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Local and nonlocal thermopower in three-terminal nanostructures
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The thermoelectric effects in three-terminal structures with a quantum dot are considered. We propose the
experimentally consistent protocol for determination of the transport coefficients in terms of the local and nonlocal
conductances and thermopowers that can be measured in two steps, applying the “four-probe technique”. This
proposal is compared with other approaches discussed in the literature. As an example, we study in detail the
thermopower induced by the superconducting electrode in a subgap regime which might be useful for analysis
of novel hybrid devices.
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I. INTRODUCTION

A thorough description of the electronic transport in
nanoscopic systems driven from their thermal equilibrium
is important for designing such innovative thermodevices as
on-chip thermometers [1,2], heat to electricity converters [3],
submicrometer refrigerators [4], etc. To date, thermoelectric
properties have been examined mainly in two-terminal con-
figurations [5–11], where the Seebeck coefficient is defined in
a unique way. It probes a voltage needed to counterbalance
a current induced by temperature difference developed across
the system.

In the linear approximation, the current flowing between the
left (L) and right (R) terminals is given by JLR = G�VLR +
GS�TLR , where G is an ohmic conductance, �VLR is the
voltage bias, and �TLR is the temperature difference. Under
the open circuit condition (JLR = 0), the thermopower

S = − �VLR

�TLR

∣∣∣∣
JLR=0

(1)

measures a ratio between the voltage �VLR induced by
temperature difference �TLR . For the two-terminal junctions
and bulk systems [12], this definition can be easily extended,
even beyond the linear response regime [13–15]. Seebeck co-
efficient (1) yields information complementary to the electric
conductance G [16]. In the simplest case, G is sensitive to
the electron states at the Fermi energy (EF ), whereas the
thermopower S depends on a slope of the density of states
near EF , thus probing the particle-hole asymmetry [7].

From an application point of view, the systems with good
thermoelectric efficiency would be useful for waste energy
harvesting [17–19]. As both the efficiency and the power
output monotonically depend [3] on the thermoelectric figure
of merit ZT , it is important to find bulk materials [20,21]
or heterostructures [22–25] where the large Seebeck effect
guarantees high values of ZT ∝ S2.

In this regard, multiterminal nanostructures with an en-
hanced thermoelectric efficiency [26–29], especially under the
broken time-reversal symmetry [30–33], are very promising.
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In these structures the nonequilibrium conditions are often
accompanied by the important nonlocal effects requiring
proper definitions of transport coefficients.

Generalization of the Ohm’s law to multiterminal systems
has been pioneered by Büttiker [34] and has resulted in an
important distinction between local and nonlocal conductances
and resistances. He has considered a ballistic transport between
arbitrary leads via the system coherently coupled to additional
voltage probes. Nonlocal transport coefficients relate the
currents between the selected terminals to voltage bias (or tem-
perature difference) existing between the different electrodes.
In particular, such nonlocal thermoelectric effects would be of
interest for the energy harvesting devices [19,28,35].

The definition (1) of the two-terminal thermopower, based
on the condition JLR = 0, is not directly applicable to the
multiterminal system due to other currents flowing in adjacent
branches. Various three-terminal generalizations of (1) have
been considered in the literature [27,36–38]. Although they
all rely on the experimental feasibility, the chosen conditions
depend on the context.

The aim of our study is threefold. First, we provide
the experimentally consistent definitions of the local and
nonlocal Seebeck coefficients valid for the three-terminal
normal and hybrid devices by generalizing the Büttiker [34]
approach to conductances. As a nontrivial application of our
approach, we analyze the thermopowers in the hybrid device
sketched in Fig. 1. Second, we study in detail the influence
of the superconducting electrode on the subgap thermoelectric
properties of the three-terminal devices. The superconducting
electrode is responsible for strong nonlocal effects, previously
observed in planar systems [39–42] and studied theoretically
by various groups [36,43–45]. It may also cause the negative
conductance resulting from a competition between the crossed
Andreev reflections and the direct electron tunneling involving
normal electrodes [46]. This aspect is of utmost importance
for the efficient splitting of Cooper pairs [47–49], spin filtering
[50], or generation of the spin currents [51]. Finally, we
confront our definition with other approaches discussed in
the literature [27,36–38].

The rest of the paper is organized as follows. In
Sec. II, we describe the formalism for determination of the
charge currents and the corresponding transport coefficients:
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FIG. 1. Schematic view of the nanostructure, consisting of the
quantum dot (QD) contacted to the left (L) and right (R) normal
electrodes, characterized by temperatures TL and TR and chemical
potentials μL and μR . The third S electrode, with temperature TS and
the chemical potential μS , can be either normal or superconducting.
In the latter case, S is a source of the induced on-dot pairing.

resistances/conductances and thermopowers. Based on such
formalism, we next generalize the thermopower given by
Eq. (1) for the three-terminal junctions, consistent with
the experimentally measurable resistances. In Sec. III, we
study the local and nonlocal thermopowers of the hybrid
three-terminal system with the quantum dot in the presence
of the superconducting lead. In Sec. IV, we discuss other
definitions of the thermopower known in the literature for
multiterminal systems. A summary and conclusions are given
in Sec. V and the appendices provide technical details helpful
for understanding the paper. In particular, the theoretical model
describing the system of Fig. 1 is presented in Appendix A.

II. THERMOELECTRIC EFFECTS IN THREE-TERMINAL
STRUCTURES: GENERAL CONSIDERATIONS

Let us consider a quantum dot (QD) coupled to three leads,
i = {L,R,S}. Such nanostructure is the simplest realization
of the multiterminal device with QD. We assume that the
system is not far from equilibrium, i.e., with small temperature
and chemical potential deviations (δTi and δμi) with respect
to reference values {μ,T }. As we are interested here in
the conductances and thermopowers, we shall consider only
the charge currents Ji flowing in the aforementioned three
terminals. They can be calculated using the Landauer-Büttiker
formalism [52]. In the linear response regime, Ji can be
expressed by the following general formula [53]:

Ji =
∑
j �=i

Lij,μ�μij +
∑
j �=i

Lij,T �Tij , (2)

where eVij ≡ �μij = δμi − δμj , �Tij = δTi − δTj . In the
absence of any magnetic field (B = 0) and assuming the
time-reversal symmetry, the linear kinetic coefficients satisfy
Lij,μ = Lji,μ and Lij,T = Lji,T .

Any of the electrodes may be treated as the voltage
probe P, i.e., the ideal voltmeter characterized by JP = 0.
Equation (2) establishes the relation between voltages, cur-
rents, and thermal biases. It is used to relate the kinetic coef-
ficients to the resistances and Seebeck coefficients measured
for the considered device.

A. Protocol for measurements

Here we shall discuss two basic measurements needed
to get experimental information on both kinetic coefficients:
Lij,μ and Lij,T . To this end, we assume that the system is
coupled to some phonon bath [26] and has a well-established
and constant temperature. Using Eq. (2) under the isothermal
conditions, combined with the charge conservation

∑
i Ji = 0,

one expresses first all potentials (�μij ) and later temperature
differences (�Tij ) in terms of the currents. As an example, we
consider the system with a quantum dot and three electrodes
shown in Fig. 1.

First step. Under isothermal conditions Ti = T , one ex-
perimentally characterizes the charge transport, measuring the
voltage Vij induced between terminals {i,j} in response to
the current Jlk applied between other terminals {l,k} [34]. In
this way, one can define nine resistances Rlk,ij ≡ Vij /Jlk in
a three-terminal system, but only three of them are really
independent. The resistances obey the symmetry relations
Rlk,ij = −Rkl,ij = −Rlk,ji = Rkl,ji and the reciprocity the-
orem, which states that resistance measured in a four-probe
setup is invariant on the exchange of the voltage and current
sources, i.e., Rlk,ij = Rij,lk [34] (see Ref. [54] and Appendix B
for details).

Second step. Having measured the resistances, we relax the
isothermal conditions and assume that (at least) two electrodes
have different temperatures. Treating S electrode as the voltage
probe (JS = 0), the charge conservation implies JL = −JR ≡
JLR . The bias between m and n electrodes is calculated from
(2) and reads

�μmn = eRmn,LRJLR + smn,LR�TLR

+ smn,RS�TRS + smn,SL�TSL, (3)

where smn,ij ≡ −eRmn,ijLij,T . Let us stress that the resistances
Rmn,ij have been determined in the first step of the measure-
ment procedure. They are needed for determinations of the
local and nonlocal thermopowers. The equations analogous to
(3) can be derived for L or R being the floating electrodes.
In general, one has nine equations with three independent
parameters Lij,T , or, equivalently, with three different coef-
ficients smn,ij . Note that only two temperature gradients are
really independent because �TLR = �TLS − �TSR .

Taking into account relation (3), we see that the mea-
surement of the voltage �μmn induced by the temperature
difference �TLR gives the Seebeck coefficient. Let us recall
that the standard definition of the Seebeck coefficients,

Smn,ij = − �μmn

e�Tij

∣∣∣∣
{cond}

, (4)

requires appropriate experimental conditions {cond}. As al-
ready mentioned in Sec. I, the only condition in the two-
terminal system is the vanishing of the current. In multitermi-
nal devices, there exist a large number of various possibilities.
The only possible consistent set of conditions may be read off
from Eq. (3). One can assume that all temperature differences
and the current take on nonzero values, or only one of them,
e.g., �TLR , is nonvanishing. In the latter case, the current may
be required to vanish or can also be measured. Depending on
the assumed condition, one measures a slightly different value
of the the local and nonlocal Seebeck coefficients.
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The latter procedure for the measurement of the Seebeck
coefficients (4) is consistent with the four-probe method of
measuring the resistances in multiterminal systems [34,54].
This important consistency of our approach differs from
other generalizations for local and nonlocal thermopowers
considered in Refs. [27,36–38].

B. Determination of the thermal linear coefficients

The proposed scheme for measuring the resistances and
thermopowers allows for experimental determination of the
linear coefficients LLR,T , LLS,T , and LRS,T and consistent
comparison with theoretical models. For the considered setup,
at least three additional measurements are therefore required,
which in the following we propose to perform under open
circuit conditions (imposing Ji = 0 for all electrodes). Note
that this assumption makes our condition in (4) similar to that
of Mazza et al. [27].

There exist two possible setups in our system. In the
first case, one takes, e.g., the condition �TSL = 0, while
in the second, �TRS = 0. Then one measures the potential
differences: �μLR , �μRS , and �μSL and the Seebeck coeffi-
cients Smn,ij for the temperature differences �TRS = −�TLR

and �TSL = −�TLR , respectively. Solving the system of
equations (3) for smn,ij , one obtains

sLR,LR = eRLR,LR

DR

(RLR,RSSRS,LR − RRS,RSSLR,LR), (5)

sSL,SL = eRLR,SL

DR

(RLR,RSSRS,LR − RRS,RSSLR,LR)

+ eSSL,LR, (6)

sRS,RS = eRRS,RS

DR

(RLR,LRSRS,LR − RLR,RSSLR,LR), (7)

where RLR,LR = −RLR,RS − RLR,SL, RRS,RS = −RRS,LR −
RRS,SL (see Appendix B). The asymmetry between Eqs. (6)
and (7) comes from different conditions �TSL = 0 or �TRS =
0 for which �μLR , �μRS , or �μSL have to be measured.
Consequently, one can determine Lij,T from experimental
measurements of the Seebeck coefficients and resistances
using the relation

Lij,T = − smn,ij

eRmn,ij

. (8)

This algorithm can be adopted to any kind of electrode
(magnetic, superconducting, etc.) and any number of termi-
nals. For instance, the similar two-step protocol has been
successfully used for experimental verification of the ther-
moelectric reciprocity relations in a four-terminal mesoscopic
junction [55]. The reciprocity relation has also been explored
between the spin-dependent Seebeck and spin-dependent
Peltier coefficients in a nanopillar spin-valve configuration
[56].

In the next section, we illustrate how the two-step protocol
captures the local/nonlocal thermoelectric effects driven by the
anomalous Andreev scattering in the three-terminal structures
comprised of the superconducting reservoir interconnected
through the quantum dot to two metallic electrodes.

III. EXAMPLE: HYBRID STRUCTURES WITH
SUPERCONDUCTING LEAD

Let us consider the local and nonlocal thermopowers
of a three-terminal hybrid system with the quantum dot
placed between two metallic electrodes (L and R) and the
superconducting reservoir (S) as shown in Fig. 1. We apply
the formalism introduced in the preceding section, focusing
on the linear response regime when the (subgap) transport is
strongly affected by the Andreev scattering processes. The
important problem of the gauge invariance of the theory is
solved [46] by measuring chemical potentials of the normal
electrodes and on-dot energy level from the chemical potential
μS of the superconducting electrode. It will be set to zero,
unless specified otherwise. It has to be stressed that in this
section of special interest are various processes in the system
and their contributions to both sets of kinetic coefficients.

For voltages much smaller than the superconducting energy
gap �, the subgap current JL consists of the following three
contributions [57]:

JL = 2e

h

∫
dE T ET (E) [fL(E) − fR(E)]

+ 2e

h

∫
dE T DAR(E) [fL(E) − f̃L(E)]

+ 2e

h

∫
dE T CAR(E) [fL(E) − f̃R(E)] , (9)

where fα(E) = {exp[(E − μα)/kBTα] + 1}−1 and f̃α(E) =
1 − fα(−E) = {exp[(E + μα)/kBTα] + 1}−1 denote the
Fermi-Dirac distribution functions for electrons and holes,
respectively. The first part describes usual electron tunneling
(ET) between L and R electrodes with the transmittance
T ET (E) = �L�R|Gr

11(E)|2, whereas the second and the third
parts characterize direct (DAR) and crossed (CAR) Andreev
reflection processes with the corresponding transmittances
T DAR(E) = �2

L|Gr
12(E)|2 and T CAR(E) = �L�R|Gr

12(E)|2.
These functions T κ (E) depend on the couplings �i and on
the (diagonal or off-diagonal) elements of the QD Green’s
function Ĝr (E) in the Nambu representation (see Appendix A
and Ref. [57] for details). The current JR is expressed by the
formula analogous to (9) by exchanging the indices L ↔ R.

For small perturbations δμα ≡ μα − μS and δTα ≡ Tα −
TS , we can expand the current JL as

JL =LET
LR,μ(δμL − δμR) + LCAR

LR,μ(δμL + δμR)

+ 2LDAR
LL,μδμL + (

LET
LR,T + LCAR

LR,T

)
(δTL − δTR), (10)

with the coefficients Lκ
αβ,γ referring to the process κ =

{ET,DAR,CAR}; the subscripts correspond to α,β = {L,R}
and γ = {μ,T }, respectively. The linear coefficients Lκ

αβ,γ can
be obtained from (9) and they read

Lκ
αβ,μ = 2e

h

∫
dET κ (E)

[
− ∂f

∂E

]
, (11)

Lκ
αβ,T = 2e

hT

∫
dEET κ (E)

[
− ∂f

∂E

]
. (12)

The coefficient LET
LR,μ is related to the voltage induced by

processes transferring a single electron between the metallic L
and R leads. We call this process the electron transfer (ET). The
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next term LDAR
LL,μ corresponds to the direct Andreev reflection,

when an electron from the normal L lead is converted into the
Cooper pair (in the S electrode) and the hole is reflected back
to the same lead L. The coefficient LCAR

LR,μ corresponds to the
nonlocal crossed Andreev reflection, when a hole is reflected
to the second R lead. The other set of linear coefficients Lκ

ij,T

provides thermal contributions to the current by the process
κ = {ET,CAR}. Note that LDAR

LL,T is absent in (10) because
an incident electron and a reflected hole stem from the same
electrode.

A. Local and nonlocal thermopowers

Once the local and nonlocal resistances of the hybrid system
are determined under isothermal conditions (see Appendix C),
we can express the local and nonlocal thermopowers as

SLS ≡ − �μLS

e�TRL

∣∣∣∣
0

= RLS,RL

(
LET

LR,T + LCAR
LR,T

)
, (13)

SRS ≡ − �μRS

e�TRL

∣∣∣∣
0

= RRS,RL

(
LET

LR,T + LCAR
LR,T

)
, (14)

SRL ≡ − �μRL

e�TRL

∣∣∣∣
0

= RRL,RL

(
LET

LR,T + LCAR
LR,T

)
= SRS − SLS. (15)

The symbol (·)|0 indicates that we also treat the supercon-
ducting reservoir as the floating electrode, which implies
JRS = 0 = JLS [27] (Appendix D). To simplify the notation,
we also use the abbreviation Sij ≡ Sij,RL.

The local Seebeck coefficient SRL is a linear combination
of the nonlocal thermopowers SLS and SRS which obey the
relation SLS/SRS = RLS,RL/RRS,RL. It means that in our
system, only one Seebeck coefficient is independent. In the
wide band limit, i.e., assuming energy-independent couplings
�i , the CAR processes do not enter the thermopower except
via resistances. This manifests the electron-hole symmetry in
the system and formally causes the symmetry of the integrand
(12) with respect to E, leading to LCAR

LR,T = 0. For this reason,
we can focus on the thermopower SRL as the other (nonlocal)
thermopowers SRS and SLS can be obtained from SRL [see
Eqs. (13)–(15)] using relations

SRL = −�N

�R

SLS = �N

�L

SRS, (16)

where �N = �L + �R . After some algebra, we get

SRL = 1

e

LET
LR,T

LET
LR,μ + LCAR

LR,μ

= 1

eT

∫
dE E

∣∣Gr
11(E)

∣∣2( − ∂f

∂E

)
∫

dE
[∣∣Gr

11(E)
∣∣2 + ∣∣Gr

12(E)
∣∣2](− ∂f

∂E

) . (17)

In comparison to the two-electrode case, the result (17) differs
by the additional Andreev reflection term LCAR

LR,μ appearing in
the denominator.

Let us remark that quasiparticle transport activated above
the superconducting gap |μS − μL,R| � � can enhance the
thermal effects [2,18,58] because the gap-edge singularities
substantially amplify the electron tunneling (ET). The Andreev
(DAR and CAR) processes, however, are not contributing

much to such thermoelectricity because the proximity-induced
pairing quickly diminishes outside the superconducting energy
gap.

Measurements. We can obtain information about LET
LR,T +

LCAR
LR,T only from the two-step measurements. In the first

step, one should measure (under isothermal conditions) the
resistance RLS,RL, RRS,RL, or RRL,RL, and in the second
step (assuming open circuit conditions), the nonlocal ther-
mopowers SLS , SRS , or the local thermopower SRL [see
Eqs. (13)–(15)] has to be measured, respectively. The linear
coefficient LET

LR,T + LCAR
LR,T reads

LET
LR,T + LCAR

LR,T = SLS

RLS,RL

= SRS

RRS,RL

= SRL

RRL,RL

. (18)

In the next sections, we analyze the dependence of SRL on the
gate voltage ε0, considering the high- and low-temperature
regions at various couplings �S . We study separately the
noninteracting (U = 0) and the interacting (U �= 0) cases.

B. Noninteracting quantum dot

We first study the noninteracting quantum dot. In this limit,
it is even possible to obtain analytic results, but we prefer
to concentrate on the physics of the problem [59,60] in the
three-terminal configuration. Figure 2 shows the thermopower
SRL as a function of the gate voltage (via the QD level ε0)
at various temperatures for symmetric coupling �R/�L = 1
and �S = 0 (solid lines) or �S/�L = 4 (dashed lines). We
have assumed the large superconducting energy gap limit
(� → ∞), when the proximity effect yields the Andreev

bound states [57] formed at E = ±
√

ε2
0 + (�S/2)2. Their line

broadening �N = �L + �R depends on the couplings to L

FIG. 2. The Seebeck coefficient SRL in units kB/e as a function of
the QD level position ε0 for: kBT /�L = 0.1 (blue lines), kBT /�L =
0.5 (green lines), and kBT /�L = 1 (red lines). Results are obtained
for the uncorrelated QD (U = 0) symmetrically coupled to L and R
electrodes (�R/�L = 1) assuming �S = 0 (solid lines) and �S/�L =
4 (dashed lines). �L is taken as unity in calculations.
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and R electrodes. For small coupling �S � �N , these states
practically merge into a single broad feature centered at zero
energy, while for larger �S 	 �N , the separate peaks are
seen [57]. Such an electronic spectrum indirectly affects the
thermopower.

High-temperature limit. For temperatures kBT � �L and
the QD level ε0 close to the Fermi energy, the system is
in the sequential tunneling regime. For weak coupling �S ,
the Andreev reflection is suppressed and electrons can flow
between normal electrodes through the QD level. Since large
temperatures imply fL 
 fR , we obtain SRL ∝ ε0/T . For
|ε0| 	 (�i,kBT ), the sequential tunneling processes are expo-
nentially suppressed and, in the realistic (correlated) systems,
the cotunneling would become the main transport channel. In
this regime, the thermopower shows the characteristic metallic
dependence of the Seebeck coefficient, SRL ∝ T/ε0 [59]. With
increasing coupling �S , the anomalous Andreev reflection
processes affect the denominator of (17), slightly suppressing
SRL.

Low-temperature limit. At low temperatures kBT � �i

and assuming weak energy dependence of the transmittance
T κ (E), one can evaluate the coefficients Lκ

αβ,γ by means of
the Sommerfeld expansion. In the case of an uncorrelated QD,
the thermopower SRL simplifies to

SRL = 2

e

π2

3
k2
BT

ε0

ε2
0 + �2

N/4 + �2
S/4

. (19)

The thermopower (19) has a metalliclike character and its
magnitude decreases with increasing the coupling �S , as could
have been inferred from (17).

C. Correlation effects

Strong repulsion between the opposite-spin electrons can
induce the Coulomb blockade (CB) and, at sufficiently low
temperatures, may produce the Kondo effect [61]. The corre-
lations can thus indirectly affect the thermoelectric properties,
as has already been shown in the two-terminal [62,63] and
three-terminal [38] systems. Furthermore, in hybrid structures
with the superconducting leads, the Coulomb potential U

has a qualitative effect on the Andreev bound states [38]. In
consequence, the interactions may substantially suppress the
conductances of the three-terminal system (Fig. 1), except only
in the vicinity of the Andreev bound states [57].

Here we study the influence of the Coulomb interactions on
the thermopower SRL. For this purpose, we apply the Hubbard
I approximation, which qualitatively captures the Coulomb
blockade effect (see the Appendix A for technical details).
In the large � limit, the subgap spectrum consists of four
Andreev bound states, determined by poles of the Green’s
function Gr

11(E). For �L,�R → 0, they are located at energies
[57]

Eλ,λ′ = λ√
2

√
ε2

0 + ε2
U + �2

S/4 + λ′δ, (20)

where δ =
√

(ε2
0 + ε2

U + �2
S/4)2 − (�2

Sε
2
n + 4ε2

0ε
2
U )2, εU =

ε0 + U , εn = ε0 + (1 − n/2)U , λ,λ′ = ±1, and n is an av-
erage electron number of the QD.

FIG. 3. The gate voltage dependence of the following: (a),(b)
the total conductance GRL = e(LET

RL,μ + LCAR
RL,μ) (solid lines), LET

RL,μ

(dashed lines), and LCAR
RL,μ (dotted lines) (insets show the results

in a logarithmic scale); (c),(d) the linear coefficient LET
RL,T ; and

(e),(f) the Seebeck coefficient SRL (in units kB/e) of the correlated
QD with Coulomb potential U/�L = 8 for the symmetric coupling
�R/�L = 1 and several couplings to the superconducting electrode
�S/�L = {0,2,8} (green, blue, and red lines, respectively) in the high
kBT /�L = 0.5 (left column) or low kBT /�L = 0.1 (right column)
temperature.

The in-gap features (20) represent the quasiparticle ex-
citations between the singly occupied states |σ 〉 and two
coherent superpositions of the empty |0〉 and doubly occupied
configurations |↑↓〉. Their position, line broadening, and
spectral weights can be tuned by the gate voltage (via ε0)
and by the coupling �S [57]. The resulting spectrum can be
indirectly probed by measuring the subgap conductance where
nontrivial interplay between the normal electron transfer (ET)
and anomalous Andreev reflection (DAR and CAR) channels
occur [46]. Figure 3 shows the thermopower (17) defined as

SRL = LET
LR,T

GRL

, (21)

as well as its ingredients: total conductance GRL = e(LET
RL,μ +

LCAR
RL,μ) and thermal coefficient LET

RL,T as a function of the
gate voltage ε0. The results were obtained numerically for
the strong Coulomb interaction U/�L = 8 at both high
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(kBT /�L = 0.5) and low (kBT /�L = 0.1) temperatures for
symmetric coupling �R/�L = 1 and various coupling to the
superconducting electrode �S/�L = {0,2,8}.

Conductance. Both components of GRL are very sensitive
to the pairing correlations induced by the proximity effect.
Since (11) is a quantitative measure of the subgap spectrum,
the Andreev bound states (20) show up in the ET component
LET

RL,μ. The component LCAR
RL,μ also reveals maxima around the

same Andreev bound states (20), but with different amplitude
encoded in the off-diagonal terms of the Nambu Green’s
function [46].

When �S < �N , the ET processes dominate over CAR
scattering in the entire gate voltage regime [64]. However,
for �S > �N , the situation is different. Inside the Coulomb
blockade (CB) region, i.e., between the inner Andreev bound
states E−,− and E+,−, the ET domination is still visible
because the Coulomb repulsion suppresses the CAR more
efficiently than the electron transfer [46]. The extent of the
CB region is governed by the coupling �S and it shrinks
upon increasing the on-dot pairing [64]. On the other hand,
outside the CB region, the CAR processes dominate over
the ET processes in a vicinity of the inner Andreev bound
states. For larger |ε0|, transport is again dominated by the
ET processes (because the proximity-induced pairing is very
weak). Change of the dominant transport channel causes the
negative nonlocal conductance already observed in planar
systems [39–42], but not in tunnel structures as considered
here. This effect, resulting from a competition between the
crossed Andreev reflections and the direct electron tunneling
involving normal electrodes, can be detected by measuring the
nonlocal resistance RRS,LS ∝ LET

LR − LCAR
LR as a function of the

gate potential in the three-terminal hybrid device with QD [46].
The inset of Fig. 3(b) shows that at low temperature

kBT � �L, the total conductance GRL exponentially
diminishes near ε0 = −U/2. This effect is caused by
destructive interference between the electrons tunneled
through the inner Andreev bound states in some analogy to
the normal two-level system [65].

Thermal coefficient. Coefficient LET
RL,T , in general, behaves

similar to GRL, i.e., it diminishes with an increase of coupling
�S everywhere except in the vicinity of the electron-hole
symmetry point ε0 = −U/2. In this region, LET

RL,T rather
weakly depends on �S . At low temperatures, when the Som-
merfeld approximation can be applied, LET

RL,T ∝ ∂LET
RL,μ/∂E

and (for �S = 0) one recovers the popular Mott formula
for thermopower [65], i.e., S ∝ ∂ lnLμ/∂E. Additionally, the
inner peaks are more transparent then the outer ones due to
the asymmetry caused by the Coulomb blockade. This effect
is gradually suppressed at larger temperatures.

Thermopower. The Seebeck coefficient SRL in a low-
temperature kBT /�L = 0.1 regime is shown in Fig. 3(f).
When ε0 ≈ −U and ε0 ≈ 0, the shape of the SRL resembles
behavior obtained in the noninteracting case (Fig. 2). As
before, these SRL peaks (we call them “normal” peaks)
are a result of a competition between sequential tunneling
(when SRL ∼ ε0/T ) that dominates for ε0 which are close
to conductance peaks and cotunneling (SRL ∼ T/ε0) that
dominates in the remaining region. A corresponding sign
change of the SRL coincides with the changeover between
dominant transport carriers from the electrons to holes.

FIG. 4. The Seebeck coefficient SRL (in units of kB/e) map in the
(ε0,T ) space for U/�L = 8, �R/�L = 1, and �S/�L = 2.

The Coulomb interaction strongly affects the thermopower
in a valley between the conductance peaks. In particular, an
additional sharp structure appears close to the electron/hole
symmetry point ε0 = −U/2. This effect is related to the Fano
resonance [66,67] and is a signature of the destructive inter-
ference between the activated QD levels. It leads to reduction
of the total transmission to zero and, as a consequence, to
a reduction of GRL and LET

RL,T [65]. Since the reduction of
GRL ∝ (ε0 − U/2)2 is stronger than LRL,T ∝ (ε0 − U/2), the
SRL is enhanced.

For �S > �N , the CAR and the ET processes compete [57],
suppressing LET

RL,μ and LET
RL,T in the vicinity of conductance

peaks. This leads to a suppression of “normal” SRL peaks.
Since �S has weak influence on transport coefficients in the
vicinity of the electron-hole symmetry point, no change in
the sharp structure can be observed. This behavior should be
contrasted with the one observed for the three-terminal system
with the normal electrodes laterally connected through QD,
where the thermopower in the CB region is strongly suppressed
due to phase randomization induced by the third electrode [65].

The Seebeck coefficient SRL in a high-temperature regime
and its temperature evolution as a function of ε0 is shown in
Figs. 3(e) and 4, respectively. The nonmonotonic temperature
dependence of SRL in the Coulomb blockade region is a result
of an interplay between the cotunneling (which dominates
at low temperatures) and the sequential tunneling transport
(which dominates at high temperatures). With an increasing
temperature T , the shape of the SRL evolves. The peaks
observed at low temperature merge together and they become
hardly distinguishable at larger temperatures. Their combined
amplitude achieves maximum at kBT /�L ≈ 0.5, which is
almost twice as high as in the corresponding noninteracting
case (U = 0). The amplitude achieves large value up to
∼270 μV/K, comparable with thermopower in a transistorlike
structure with strong interface spin polarizations [25]. For
very large temperature, one observes a well-known (and
experimentally verified) sawtooth shape of the thermopower
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[6,68,69] predicted by a sequential tunneling, where SRL ∼
ε0/T . Similarly to the low-temperature case, the magnitude of
thermopower only slightly diminishes with an increasing �S

in the CB region.
Asymmetric coupling. So far we have presented results

for the symmetric couplings �R/�L = 1. Since any left-right
asymmetry �R �= �L does not break the electron-hole symme-
try, one would observe qualitatively the same characteristics,
with some quantitative changes only in the magnitude of SRL.
Asymmetry of the couplings has no effect on the position
of the sharp structure related to the Fano resonance either.
This should be contrasted with the properties reported for the
systems with the assisted hopping processes, where the average
charge and the phase shift are linked through the Friedel sum
rule [70].

Finally, let us remark that the similar sharp structure does
also appear in the system with a two-level QD attached to two
normal electrodes and one s-wave superconductor [71]. The
situation described in Ref. [71] (where one level is pinned at
the Fermi energy and only the other one varies with the gate
voltage) seems to be hardly realistic.

IV. OTHER DEFINITIONS OF THERMOPOWER

Various proposals have been discussed [27,36–38], gen-
eralizing the two-terminal thermopower (1) to multiterminal
structures. The temperature difference �Tj and the bias �Vi

may be measured (with respect to any reference values) either
at the same or different electrode(s); therefore, the local
(nonlocal) Seebeck coefficient Sij can be generally defined
as

Sij = − �Vi

�Tj

∣∣∣∣
{cond}

, (22)

where {cond} refers to the experimental constraints and is
another subject of arbitrariness.

In this section, we would like to compare various definitions
existing in the literature with our experimentally feasible
proposal.

“Mazza’s” definition. Mazza et al. [27] have recently dis-
cussed the question of how to define the nonlocal thermopower
and pointed out conditions under which the nonlocal effects
can be observed in the linear response transport through a
three-terminal system. Assuming a reservoir 3 as a reference
with μ3 = μ and T3 = T , and taking into account the charge
and the energy conservation, the authors have expressed the
particle JN

i and heat J
Q
i currents flowing from reservoir

i = {1,2} through the Onsager matrix of elements Lij ,⎛
⎜⎜⎜⎝

JN
1

J
Q
1

JN
2

J
Q
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X
μ

1

XT
1

X
μ

2

XT
2

⎞
⎟⎟⎟⎠, (23)

where X
μ

i = �μi/T , XT
i = �Ti/T 2 and �μi = μi − μ,

�Ti = Ti − T .
Then the Seebeck coefficients have been introduced by

imposing vanishing particle currents in all leads, JN
1 = JN

2 =
JN

3 = 0, together with �T2 = 0 and �T1 �= 0 or �T1 = 0 and

FIG. 5. Gate voltage dependence of the Seebeck coefficients
(in units kB/e) as defined in Eqs. (24)–(27). Notice the difference
between the local S11 = S22 (blue dashed line) and nonlocal S12 = S21

(red solid line) Seebeck coefficients. The results are obtained for
U = 0, �S/�L = 6, �R/�L = 1, and kBT /�L = 1.

�T2 �= 0. In the linear response regime, the authors [27] have
found the following thermopowers:

S11 = − �μ1

e�T1

∣∣∣∣
�T2=0

= 1

eT

L13L23 − L12L33

L13L13 − L11L33
, (24)

S12 = − �μ1

e�T2

∣∣∣∣
�T1=0

= 1

eT

L13L43 − L14L33

L13L13 − L11L33
, (25)

S21 = − �μ2

e�T1

∣∣∣∣
�T2=0

= 1

eT

L12L13 − L11L23

L13L13 − L11L33
, (26)

S22 = − �μ2

e�T2

∣∣∣∣
�T1=0

= 1

eT

L13L14 − L11L34

L13L13 − L11L33
. (27)

Figure 5 shows the gate voltage dependence of the Seebeck
coefficients (24)–(27) obtained within the scheme described
in [27]. The local and nonlocal coefficients obey the sym-
metry relation S11(22)(ε0) = −S12(21)(ε0) and, under optimal
conditions, they approach the large value of the order of
kB/e ≈ 86.17 μV/K.

Using definition (4) and assuming that �TRS = 0 or
�TLS = 0, one obtains the Seebeck coefficients corresponding
to (24)–(27),

SLS,LS = − �μLS

e�TLS

∣∣∣∣
�TRS=0

= − sLS,LR

e
− sLS,LS

e
, (28)

SLS,RS = − �μLS

e�TRS

∣∣∣∣
�TLS=0

= sLS,LR

e
− sLS,RS

e
, (29)

SRS,LS = − �μRS

e�TLS

∣∣∣∣
�TRS=0

= − sRS,LR

e
− sRS,LS

e
, (30)

SRS,RS = − �μRS

e�TRS

∣∣∣∣
�TLS=0

= sRS,LR

e
− sRS,RS

e
. (31)

Here we recall that smn,ij = −eRmn,ijLij,T .
“Machon’s” definition. Machon et al. [36] have studied

charge transport in a system which consists of one supercon-
ducting (S) and two ferromagnetic contacts. The authors have
proposed (in addition to the aforementioned Mazza definition)
two additional constraints to define and analyze nonlocal
Seebeck coefficients.
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In the first case, they assumed that the charge current
through contact 1 into superconductor vanishes (I q

1 = 0),
�T1 = T1 − TS = 0 and �V2 = V2 − VS = 0. In our notation,
these constraints read JL = 0, �TLS = 0, and �μRS = 0 so
the nonlocal Seebeck coefficient defined by (4) takes the form

SLS,LR = − �μLS

e�TLR

= 1

e

LLR,T

LLR,μ + LLS,μ

. (32)

In the second case, the authors required the vanishing sum
of charge currents I

q

1 + I
q

2 = 0 with �T1 = 0 and �V2 = 0.
The nonlocal thermopower calculated from (4) and equivalent
to the second proposition by Machon et al. [36] reads

SLS,LR = − �μLS

e�TLR

= −1

e

LRS,T

LLS,μ

. (33)

It is easy to check that in both cases, SLS,LR = SLR,LR =
−SLR,RS = −SLS,RS .

Sanchez’s and Serra’s definition. Considering the open
circuit conditions, treating TS as a reference temperature, and
describing TL and TR in terms of (commonly employed in
measurements) symmetric deviation from this temperature,
i.e., TL = TS + �TLR/2, TR = TS − �TLR/2, one recovers
from (4) the thermopower proposed by Sanchez and Serra
[37],

SLR,LR = − 1

GLR,LR

×
[
LLR,T + LLS,μLRS,T + LRS,μLLS,T

2(LLS,μ + LRS,μ)

]
. (34)

In the case LSL,μ → 0 and LRS,μ → 0 (when the su-
perconducting probe is detached), the usual two-terminal
thermopower S = −LLR,T /eLLR,μ is reproduced. The adi-
abatic situation, when temperature of the third electrode is
determined self-consistently by requiring vanishing of the heat
current, has been discussed in Refs. [37,72].

Still another constraint has been adopted in Ref. [38]. The
author has studied the three-terminal system with a quantum
dot coupled to the normal (N) metal, the superconductor
(S), and the ferromagnet (F). To calculate the (charge and
spin) thermopowers, it has been assumed that the temperature
bias was applied to the normal electrode only, �TN �= 0,
and the voltage VN was required to compensate the current
in that electrode, JN = 0. The charge Seebeck coefficient
has been defined in analogy to the two-terminal case as
S = −(VN/�TN )JN =0.

Such a plethora of possible experimental constraints shows
that the thermopower might completely differ from case to
case. Therefore, we have proposed the two-step protocol for the
multiterminal systems by generalizing the Büttiker formalism
of the local and nonlocal resistances [34] on the thermopowers.

V. SUMMARY AND CONCLUSIONS

We have investigated the thermoelectric effects in the
three-terminal devices and proposed a two-step protocol for
measuring the transport coefficients. We believe that this
algorithm (explained in Sec. II) and its application to a three-
terminal device with the superconducting electrode (Sec. III)

would be stimulating for experimentalists and theoreticians as
well.

This method extends the approach [34] of the local/nonlocal
resistances Rkl,mn to the thermopowers Smn,ij . Contrary to the
two-terminal situations, no unique definition of the Seebeck
coefficient can be formulated for multiterminal junctions. We
have identified a set of experimentally consistent constraints
and shown how the measured local and nonlocal resistances
and Seebeck coefficients are related to the linear kinetic coef-
ficients. Similarly to the two-terminal case, the thermopower
probes the energy dependence of the transmission function and
it vanishes in the particle-hole symmetric case.

We have also studied in detail the thermopower of a
three-terminal hybrid structure, comprised of the quantum
dot (QD) coupled to one superconducting and two metal-
lic electrodes. Usually the superconducting electrodes have
rather negligible influence on the thermopower due to the
particle-hole symmetry present in the subgap regime. Our
results show that indeed there is no direct contribution to
the thermopower originating from the Andreev reflections.
Formally this can be seen from Eq. (17), where the crossed
Andreev processes appear only in the denominator. This
means that the superconducting proximity effect has a direct
influence only on the resistances (or conductances), whereas
the thermopowers are affected indirectly.

The pronounced thermoelectric effects have been previ-
ously reported for the ferromagnet-superconductor junctions
due to the spin-splitting (Zeeman) field [73], where the
particle-hole symmetry was broken. In our setup (Fig. 1), the
nonlocal thermopower is comparable to the local one due to
the Andreev bound states that substantially affect the subgap
differential conductance [46]. Their indirect influence on the
thermopower might be promising for innovative applications,
e.g., in the energy harvesting, nanothermometers, cooling
nanodevices, etc.
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APPENDIX A: MICROSCOPIC MODEL FOR THE
THREE-TERMINAL STRUCTURE WITH QD

The system displayed in Fig. 1 can be described by the
Anderson-impurity Hamiltonian [57],

H = HQD +
∑

α

Hα + HT , (A1)

where α = {L,R,S}. HQD describes the quantum dot,

HQD = ε0

∑
σ

d†
σ dσ + Un↑n↓, (A2)

where ε0 is the single-particle energy level, d†
σ (dσ ) denotes

the creation (annihilation) operator of the dot electron with
spin σ , nσ ≡ d†

σ dσ , and U is the Coulomb interaction between
two opposite spin electrons. The second term in (A1) refers to
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electrons in the leads,

Hα =
∑
k,σ

εαkc
†
αkσ cαkσ , (A3)

where c
†
αkσ (cαkσ ) is the creation (annihilation) operator of

the electron with spin σ and momentum k in the electrode
α = {L,R,S}.

The above expression refers to all leads being normal
metallic. If one of the electrodes is superconducting, its
Hamiltonian has to be supplemented by the part describing the
condensate, so the full Hamiltonian of the superconducting
electrode is represented by the BCS bilinear Hamiltonian,

HS =
∑
k,σ

εSkc
†
Skσ cSkσ +

∑
k

(�c
†
S−k↑c

†
Sk↓ + �∗cSk↓cS−k↑),

(A4)

assuming the isotropic energy gap �. The coupling between
the QD and external leads (whether superconducting or
normal) is given by

HT =
∑
α,k,σ

(tαc
†
αkσ dσ + t∗αd†

σ cαkσ ), (A5)

where tα is the hopping integral between QD and the itinerant
electrons of the α lead. In the wideband limit, the electron
and hole transfers between the QD and the leads can be de-
scribed by the tunneling rate �α = 2π

∑
k |tα|2δ(E − εαk) =

2π |tα|2ρα , where ρα is the density of states in the α electrode
defined for the εαk spectrum.

The details of the calculations of the currents in the
system depend on whether all electrodes are normal or the
superconducting electrode is present. In the former case, one
uses scalar Green’s functions within the Keldysh approach to
the nonequilibrium transport. On the other hand, in a hybrid
system with one or more superconducting electrodes, one
needs the retarded Green’s function Ĝr (E) of the QD in the
Nambu spinor representation. In both cases, the current can
be expressed in terms of retarded and lesser elements of the
Keldysh Green’s function.

In the following, we concentrate on the latter case, which
is more involved. There are two important interactions which
contribute to the self-energy entering the Green’s functions of
the dot: the Coulomb on-dot interactions and the coupling to
the leads. They can be included via the Dyson equation,

Ĝr (E) = ĝr (E) + ĝr (E)�̂r (E)Ĝr (E), (A6)

where ĝr (E) corresponds to the isolated and noninteracting
QD,

ĝr (E) =
(

1
E−ε0+i0+ 0

0 1
E+ε0+i0+

)
, (A7)

and �̂r (E) is the appropriate self-energy. We can express the
matrix Green’s function by

Gr
11 = 1/gr

22 − �r
22(

1/gr
11 − �r

11

)(
1/gr

22 − �r
22

) − �r
12�

r
21

, (A8)

Gr
12 = − �r

12

1/gr
22 − �r

22

Gr
11. (A9)

The self-energy matrix consists of two contributions,

�̂r = �̂r
T + �̂r

U , (A10)

where �̂r
T accounts for the coupling between the QD and the

leads, and �̂r
U stands for the self-energy due to correlations.

In the “superconducting atomic limit” (i.e., deep inside the
superconducting energy gap), the first contribution reads [74]

�̂r
T =

(
−i �L+�R

2 −�S

2

−�S

2 −i �L+�R

2

)
. (A11)

As concerns the second contribution �̂r
U , we shall calculate

it in the Hubbard I approximation, which should be qualita-
tively reliable outside the Kondo regime. Such approximation
amounts to replacing the matrix elements of the noninteracting
Green’s function (A7) by

gr
11(E) = 1 − 〈n↓〉

E − ε0 + i0+ + 〈n↓〉
E − ε0 − U + i0+ , (A12)

gr
22(E) = 1 − 〈n↑〉

E + ε0 + i0+ + 〈n↑〉
E + ε0 + U + i0+ . (A13)

It is important to notice that the charge densities 〈n↑〉 = 〈n↓〉 =
n/2 have to be calculated self-consistently from

n = 2
∫

dE

2π

[∣∣Gr
11

∣∣2
(�LfL + �RfR)

+ ∣∣Gr
12

∣∣2
(�Lf̃L + �Rf̃R)

]
. (A14)

The atomiclike approximation given by (A12) and (A13)
resembles the mean-field treatment by Varma and Yafet [75].
In our case, however, we are dealing with the Nambu matrix
propagators, where the off-diagonal contributions to the self-
energy are responsible for the induced electron pairing by the
superconducting reservoir.

APPENDIX B: PARTIAL CONDUCTANCES IN
THREE-TERMINAL NORMAL STRUCTURE

As a starting point of our two-step protocol, we briefly
analyze the partial conductances for a three-terminal normal
structure, within the Büttiker approach [34].

Let us consider the normal electrode (S) as a probe,
assuming JS = 0. The charge conservation rule implies that
JL = −JR ≡ JLR . From (2), one can find that for the isother-
mal situation (Ti = T ), the potential biases �μij between the
ith and j th electrodes are

�μLS = LRS,μ

DL

JLR, �μRS = −LLS,μ

DL

JLR,

(B1)

�μLR = LRS,μ + LLS,μ

DL

JLR = �μLS − �μRS,

where DL = LLR,μLRS,μ + LLR,μLLS,μ + LRS,μLLS,μ. The
local and nonlocal resistances are defined as

RLR,ij ≡ �μij

eJLR

. (B2)

In particular, RLR,LR is the local resistance which can be
affected by the probe. The nonlocal resistances RLR,RS =
−RLR,SR , RLR,SL = −RLR,LS refer to the voltage between
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the {R,S} or {S,L} terminals and the current flowing between
the {L,R} electrodes. Since the energy of the system is
conserved, �μLR + �μRS + �μSL = 0, the local resistance
RLR,LR is a linear combination of the two nonlocal resistances
RLR,SL and RLR,RS , RLR,LR = −RLR,SL − RLR,RS . The local
and nonlocal conductances are equivalent to the circuit
conductances consisting of resistors 1/(eLij,μ) in a triangular
geometry. In this way, the local conductance is a sum of the
direct transmission between two (L and R) terminals combined
with an indirect one via the additional voltage probe S:

GLR,LR ≡ 1

RLR,LR

= eLLR,μ + e
1

LRS,μ
+ 1

LLS,μ

. (B3)

Note that transmission in this additional channel is a sum of
transmissions through two barriers coupled in a series. In a
similar way, we can express the nonlocal conductances:

GLR,RS ≡ 1

RLR,RS

= −e

(
LLR,μ + LRS,μ + LLR,μLRS,μ

LLS,μ

)
, (B4)

GLR,LS ≡ 1

RLR,LS

= e

(
LLR,μ + LLS,μ + LLR,μLLS,μ

LRS,μ

)
. (B5)

For experimental evaluation of the linear coefficients
LLR,μ,LRS,μ,LLS,μ, one has to measure three independent
nonlocal resistances, e.g., RLR,RS,RLR,LS,RRS,LS . Besides the
two independent Eqs. (B1), one needs to incorporate the third
one, e.g., treating the L electrode as a probe. After some
algebra, one obtains

LLS,μ = −RLR,RS

eDR

,

LRS,μ = RLR,LS

eDR

, (B6)

LLR,μ = RRS,LS

eDR

,

with the denominator DR = RLR,LSRRS,LS −
RLR,RSRLR,LS − RLR,RSRRS,LS . In summary, note that
from (B6), one can determine the linear coefficients Lij,μ by
measuring three resistances.

APPENDIX C: LOCAL AND NONLOCAL RESISTANCES
IN HYBRID THREE-TERMINAL STRUCTURE WITH QD

Consider first the scenario with the metallic electrode (say
L) acting as a voltage probe under isothermal conditions
TL = TR = TS . This means that JL = 0. In the linear response
regime, assuming JR = −JS ≡ JRS , the local and nonlocal
resistances are defined as

RRS,RL ≡ �μRL

eJRS

= LDAR
LL + LCAR

LR

eD
= RRL,RS, (C1)

RRS,LS ≡ �μLS

eJRS

= LET
LR − LCAR

LR

2eD
= RLS,RS, (C2)

RRS,RS ≡ �μRS

eJRS

= LET
LR + 2LDAR

LL + LCAR
LR

2eD
(C3)

= RRS,RL + RRS,LS = RRL,RS + RLS,RS.

Assuming the superconducting electrode to be floating (i.e.,
JS = 0) and denoting JR = −JL ≡ JRL, we get

RRL,LS ≡ �μLS

eJRL

= −LDAR
RR + LCAR

LR

eD
= RLS,RL, (C4)

RRL,RS ≡ �μRS

eJRL

= LDAR
LL + LCAR

LR

eD
= RRS,RL, (C5)

RRL,RL ≡ �μRL

eJRL

= LDAR
LL + 2LCAR

LR + LDAR
RR

eD

= RRL,RS − RRL,LS = RRS,RL − RLS,RL, (C6)

with the same denominator,

D =LET
LR

(
LDAR

LL + 2LCAR
LR + LDAR

RR

)
+ LCAR

LR

(
LDAR

LL + LDAR
RR

) + 2LDAR
LL LDAR

RR , (C7)

for both cases.

APPENDIX D: HYBRID SYSTEM WITH A FLOATING
ELECTRODE UNDER NONISOTHERMAL CONDITIONS

For the floating normal L electrode, we obtain, from (10),

JRS = �μLS

eRRS,LS

+ RLS,RL

RRS,LS

(
LET

LR,T + LCAR
LR,T

)
�TRL, (D1)

JRS = �μRS

eRRS,RS

+ RRS,RL

RRS,RS

(
LET

LR,T + LCAR
LR,T

)
�TRL, (D2)

JRS = �μRL

eRRS,RL

+ RRL,RL

RRS,RL

(
LET

LR,T + LCAR
LR,T

)
�TRL. (D3)

In these expressions, the local and nonlocal resistances Rlk,ij

have been determined by four-probe measurements under
isothermal conditions (i.e., TL = TR = TS). Similar equations
can be derived for the floating S electrode,

JRL = �μLS

eRRL,LS

+ (
LET

LR,T + LCAR
LR,T

)
�TRL, (D4)

JRL = �μRS

eRRL,RS

+ (
LET

LR,T + LCAR
LR,T

)
�TRL, (D5)

JRL = �μRL

eRRL,RL

+ (
LET

LR,T + LCAR
LR,T

)
�TRL. (D6)

Definitions of the resistances in both of these cases are explic-
itly given in Appendix C and the procedure for determination
of the coefficients LET (CAR)

LR , LDAR
LL(RR) has been described by

us in Ref. [46]. In both cases, the three different voltages may
be measured and this hints at a possibility to define the three
different thermopowers, as discussed in the main text.
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[41] J. Brauer, F. Hübler, M. Smetanin, D. Beckman, and H. v.
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