formed (yellow arrow).

V. DOUBLE-SITE QUANTUM DOT

Similar analysis can be performed for the system com-
prising two additional sites (double-site quantum dot) side-
attached to the hybrid nanowire. In this case, we observe
two pairs of the ABS appearing in the spectrum of such dots
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(a)

(b)

(c)

(d)

FIG. 12. Evolution of the double quantum-dot LDOS with respect
to the gate voltage Vg for several magnetic fields, indicated by the
white arrows in Fig. 3. Results are obtained for kBT = 0t , μ = −2t ,
λ = 0.15t , and � = 0.2t .

(Fig. 12). We notice that for h = 0 these pairs of ABSs are
split by different energy gaps [indicated by the pink arrows in
Fig. 12(a)]. For this reason, within a range of weak magnetic
field h < hc we can observe either one or two pairs of the
spin-split ZEBS [marked by the solid and dashed green arrows
in Fig. 12(b)]. In the regime of nontrivial topological phase
(for h > hc) we see emergence of the zero-energy MBS
[yellow solid and dashed arrows in Figs. 12(c) and 12(d)].
When the MBS (with ↑ majority spin character of the system)
hosted on the wire, coincides with the minority spin character
(↓) double-site QD energy levels [yellow solid arrows in
Figs. 12(c) and 12(d)], we can observe its existence in the
topological gap while ABSs do not cross at zero-energy
level. In other words, the ABS separate from the zero-energy
Majorana mode as a consequence of weak coupling between

(a)

(b)

(c)

(d)

(e)

FIG. 13. Influence of the magnetic field h on the LDOS of the
double quantum dot for different values of the gate voltage Vg , as
indicated. Result are obtained for kBT = 0t , μ = −2t , λ = 0.15t ,
and � = 0.2t .

QD and the strong one in the wire due to the spin-flip hopping
λ. Regarding the case of energy levels with ↑-spin character
(dashed yellow arrows), their bound states do not enter the
topological gap but resonate with the MBS at the zero-energy
level. Figure 13 shows the double quantum-dot spectrum as
a function of the magnetic field h for several values of the
gate voltage Vg . Again, we notice that Vg controls the spectral
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(a)

(b)

(c)

FIG. 14. Gate voltage dependence of the LDOS obtained at zero
temperature for the quantum dot comprising 10 sites, using μ = −2t ,
λ = 0.15t , and � = 0.2t . (c) Red (green) dotted ellipses correspond
to the region where only the quantum-dot energy levels with ↓ (↑)-
spin character exist.

weight of the Majorana mode leaking into the QD region in
the nontrivial topological phase (above the critical magnetic
field h > hc).

VI. MULTISITE QUANTUM DOT

In realistic quantum systems the ABS can sometimes
originate from a multitude of the energy levels existing in
a subgap regime. We shall model such a situation here,
considering a piece of the nanowire (sketched in Fig. 2) whose
energy levels can be identified as the finite number of lattice
sites in this complex structure. Such systems can be realized
experimentally, e.g., in the carbon nanotube superconducting
device [76]. Similar effects can be relevant to the experiment
reported by Deng et al. [24]. Another possible realization
could refer to the multilevel structure obtained by the modern
experimental technique, designing the quantum dot with
atomic precision [82]. Due to the proximity effect, we can
expect appearance of the N pairs ABS [21,22,24,76], where N

is the number of the sites in the QD region. In our calculations
for the multilevel dot we shall focus on N = 10 sites.

Figure 14 shows variation of the normal nanowire spectrum
with respect to the gate voltage Vg for several magnetic
fields h, as indicated. For h = 0 [Fig. 14(a)] we observe N

quasiparticle branches, which become doubled at low energies
(due to particle-hole mixing). For the weak magnetic field
h < hc [Fig. 14(b)] we can observe the Zeeman splitting of
the initial quasiparticle branches. In a low energy regime these
bound states eventually reveal either a crossing (red arrow) or
avoided crossing (green arrow), depending on the gate voltage
Vg . Finally, when hybrid-nanowire transitions to nontrivial
topological phase h > hc, we can observe resonance of the QD
energy levels with MBS hosted in the nanowire [Fig. 14(c)],
similarly to previous results, but different form for levels with
majority or minority spin character.

In consequence of the asymmetric resonances of the QD
energy levels with minority and majority spin types, we
observe different behaviors of these levels in the subgap region
[Fig. 14(c)]. The QD energy levels with the minority spin
(↓) character are insensitive to the existence of the MBS
zero-energy level in the wire (red dotted ellipse), while in
the case of majority spin (↑) complete resonance is observed
(green dotted ellipse). In the case of the intermediate Vg regime
(between red and green dotted ellipses), the spectral weight of
the MBS weakly oscillates with a varying Vg as a consequence
of various interplay between the QD energy levels, depending
on their dominant spin component.

From a practical point of view it is important to know what
are the spatial profiles of the zero-energy bound states of the
nanowire, due to their dependence on the magnetic field. For
h < hc they correspond to crossings of the ZEBS whereas for
h > hc they refer to the MBS, respectively. As mentioned in
Sec. III, the zero-energy MBS is characterized as the localized,
oscillating in space, wave function formed at the end of the
wire. Similarly, the ABS wave functions are localized in the
QD region of the studied system. In both cases these zero-
energy bound states can leak from the QD to the nanowire
region (in the case of the ZEBS) or vice versa (when MBS is
present), via the hybridization between both parts. Figure 15
presents the spatially dependent spectral weight of the zero-
energy (ω = 0) quasiparticles. Let us remark that i ∈ 〈1,10〉
in this case correspond to the multisite QD connected to the
hybrid nanowire. For some value of the magnetic field smaller
than hc [Fig. 15(a)], but bigger than the gap between ABS in the
absence of the magnetic field, we can observe several crossings
of the ABS (visible as red lines). These ZEBS are localized
mainly in the QD region and leak into the nanowire region.
The situation looks different in a nontrivial topological phase
[Fig. 15(b)], where the MBS are present. In consequence, when
QD energy levels change (controlled by gate voltage Vg), we
can observe a shift of the MBS initially localized in the end of
the wire to the dot region.

By inspecting Fig. 15 we can also notice spatial oscillations
of the zero-energy quasiparticles, both in the trivial (h < hc)
and nontrivial (h > hc) topological phases. This behavior is
observable near the edges (spectrum of the entire system is
shown in Fig. 16). In the trivial topological phase [Fig. 16(a)]
such oscillations appear mainly in the QD and leak partially
to the wire (green dotted ellipse). The situation changes com-
pletely for the nontrivial superconducting state [Fig. 16(b)],
where the MBS oscillations (red arrows) exist on both sides of
the interface and leak to the QD region (green dotted ellipse).
In the second case the spatial oscillations are very pronounced,
as has been mentioned in Sec. III.
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(a)

(b)

FIG. 15. Spatial profiles of the ABS and/or MBS obtained at ω =
0 for the normal nanowire, comprising 10 sites. (a) The ABS of the
trivial superconducting state (h < hc); (b) Illustration of the spatial
profiles of the MBS in the topologically nontrivial superconducting
state (h > hc). Results are obtained for kBT = 0t , μ = −2t , λ =
0.15t , and � = 0.2t . Dotted white line shows the boundary between
the quantum dot and wire regions.

VII. QUANTUM DEVICE WITH TUNABLE ANDREEV
AND MAJORANA BOUND STATES

Finally we propose an experimentally feasible device
(sketched in Fig. 17) for controllable realization of various
types of the bound states using electrostatic means. Motivation
to realization of the device in the proposed form, is provided
by the results from previous sections, which suggest multiple
possible outcomes: (i) realization and controlling of ZEBS
from coalescing ABS (for h < hc); (ii) ZEBS leakage from
the QD to the nanowire region (for h < hc); (iii) MBS leakage
from the nanowire to the QD region (for h > hc). In analogy
to the setup used by Deng et al. [24] we suggest using
the semiconducting wire whose external parts are epitaxially
covered by the superconductors (SC1 and SC2). Such a system
resembles the typical SNS junction [83], however, we omit
the phase dependence as superconductors SC1 and SC2 can
be taken as made from the same material. The central piece
(which is not covered by superconductors) is treated as the
multilevel QD in which energy levels can be varied by the gate
potential Vg (orange region, similar to Fig. 1). Pairs of gates
at the ends of the wire (pink), play a crucial role in this setup
as they employ the means to measure and verify the existence
of zero-bias MBS peaks, e.g., in a differential conductance
discussed in Sec. III. The change of the (global) chemical
potential μ can be realized by changing the voltage at the base
(green). By applying the STM tip to the central QD region, one
can probe the different types of bound states in the differential
conductance for each individual site. We have in mind that
the whole device should be in the external magnetic field,
directed along the wire. Moreover, in generality the SC1 and
SC2 may be different materials. As a consequence of this, only

(a)

(b)

FIG. 16. LDOS along the quantum-dot hybrid nanowire in the
cases of the phase not supporting (a) and supporting (b) realization
of the MBS. Dot regions are localized below site 11, while the
superconducting wire is above site 10. Results for kBT = 0t , μ =
−2t , λ = 0.15t , and � = 0.2t . Bias voltages are fixed as Vg = −0.99,
which corresponds to one of the ABS-resonance levels shown in
Fig. 15 as green arrows. The dotted white line shows the boundary
between the quantum-dot and wire regions. Red arrows show a pair
of MBS.

one part of the nanowire can pass to the nontrivial topological
phase, supporting the realization of the MBS, which should be
observed as a zero-bias peak in the differential conductance
between pairs of the gates, i.e., G1-G1′ and G2-G2′ (or G3-G3′
and G4-G4′). On the other hand, simultaneous measurements
carried out by pairs of the gates and the STM can verify the
possibility of the bound states leaking from the QD to the
nanowire region or vice versa.

FIG. 17. Sketch of the proposed device for a tunable realization
of the Andreev or Majorana bound states. Semiconducting wire
(green) is epitaxially covered by two pieces of the superconducting
material (SC1 and SC2). The uncovered part of the wire is the
multisite quantum dot, for which energy levels are constrained by the
underlying gate (pink). The side-attached pairs of gates (i.e., G1-G1′,
G2-G2′, etc.) can be used to measure, e.g., differential conductance.
Using the STM tip (blue) one can detect the bound states present in
the quantum-dot region.
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(a)

(b)

FIG. 18. Spectral weight of the zero-energy quasiparticles
induced in the multilevel quantum dot (sites from 240 to 260) coupled
the two nanowires (see Fig. 17). Results are obtained for kBT = 0t ,
μ = −2t , λ = 0.15t , and h = 0.3t assuming either � = 0.2t for both
superconducting wires (a) or � = 0.2t for the sites i > 260 and
� = 0.4t for the sites i < 240, respectively. The dotted white line
shows the boundary between the quantum-dot and wire regions.

The STM-type measurement in the central region of
the proposed device, also can be useful for studying or
checking the nature of the realized bound states. It has been
recently emphasized that the Majorana quasiparticles can be
distinguished from the usual Andreev states by the spin-
polarized spectroscopy called the selective equal spin Andreev
reflections (SESARs) [84] or spin selective Andreev reflection
(SSAR) [85,86]. This type of spectroscopy, unambiguously
distinguishes between the “true” and “fake” Majorana quasi-
particles [87,88], which has been used successfully for,
e.g., the detection of a zero-bias peak in the Bi2Te3/NbSe2

heterostructure [89,90] or in the case of the magnetic atom
chain [17,27,91–93].

Now we will show and discuss numerical results, which
should be realized in the device described above. We
considered the QD comprising 20 sites (240 < i < 260).
Figure 18 shows the zero-energy quasiparticle spectrum for
two situations: (i) when both nanowires are in the nontrivial
topological phase [Fig. 18(a)], and (ii) when one part (SC1) is
the nontrivial topological phase, whereas the other one (SC2)
is not [Fig. 18(b)]. In both cases the zero-energy QD levels
are available for some discrete values of the gate potential Vg ,
approximately in the voltage regime of −4.5 � Vg/t � −0.5.
What is also important, in both cases, outside this range of
Vg we can observe a hosting of the MBS in the SC1 region
(and in the SC2 region in the first case). ZEBS available on the
QD and MBS hosted in the wires, can be lead to a resonance
between them in a controlled fashion. As a consequence we
can check features described in previous sections, a difference
in resonance of the MBS with the QD energy levels with
majority or minority spin character [asymmetry in Fig. 18(a)
around Vg equals −4t and 0t]. Another possibility is an

FIG. 19. This same as in Fig. 18(a) but for the broader central
quantum-dot region, comprising 100 sites (200 � i � 300). Dotted
white lines show the boundary between the quantum-dot and wire
regions.

experimental study of the leaking of the MBS from one part
of the device to the second one via the QD region. Moreover,
here we have two possibilities: (i) when MBS is hosted in both
wires [Fig. 18(a)], this causes an interference between two
different Majorana quasiparticles [94,95], and (ii) when only
one wire hosts the MBS [Fig. 18(b)], this gives the possibility
of studying the MBS leakage from the first to the second
wire in the ZEBS form [Fig. 18(b)]. A similar suggestion
can be found in Ref. [96], where the authors described the
expected experimental result of conductance spectroscopy in
a nontopological-topological superconductor junction, which
is a building block of our proposed device. In both cases,
measurement of the differential conductance between pairs of
gates (i.e., G1-G1′, etc.) in the described device, can be helpful
to verify the realization of the zero-energy-type bound states
in the form of the zero-bias peak or the ABS in the case of
nonzero bias.

It should be mentioned that our calculation shows an im-
portant role of the finite number of available QD energy levels
(compare, e.g., Figs. 18(a) and 19). Suggested measurement
should be more apparent for QD with a smaller number of
energy levels (which in our case corresponds to number of
sites in the dot region).

VIII. SUMMARY

Recent experiments suggest the possibility of realization of
the zero-energy bound state in a hybrid-nanowire structure
(Sec. I), which can be interpreted as a Majorana bound
state, with its characteristic features (Sec. III). Motivated
by the results obtained by Deng et al. [24], who reported
the possibility of inducing the bound states in the quantum
dot in a controllable way, we described the experimental
setup (quantum-dot hybrid nanowire structure), using the
microscopic model (Sec. II) and solving it in real space by
the Bogoliubov–de Gennes technique.

In Sec. IV we studied properties of the system with the
one-site quantum dot adjoined to the nanowire. In particular,
we analyzed the following: (i) possible influence of gate
voltage Vg on the bound state realized in the quantum dot, and
(ii) mutual relation between bound states in the quantum dot
and the nanowire region. We showed that the Andreev bound
states, observed for some value of the magnetic field inside
the hard superconducting gap, can coalesce in a controllable
way, creating zero-energy bound states. In relation to this, the
zero-energy Majorana bound states can be realized only when
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magnetic field is sufficiently large. Our results are in agreement
with those presented in Ref. [24].

Mutual influence of those two types of bound states is
possible as a consequence of shared existence at the zero-
energy level. Therefore, it is possible for bound states to leak
from the quantum dot to the nanowire region or vice versa.
Moreover, we showed an asymmetry between resonance of
the Majorana bound state and the quantum-dot energy levels.
We explained both results as a consequence of (i) change
in dominant spin character of quantum-dot energy levels by
magnetic field (the majority ↑ and minority ↓ spin character),
and (ii) different resonance between the Majorana bound
states (with ↑ character) and the quantum-dot energy levels
(corresponding to ↑ and ↓).

This can also be observed as an influence of the spin-orbit
coupling on the relation between the Andreev bound state,
which penetrates the topological gap and zero-energy
Majorana bound states. Increase in the spin-orbit coupling
leads to an avoided crossing of the Andreev bound state with
a dominant ↓-spin character and is accompanied by transfer
of the spectral weight to the Majorana bound state. This effect
is not observed when the quantum-dot energy level has ↑-spin
character.

Those results also can be observed in a more general
structure with the multisite quantum dot (e.g., two-site or
multisite quantum dot described in Sec. V and Sec. VI,
respectively). In this more realistic picture of the quantum
dot, we found that the Majorana bound state can resonate
with several quantum-dot energy levels with dominant ↑-spin
character, which is visible as a series of the discrete quantum
levels in the quasiparticle spectrum. We showed that the
Majorana bound states leak from the wire to the quantum-dot
region and observed the pronounced quantum oscillations in
their spatial profiles. These effects indicate a tendency towards
spatial broadening of the Majorana modes.

In Sec. VII we proposed a quantum device in the form of a
semiconductor nanowire, whose two parts are covered by the
superconductor. The remaining uncovered part can be treated
as a quantum dot, with a finite number of available energy
levels. This type of device can be used in the realization of
described properties, i.e., interplay between different types
of bound states. In the regime of the parameter supporting
the realization of the Majorana quasiparticles, the presented
nanodevice can help to distinguish the differences in resonance
between zero-energy bound states with a different dominant
spin character. We hope that such a device would be stimulating
for further studies of the Majorana quasiparticles and their
interactions with other kinds of bound states.

Experimental results obtained by Deng et al. [24] have been
intensively discussed by many groups studying the tunneling
conductance [44,57–59]. However, the zero-bias conductance
peak does not provide definitive evidence for Majorana zero
modes [44]. In relation to this, the zero mode occurring as

a consequence of the usual Andreev bound state (in a trivial
topological phase) is generally expected to produce a zero-bias
conductance peak of height varying between 0 to 4e2/h. We
must have in mind, however, influence of additional physical
effects (e.g., finite temperature [58]) leading to reduction of
the conductance value, as mentioned in Sec. III. This type of
behavior is important in distinguishing the zero-energy feature
related to the “trivial” Andreev from the “nontrivial” Majorana
bound states [44].

To this end, let us highlight the main findings of our
paper. Interplay between the quantum-dot and nanowire energy
levels strongly depend on the topological state of the system
(cf. Fig. 9). In the case of the trivial topological phase,
the dot energy level creates zero-energy bound states via
Andreev bound states only for some specific values of the
gate potential and magnetic field. Contrary to this, in the
nontrivial topological phase the Majorana zero-energy bound
states can be observed in a wide range of parameters. We
also inspected leakage of the Majorana bound states from the
nanowire to quantum-dot region. In relation to the previous
work addressing interplay between the quantum-dot energy
levels with a nonlocality of the Majorana zero modes [63],
we discussed influence of the coupling in spin-conserved
and in spin-flip channels between the quantum dot and the
nanowire. We showed that this process strongly depends on
the dominant spin component of the quantum-dot energy
states. Similar behavior has been discussed in the context of
spin-dependent coupling between the quantum dot and the
nanowire [97]. Moreover, we have proposed an experimentally
feasible device for studying such a leakage effect and detecting
the Majorana quasiparticles. This device can be helpful
in experimental verification of the described behavior and
in practical realization of the true Majorana qubits [98].
Realizations of this proposed device could be well controlled
electrostatically, in which the Majorana bound states could
emerge or disappear in the quantum-dot region. Similarities
have been previously suggested for quantum computing based
on the Majorana quasiparticles [99].

Note added. During the reviewing process of this article,
we became aware of Ref. [100], describing detection of the
topological phase transition in nanowires using the quantum
dot analogous to the properties described by us in Sec. IV.
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