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Interplay between electron pairing and Dicke effect in triple quantum dot structures
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We study the influence of the proximity-induced pairing on an electronic version of the Dicke effect in a
heterostructure, comprising three quantum dots vertically coupled between the metallic and superconducting
leads. We discuss a feasible experimental procedure for detecting the narrow/broad (subradiant/superradiant)
contributions by means of the subgap Andreev spectroscopy. In the Kondo regime and for small energy level
detuning the Dicke effect is manifested in the differential conductance.
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I. INTRODUCTION

Triple quantum dots coupled to the reservoirs of mobile
electrons enable realization of the electronic Dicke effect [1].
The original phenomenon, known in quantum optics, manifests
itself by the narrow (subradiant) and broad (superradiant) line
shapes spontaneously emitted by atoms linked on a distance
smaller than a characteristic wavelength [2]. Early prototypes
of its electronic counterpart have been considered by several
groups [3–7].

In nanostructures, where the central quantum dot (QD0)
with two side-attached dots (QD±1) are arranged in a crossed
bar configuration (Fig. 1), the sub- and superradiant contri-
butions can be achieved either upon increasing the interdot
coupling t±1 or via tuning the quantum dot energy levels ε±1 →
ε0. Such a scenario has been investigated for heterojunctions
with both normal (conducting) electrodes [8–13]. In particular,
an interplay between the Kondo and Dicke effects, manifested
in the differential conductance, has been addressed [10,11].
Moreover, it has been shown that the electronic Dicke effect
substantially enhances the thermoelectric properties and can
violate the Wiedemann-Franz law [13].

Selected aspects of the electronic Dicke effect have been
confronted also with superconductivity, considering the An-
dreev [14–17] and Josephson-type [18,19] spectroscopies. To
the best of our knowledge, however, a thorough description
of the relationship between the induced electron pairing,
the Dicke effect, and the strong correlations is missing.
We address this problem here, focusing on the low-energy
|ω| < � (subgap) regime of the Andreev-type setup. Our
main purpose is to establish knowledge on how the electron
pairing and correlation effects are affected by the side-attached
quantum dots QD±1, ranging from the interferometric (weak
t±1 coupling) to the molecular (strong interdot coupling)
limits. Our studies reveal strong redistribution of the spectral
weights (although manifested differently for these extremes),
suppressing the low-energy (subradiant) states. Transfer of
this spectral weight has an influence on the subgap Kondo
effect, which can be observed experimentally by the zero-bias
Andreev conductance.
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The paper is organized as follows. In Sec. II we introduce
the microscopic model and describe the method accounting
for the induced electron pairing. Section III corresponds to the
case of uncorrelated quantum dots in the deep subgap regime,
studying evolution of the central quantum dot spectrum from
the weak to strong interdot coupling. Next, in Sec. IV, we
discuss the correlation effects in the subgap Kondo regime.
Finally, we summarize the results and present the conclusions.

II. MICROSCOPIC MODEL

The central quantum dot QD0, placed between the normal
(N) and superconducting (S) electrodes and side-attached to
the quantum dots QD±1 as shown in Fig. 1, can be modeled
by the Anderson-type Hamiltonian

Ĥ = ĤQD + ĤN + ĤS + ĤQD-N + ĤQD-S. (1)

The set of three quantum dots can be described by

ĤQD =
∑
σ,j

εj d̂
†
jσ d̂jσ +

∑
σ,j=±1

(tj d̂
†
0σ d̂jσ + H.c.)

+
∑

j

Uj n̂j↑n̂j↓, (2)

where d̂
(†)
jσ annihilates (creates) the electron of the j th quantum

dot with energy εj and spin σ =↑ , ↓. Hybridization between
the quantum dots is characterized by the hopping integral t±1.
We denote the number operator by n̂jσ = d̂

†
jσ d̂jσ and Uj stands

for the Coulomb potential which is responsible for correlation
effects.

We treat the normal (metallic) lead electrons as a free
fermion gas ĤN = ∑

k,σ ξkN ĉ
†
kNσ ĉkNσ and describe the su-

perconductor by the BCS model ĤS = ∑
k,σ ξkS ĉ

†
kSσ ĉkSσ −∑

k �(ĉ†kS↑ĉ
†
−kS↓ + H.c.) with the isotropic energy gap �.

Operators ĉ
(†)
kβσ refer to the mobile electrons of external

(β =N,S) electrodes whose energies ξkβ = εk − μβ are ex-
pressed with respect to the chemical potentials μβ . For
convenience we choose μS = 0 as a reference level. Tunneling
between the central dot and the external leads is described
by ĤQD-β = ∑

k,σ (Vkβ ĉ
†
kβσ d̂0σ + H.c.), where Vkβ denote the

matrix elements. Focusing on the subgap quasiparticle states
we apply the wide-band limit approximation, assuming the
energy independent couplings �β = 2π

∑
k |Vkβ |2δ(ω − εkβ).
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FIG. 1. Schematic view of three quantum dots (QDj ) arranged
vertically between the normal (N) and superconducting (S) electrodes.
The central quantum dot QD0 is coupled by �β to the external
reservoirs and by t±1 to the side-attached quantum dots QD±1.

A. Superconducting proximity effect

Measurable properties of our heterostructure predomi-
nantly depend on the effective spectrum of the central quantum
dot, which results from: (i) the proximity induced pairing, (ii)
electron correlations, and (iii) influence of the side-attached
quantum dots QD±1. The superconducting proximity effect
mixes the particle and hole degrees of freedom, therefore we
have to introduce the matrix Green’s function

Gj (t,t ′) =
(〈〈d̂j↑(t); d̂†

j↑(t ′)〉〉 〈〈d̂j↑(t); d̂j↓(t ′)〉〉
〈〈d̂†

j↓(t); d̂†
j↑(t ′)〉〉 〈〈d̂†

j↓(t); d̂j↓(t ′)〉〉

)
, (3)

where 〈〈Â(t); B̂(t ′)〉〉 = −i�(t−t ′)〈[Â(t),B̂(t ′)]〉 is the re-
tarded fermion propagator. In a stationary case (for a time-
independent Hamiltonian) the Green’s function (3) depends on
t−t ′ ≡ τ and its Fourier transform Gj (ω) ≡ ∫

dτe−iωτ Gj (τ )
obeys the Dyson equation

[Gj (ω)]−1 =
(

ω − εj 0
0 ω + εj

)
− �j (ω). (4)

The self-energy matrix �j (ω) describes influence of the
interdot couplings, the external leads, and the correlations.
In general, its analytic form is unknown.

B. Features of a weak interdot coupling

It is instructive to analyze first how the side-attached
quantum dots come along with the proximity induced electron
pairing, neglecting the correlations Uj = 0. The self-energy
of uncorrelated QD0 is given by

�U=0
0 (ω) =

(−i�N

2 − i�S

2 ρ̃(ω) − i�S

2 ρ̃(ω)�
ω

− i�S

2 ρ̃(ω)�
ω

−i�N

2 − i�S

2 ρ̃(ω)

)

+
∑
j=±1

⎛
⎝ t2

j

ω−εj
0

0
t2
j

ω+εj

⎞
⎠, (5)

where

ρ̃(ω) =
{

ω√
�2−ω2 for |ω| � �,

i |ω|√
ω2−�2 for |ω| > �.

(6)
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FIG. 2. Spectral function ρ(ω) (in units of 2
π�N

) of the central
dot obtained for ε0 = 0, �S/� = 0.5, �N/� = 0.01, U0 = 0, t/� =
0.15 and representative detunings δ/� = 1.5 (top), 0.75 (middle),
and 0.25 (bottom panel).

Let us inspect the spectral function of QD0,

ρ(ω) = − 1

π
Im{G0,11(ω + i0+)}, (7)

assuming the side-attached quantum dots to be weakly coupled
to the central dot. Following the previous studies of three
quantum dots on interface between two metallic electrodes
[9–11] we impose t−1 = t+1 ≡ t and define the energy de-
tuning ε+1 − ε0 = ε0 − ε−1 ≡ δ. Figure 2 shows ρ(ω) for the
asymmetric couplings �S > �N , when the quasiparticle states
of the subgap regime (marked by blue color in Fig. 2) are
sufficiently narrow (long-lived). For the large detuning δ > �

(top panel) we observe two Fano-type resonances appearing
outside the superconducting gap at ω = ±δ. For the moderate
detuning δ = 0.75� (middle panel) there appear some features
inside the superconducting gap, but they no longer resemble
Fano-type line shapes. For the very small detuning δ = 0.25�

(bottom panel), a rather complicated subgap structure emerges.
To clarify its physical origin, we explore in Sec. III the deep
subgap regime |ω| 
 �.

III. SUBGAP DICKE EFFECT VS PAIRING

In this part we study in more detail the extreme subgap
region |ω| 
 �, for which the self-energy (5) simplifies to

lim
|ω|
�

�U=0
0 (ω) =

⎛
⎝−i�N

2 + ∑
j

t2
j

ω−εj
−�S

2

−�S

2
−i�N

2 + ∑
j

t2
j

ω+εj

⎞
⎠,

(8)

with summation running over j = ±1. The presence of the
superconducting reservoir shows up in the self-energy (8)
through the static off-diagonal terms, which can be interpreted
as the induced on-dot pairing potential [20].

A. From interferometric to molecular regions

Figure 3 presents the spectral function ρ(ω) obtained for
�S = 2�N and several values of the interdot coupling, ranging
from the interferometric (small t) to the molecular (large
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FIG. 3. Electronic spectrum of QD0 obtained for �S = 2�N , δ =
�N , Uj = 0, ε0 = 0, and various interdot couplings t .

t) regimes. For the weak coupling t = 0.1�N we observe
the Fano-type line shapes at ε±1 appearing on top of the
Andreev quasiparticles that are centered at ±

√
ε2

0 + (�S/2)2 .
With increasing t the spectrum gradually evolves to the
“molecular” structure, characterized by the subradiant (narrow
central) quasiparticle and superradiant (broad side-peaks)
states. Similar tendency has been reported for the hetero-
junction with both normal leads [9–11]. In the present case,
however, we observe additional qualitative changes caused
by the proximity effect. Figure 4 shows the evolution of
the spectral function ρ(ω) with respect to �S . At some
critical coupling �S ≈ 0.6�N the sub- and superradiant states
effectively split due to the on-dot electron pairing. We denote
these splittings by �c for the central peak and by �s for the
side peaks, respectively. Their magnitudes are displayed in
Fig. 5.

We notice that particle-hole splitting of the central (sub-
radiant) peak differs from the corresponding effect in the
side (superradiant) peaks, see the upper panel of Fig. 6
which shows the spectral function of the middle quantum dot
QD0. The symmetric shape of the subradiant quasiparticle is
perfectly preserved, but with increasing �S its internal splitting

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

ρ(
ω

)

ω/ΓN

ΓS=0
ΓS=0.8ΓN

ΓS=1ΓN
ΓS=2ΓN
ΓS=4ΓN
ΓS=6ΓN

FIG. 4. Spectral function ρ(ω) of the uncorrelated QD0 obtained
in the molecular region t = �N for δ = �N , ε0 = 0, Uj = 0, and
various couplings �S , as indicated.
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FIG. 5. Splitting of the subradiant (�c) and superradiant (�s)
quasiparticle states caused by the superconducting proximity effect
for t = �N , δ = �N , ε0 = 0, Uj = 0.

is bounded from above (�c → δ). Such limitation comes
from the destructive quantum interference, which depletes
the electronic states around ε±1. On the other hand, the

FIG. 6. Electronic spectrum of the central QD0 in the molecular
t = 1�N (upper panel) and interferometric t = 0.15�N (bottom
panel) regions obtained for Uj = 0, ε0 = 0, δ = �N .
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FIG. 7. Spectral weight of the low energy electronic states for
ω ∈ [ε−1,ε+1] caused by the electron pairing for the interferometric
(dashed line) and molecular (solid line) regions.

superradiant quasiparticle peaks are not much affected by any
constraints, therefore �s monotonously grows with increasing
�S . We observe, however, that such superradiant states acquire
an asymmetric shape with the narrow structure slightly outside
|ε±1| and another broader peak in the high energy regime. In
the extremely strong �S coupling limit, the high energy peaks
absorb the majority of the spectral weight.

On the other hand, in the interferometric regime (see
bottom panel in Fig. 6) we observe the Andreev quasiparticle
states (centered around ±�S/2 and their broadening equals
�N ) with the Fano-type line shapes appearing at ω = ε±1.
Total spectral weight contained in the regime ω ∈ [ε−1,ε+1] is
gradually washed out with increasing �S . Such transfer of the
spectral weight for the molecular and interferometric cases is
displayed in Fig. 7. In both cases the induced electron pairing
depletes the low-energy quasiparticle states by transferring
their spectral weight towards the higher energy quasiparticle
states. Section IV shows that this process constructively affects
the Kondo effect.

B. Subgap tunneling conductance

Any experimental verification of the subgap energy spec-
trum can be performed by measuring the tunneling current,
induced under nonequilibrium conditions μN − μS = eV

(where V is an applied voltage). At low voltage the subgap
current is provided solely by the anomalous Andreev channel,
when electrons are scattered back to N electrode as holes,
injecting the Copper pairs to a superconducting electrode.
Within the Landauer approach such current can be expressed
by

I (V ) = 2e

h

∫
dω TA(ω)[fFD(ω − eV ) − fFD(ω + eV )],

where fFD(ω) = [1 + exp(ω/kBT )]−1 is the Fermi-Dirac
distribution function. The Andreev transmittance TA(ω) =
�2

N |G0,12(ω)|2 is a quantitative measure of the proximity
induced pairing which indirectly probes the subgap electronic
spectrum, although in a symmetrized manner, because the
particle and hole degrees of freedom equally contribute to
such transport channel.

Figure 8 shows the differential Andreev conductance
G(V ) = dI (V )/dV obtained for the uncorrelated quantum
dots. We can notice that the subgap transport properties are
sensitive to both the quantum interference (for small t) or

FIG. 8. The differential Andreev conductance G(V ) (in units of
2e2/h) obtained for the same model parameters as in Fig. 6.

the Dicke-like effect (for the strong interdot coupling). The
optimal conductance 4e2/h occurs at such voltages V , which
coincide with the subgap quasiparticle energies. The Andreev
spectroscopy would thus be able to verify the aforementioned
relationship of the interferometric and/or Dicke effect with the
proximity induced electron pairing.

IV. INTERPLAY WITH KONDO EFFECT

Repulsive interactions Uj between opposite spin electrons
can induce further important effects. It is convenient to de-
scribe their influence, expressing the matrix Green’s function
Gj (ω) via [20,21]

Gj (ω) = G0
j (ω) + G0

j (ω) Uj Fj (ω), (9)

where G0
j (ω) refers to the case Uj = 0, and the two-body

Green’s function Fj (ω) is defined as

Fj (ω) =
( 〈〈d̂j↑n̂j↓; d̂†

j↑〉〉 〈〈d̂j↑n̂j↓; d̂j↓〉〉
〈〈−d̂

†
j↓n̂j↑; d̂†

j↑〉〉 〈〈−d̂
†
j↓n̂j↑; d̂j↓〉〉

)
. (10)

In this paper we focus on the correlation effects driven by
the potential U0, because it has the predominant influence on
measurable transport properties of our system. As concerns
U±1, they could merely mimic the multilevel structure of
the side-coupled dots. In experimental realizations of the
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correlated quantum dots coupled to the superconducting
electrodes [22–25] the Coulomb potential Uj usually exceeds
the superconducting energy gap � (at least by one order of
magnitude). Under such circumstances the correlation effects
manifest themselves in the subgap regime |ω| < � in a
rather peculiar way, via (i) the singlet-doublet transition (or
crossover) and (ii) the subgap Kondo effect [25,26].

A. Perturbative approach

The singlet-doublet transition can be captured already
within the lowest order (Hartree-Fock-Bogoliubov) decou-
pling scheme

U0 F0(ω) ≈ U0

( 〈n̂0↓〉 〈d̂0↓d̂0↑〉
〈d̂†

0↑d̂
†
0↓〉 −〈n̂0↑〉

)
︸ ︷︷ ︸

�1st
0

G0(ω). (11)

As usual the first order correction (with respect to U0) to
the self-energy is static, therefore it can be incorporated
into the renormalized energy level ε̃0 ≡ ε0 + U0〈n̂0σ 〉 and the
effective pairing potential �̃S/2 ≡ �S/2 − U0〈d̂0↓d̂0↑〉. Such
Hartree-Fock-Bogoliubov corrections (11) imply a crossing of
the subgap Andreev states when the ground state changes from
the spinful to spinless configuration upon increasing the ratio
of �S/U0. This effect is known to reverse the tunneling current
in the Josephson junctions (so called, 0-π transition) and has
been extensively studied (see Ref. [27] for a comprehensive
discussion).

To describe the subgap Kondo effect it is, however,
necessary to go beyond the mean field approximation (11),
taking into account the higher order (dynamic) corrections

U0 F0(ω) = [
�1st

0 + �
dyn
0 (ω)

]
G0(ω). (12)

Formally, Eq. (12) can be recast into the Dyson form
G0(ω)−1 = G0

0(ω)−1 − [�1st
0 + �

dyn
0 (ω)]. Obviously the dy-

namic part �
dyn
0 (ω) can be estimated only approximately,

because the present problem is not solvable.
In the limit |ω| 
 � the diagonal and off-diagonal parts

of the Green’s function G0(ω) are interdependent through the
(exact) relation [20]

(ω̃ − ε0)G0,11(ω) = 1 − �S

2
G0,21(ω) + U0 F0,11(ω). (13)

Here ω̃ = ω − ∑
k

|VkN |2
ω−ξkN

, which in the wide-band limit
simplifies to ω̃ = ω + i�N/2. We determine the two-body
propagator F0,11(ω) = 〈〈d̂0↑n̂0↓; d̂†

0↑〉〉 using the decoupling
scheme within the equation of motion procedure [28]

F0,11(ω)  〈n̂0↓〉 − γ1(ω) G0,11(ω)

ω̃ − ε0 − U0 − γ3(ω)
, (14)

where the auxiliary functions γν(ω) are defined as

γν(ω) =
∑

k

[ |VkN |2
ω−ξkN

+ |VkN |2
ω−U0− 2ε0+ξkN

]

×
{
fFD(ξkN ) for ν = 1,

1 for ν = 3.
(15)
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FIG. 9. Evolution of the spectral function ρ(ω) obtained for the
strongly correlated QD0 in the Kondo region from the interferometric
(small t) to molecular (large t) limits. Calculations have been done
for μN = 0, ε0 = −2�N , δ = �N , �S = 4�N , and U0 = 100�N .

This method implies the diagonal self-energy �0,11(ω) =
�1st

0,11 + �
dyn
0,11(ω) in the familiar form [28]

1

ω − ε0 − �0,11(ω)
= 1 − 〈n̂0↓〉

ω̃ − ε0 + U0γ1(ω)
ω̃−ε0−U0−γ3(ω)

+ 〈n̂0↓〉
ω̃ − ε0 − U0 + U0[γ1(ω)−γ3(ω)]

ω̃−ε0−γ3(ω)

. (16)

The off-diagonal term �0,21(ω) can be obtained from Eqs. (13)
and (14). Such a procedure provides the qualitative insight into
the Kondo effect, spectroscopically manifested by the narrow
Abrikosov-Suhl peak at ω = μN .

We now investigate the effect of the interdot coupling on the
Andreev spectroscopy, considering the interferometric and the
molecular regions. Figure 9 shows the spectrum of QD0 in the
Kondo regime at temperature T = 10−6�N for ε0 = −2�N ,
δ = �N , �S = 4�N , assuming the large Coulomb potential
U0 = 100�N . Initially, for t = 0, the spectral function ρ(ω)
reveals: (i) the quasiparticle peak at ω ≈ ε0, (ii) its tiny
particle-hole companion at ω ≈ −ε0 (let us remark that
superconducting proximity effect substantially weakens upon
increasing |ε0|/�S), and (iii) the narrow Abrikosov-Suhl
peak at ω = μN (manifesting the Kondo effect). For the
weak interdot coupling t 
 �N , we notice the appearance
of the Fano-type (interferometric) features at ω = ε±1. For
the stronger coupling t , the spectrum of QD0 evolves to
its molecularlike structure, resembling the one discussed in
the preceding section. Upon increasing t , the subradiant
quasiparticle (centered around ε0) gradually narrows, whereas
the superradiant quasiparticles absorb more and more spectral
weights. Such transfer of the spectral weight indirectly
amplifies the Abrikosov-Suhl peak, existing on the upper
superradiant quasiparticle.

In the discussed case the Dicke effect constructively
amplifies the Abrikosov-Suhl peak, but in general the Kondo
effect can depend on the detuning δ. This is illustrated in
Fig. 10, where upon varying ε±1 − ε0 the Abrikosov-Suhl
peak is enhanced up to some critical detuning δcrit ∼ t , at
which destructive interference depletes all the electronic states
near μN .
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FIG. 10. Spectral function of the correlated central quantum dot
in the Kondo regime obtained for t = 2�N using ε0 = −2�N , �S =
4�N , U0 = 100�N .

In Fig. 11 we show the differential Andreev conductance
obtained for our setup at temperature T = 10−6�N as a
function of the voltage V and the interdot coupling t . In the
absence of the side-attached dots (t = 0) we notice two broad
maxima at |eV | ≈ ε0 (corresponding to energies of the subgap
quasiparticle states) and the zero-bias peak (due to the Kondo
effect). For finite and weak interdot coupling t 
 �N , the
quantum interference starts to play a role as manifested by the
asymmetric Fano-type resonances at ε±1. With further increase
of t we observe development of the sub- and superradiant
features, typical for the molecular regime. Transfer of the
spectral weight from the subradiant to superradiant states
amplifies the zero-bias conductance (bright region at V ∼ 0).

Figure 12 shows the evolution of the differential Andreev
conductance with respect to δ for the same set of parameters
as used in Fig. 10. Since the zero-bias conductance probes the
quasiparticle states at ω ∼ 0, it tells us (indirectly) about be-
havior of the subgap Kondo effect. The ongoing redistribution
of the spectral weight between the subradiant and superradiant
states enhances this zero-bias conductance until the critical
detuning δc ≈ t . Above this critical detuning, the Kondo effect

FIG. 11. The differential Andreev conductance G(V ) =
dI (V )/dV (in units 2e2/h) as a function of the interdot coupling t ,
ranging from the weak (interferometric) to molecular (Dicke) regions.
Calculations have been done for the same model parameters as in
Fig. 9.

FIG. 12. The differential Andreev conductance G(V ) versus δ

obtained for the same set of parameters used in Fig. 10.

is completely washed out, signaling qualitative change of the
QD0 ground state. For a better understanding of the low energy
physics, we perform nonperturbative calculations based on the
numerical renormalization group (NRG) technique.

B. NRG results

For a reliable analysis of a subtle interplay between
the correlations, the induced electron pairing, and the
sub/superradiant Dicke states we performed the numerical
renormalization group calculations [29]. Our major concern
was to investigate the low energy Kondo physics appearing
in the subgap regime due to the spin-exchange interactions
between the central quantum dot and the metallic lead [26].
In such a deep subgap regime (8) the quantum dot hybridized
with the superconducting reservoir can be described by the
effective Hamiltonian [20,30]

ĤQD + ĤS + ĤQD-S → ĤQD − �S

2
(d̂†

0↑d̂
†
0↓ + d̂0↓d̂0↑).

Under such conditions the initial Hamiltonian (1) simplifies
to the single-channel model, allowing for a vast reduction of
computation efforts. We performed NRG calculations, using
the Budapest Flexible DM-NRG code [31] for constructing the
density matrix of the system [32,33] and determining the ma-
trix Green’s function (3). During the calculations we exploited
the spin SU(2) symmetry and kept Nkept = 3000 multiplets.
We obtained the satisfactory solution within N = 50 iterative
steps, assuming a flat density of states of the normal lead with
a cutoff D = U0 and imposing the discretization parameter
� = 2. To improve the quality of the spectral data, our results
were averaged over Nz = 4 interleaved discretizations [34].
Next, we determined the real parts of G(ω) (needed for the
Andreev transmittance) from the Kramers-Krönig relations.

Figure 13 presents the spectral function obtained by NRG
for QD0 using �N = 0.4U0 and δ = TK = 0.044U0, where the
Kondo temperature TK is estimated with the Haldane formula
[35] in the case of t = �S = 0. For t = δ, some similarities
to the bottom panel of Fig. 6 can be observed. First of all, for
�S = 0, the spectral function ρ(ω) exhibits a peak at ω = 0
and two side peaks at frequencies ω ≈ ±δ. When δ = TK , the
side peaks are very close to the central one and are definitely

125419-6



INTERPLAY BETWEEN ELECTRON PAIRING AND DICKE . . . PHYSICAL REVIEW B 95, 125419 (2017)
Γ

S
/
U

0

ω/U0

0

0.5

1

1.5

2

-0.5 -0.25 −TK 0TK 0.25 0.5

0

0.2

0.4

0.6

0.8

1

ρ
(ω

)

Γ
S
/
U

0

ω/U0

0

0.5

1

1.5

2

-0.5 -0.25 −TK 0TK 0.25 0.5

0

0.2

0.4

0.6

0.8

1

ρ
(ω

)

t = TK

t = 0.15TK

FIG. 13. The spectral function of the half-filled QD0 obtained
by NRG for �N = 0.4U0, δ = TK = 0.044U0, T = 0, and t = δ (top
panel) or t = 0.15δ (bottom panel).

less sharp than for the noninteracting case presented in Fig. 6.
For �S � U0, the Abrikosov-Suhl peak smoothly evolves into
the Andreev quasiparticle states [26] and the spectral weight
is successively shifted towards the side peaks. For stronger
coupling �S , the Kondo effect is no longer present.

For t = 0.15TK , the situation is rather different (bottom
panel of Fig. 13) because instead of the Dicke effect we can
see only some interferometric signatures. For small �S , the
spectral function is characterized by the single Abrikosov-Suhl
peak. With increasing �S such a peak gradually broadens,
and finally for �S � U0 it splits because of a quantum phase
transition from the spinful (doublet) to the spinless (singlet)
configurations [20,26]. We presume that the interdot coupling
t = 0.15TK is too weak to have any significant influence
on the low-energy properties of our system (unlike the case
considered in the bottom panel of Fig. 6). Yet, the spectral
weight transfer towards the higher energies with increasing �S

is quite evident.
The observations shown in Fig. 13 have their consequences

for the measurable transport quantities. Results for the zero-
temperature Andreev transmittance TA(ω) obtained by the
NRG calculations are presented in Fig. 14. At zero temper-
ature, the Andreev transmittance has a simple relationship
with the differential conductance G(V ) = 2e2

h
[TA(ω = eV ) +

TA(ω = −eV )]. For small �S , the energetically favorable
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FIG. 14. The Andreev transmittance TA(ω) obtained by NRG for
the set of model parameters corresponding to Fig. 13.

ground state configuration of QD0 is |σ 〉, therefore it is hardly
affected by the superconducting proximity effect, hence the
Andreev transmittance [dependent on the off-diagonal terms
of the matrix Green’s function G0(ω)] is negligibly small. With
increasing �S the central quantum dot evolves to the BCS-type
configuration v|0〉 − u| ↑↓〉, therefore efficiency of the pairing
effects is significantly enhanced as can be seen by bright areas
in Fig. 14 for �S � U0. Such changeover of the QD0 ground
state is, however, detrimental to the Kondo effect because
the spinless BCS-type configuration cannot be screened. For
�N �= 0, this quantum phase transition is a crossover, therefore
the Abrikosov-Suhl peak (present at ω = 0 for �S < U0)
evolves in a fuzzy manner into the Andreev quasiparticles
(existing at finite energies). More detailed description of this
mechanism has been previously discussed (for the single
quantum dot heterostructure) by several authors [20,26].

Let us remark that for t = TK (top panel in Fig. 14) the
subgap transport properties can clearly distinguish between
the subradiant and superradiant contributions. Since the Kondo
effect is very much affected by the induced electron pairing,
its interplay with the Dicke effect becomes highly nontrivial.
Empirical observability of the subgap Kondo effect would
be, however, feasible only when approaching the singlet to
doublet crossover (i.e., when �S ∼ U0). This fact is unique
and it has no resemblance to the properties of triple quantum
dots embedded between the normal metallic leads.
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V. SUMMARY

We have studied nontrivial interplay between the proximity
induced electron pairing and the Dicke-like effect in a hetero-
junction, comprising three quantum dots vertically coupled be-
tween the normal and superconducting leads. This setup allows
for a smooth evolution from the weak interdot coupling regime,
characterized by the Fano-type interferometric features, to the
strong coupling (or molecular) region, revealing signatures
of the Dicke-like effect even in absence of correlations. In the
latter case the narrow (subradiant) and the broad (superradiant)
contributions can be formed either by (i) increasing the interdot
coupling t or (ii) reducing the detuning δ of their energies
[9–11]. We have examined the electronic structure of the
central quantum dot, finding transfer of its spectral weights
from the low- to the high-energy states caused by the induced
electron pairing.

In the weak interdot coupling (interferometric) regime, the
usual subagp quasiparticles (Andreev states) are superimposed
with the Fano-type resonant line shapes appearing at ω = ε±1.
In the molecular region (for large t), the sub- and superradiant
states undergo the splitting. Since the subradiant state is
restricted to the energy region ω ∈ (ε−1,ε+1), its splitting is
bounded from above. For this reason the strong electron pairing
is detrimental for it, transferring the spectral weight towards
the superradiant states. Influence of the electron pairing on the
subradiant state can indirectly amplify the subgap Kondo effect
(provided that μN < ε−1 or μN > ε+1) shown by enhancement
of the zero-bias Andreev conductance.

We also examined the rich interplay between the corre-
lations, electron pairing, and influence of the side-attached
quantum dots by the perturbative method and using the
NRG technique. In particular, we argue that the Kondo-Dicke
features would be empirically observable only near the singlet-
doublet quantum phase transition (crossover). Such subtle
effect is caused by crossing of the subgap Andreev quasiparti-
cles which is accompanied by qualitative changeover between
the different ground state configurations. The Dicke effect is
restricted exclusively to the spinful (doublet) regime, which
for the half-filled central quantum dot occurs when �S � U0.
Such complicated many-body effects can be experimentally
probed by the subgap Andreev spectroscopy.
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Networking Center is acknowledged.

APPENDIX: NORMAL HETEROSTRUCTURES

In this Appendix we illustrate how the molecular (i.e.,
three peak structure of QD0 spectrum) gradually emerges
from the interferometric (weak interdot coupling) scenario,
considering both the external electrodes to be metallic [9–11].
For simplicity we neglect the correlations and introduce
the effective coupling �N + �S → �N . The self-energy is
diagonal, therefore we can restrict our considerations only
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FIG. 15. Evolution of the spectral function ρ(ω) for varying
interdot coupling, from the interferometric (small t) to the molecular
(large t) regions.

to the “11” term

�
U0=0
0,11 (ω) = −i

�N

2
+ t2

ω − ε+1
+ t2

ω − ε−1
. (A1)

Figure 15 displays the spectral function ρ(ω) calculated for
several values of t . For small values of the interdot coupling,
the QD0 spectrum reveals the asymmetric Fano-type line
shapes [36] at ωε±1. Such structures arise when a dominant
(broad) transport channel interferes with a discrete (narrow)
state, and can be realized in many areas of physics [37].
In our case, the Fano resonances originate by combining a
ballistic transport through the central QD0 with additional
pathways to/from the adjacent QD±1. By increasing t , the
Fano resonances gradually smoothen, and all electronic states
nearby the QD±1 levels ε±1 are effectively depleted. In
consequence, this induces the three peak (molecular) structure
reported in the previous studies [11]. Further increase of the
interdot coupling causes a transfer of the spectral weight
from the central (subradiant) to the satellite (superradiant)
quasiparticle states.

-4
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FIG. 16. Evolution of the spectral function ρ(ω) with respect to
the detuning energy δ obtained for the uncorrelated case (Uj = 0) in
the normal heterostructure (� = 0).
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Appearance of the narrow (subradiant) and the broad
(superradiant) quasiparticle states can be also induced for a

fixed interdot coupling t , by reducing the detuning energy δ.
This behavior is shown in Fig. 16.
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[25] R. Žitko, J. S. Lim, R. López, and R. Aguado, Shiba states
and zero-bias anomalies in the hybrid normal-superconductor
Anderson model, Phys. Rev. B 91, 045441 (2015).
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