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Interplay between direct and crossed Andreev reflections in hybrid nanostructures
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The interplay between various many-body effects in a quantum dot attached to two normal and one
superconducting lead is considered in the limit of a large superconducting gap. By the proximity effect the
superconducting lead induces pairing correlations on the quantum dot. In the subgap region one observes the
anomalous tunneling via direct and crossed Andreev scattering, whereas the usual single particle electronic
transfer is suppressed. The interactions of electrons on the dot leading to such phenomena as the Coulomb
blockade and the Kondo effect severely modify the currents flowing in the system. In particular: (i) They prevent
the existence of the negative differential conductance observed for a noninteracting quantum dot over the whole
range of voltages, (ii) affect the distribution of the currents as a function of the applied voltage, and (iii) lead
to the appearance of an additional low bias feature due to the formation of the Abrikosov-Suhl resonance. The
nonlocal correlations in the Coulomb blockade regime are most pronounced for the particle-hole symmetric dot
and thus can be easily tuned by means of gate voltage. They are observed even in the Kondo regime and dominate
the behavior close to the Abrikosov-Suhl resonance showing convincingly that Kondo correlations do not destroy
subtle entanglement between electrons.
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I. INTRODUCTION

The hybrid multiterminal systems with a quantum dot and
normal, superconducting, and/or ferromagnetic electrodes are
a source of rich physics1 with potentially interesting appli-
cations in spintronics2 or quantum information processing.3

They allow the study of Andreev transport in the presence
of Coulomb correlations.4 One of the motivations is the
possibility of producing entangled electrons resulting from
splitting of Cooper pairs. This can be observed via nonlocal
conductances due to the Andreev reflections.

In Ref. 5 it has been proposed to realize the goal using
three-terminal hybrid devices with quantum dots. On the other
hand, Ref. 6 considered the quantum point contacts between
the superconducting electrode and two Luttinger wires. The
signatures of current correlations indicating the entanglement
have been experimentally seen in devices with direct contact
between two normal and one superconducting lead7–9 or
with those where leads were contacted via two or three
quantum dots.10,11 The multiterminal hybrid structures10–15

are the subject of recent studies, both theoretical16–36 and
experimental.37–45 The detailed understanding of these systems
is very important as “the effective use of the devices relies on
the precise knowledge of the effects of interactions on the
currents in the system”.46

In structures with quantum dot(s) and at least one su-
perconducting lead one encounters various energy scales
like temperature T , bias voltage V , superconducting gap
�, effective couplings � between the quantum dot(s) and
electrodes, and charging energy U . Depending on their relation
there exist various transport regimes. Of particular interest is
the transport between the superconductor and the rest of the
system. At bias voltages exceeding the superconducting gap or
at high temperatures the single particle transport dominates,
while for V � � the Andreev scattering47 is the dominant
transport mechanism.

The detailed analysis of the effect of Coulomb interactions
on the dot on the Andreev transport in a three-terminal device
with a single quantum dot is our primary goal here. We start
with an exactly solvable case of a noninteracting dot and go
through the Coulomb blockade regime of transport ending up
with a Kondo correlated state. In this paper a three-terminal
device (see Fig. 1) with a superconducting electrode and two
normal metallic electrodes connected via a quantum dot is
considered. We assume that the superconducting gap is the
largest energy scale. The Coulomb blockade is analyzed by
means of a Hubbard I approximation and we go beyond this
approximation using an equation of motion method48 and
iterative perturbation theory49 (also known as the modified
second order perturbation theory50).

The superconducting correlations are induced in the quan-
tum dot by the proximity effect to the superconducting lead.
The Cooper pair injected from the superconducting lead to the
dot either goes to one of the normal leads or splits and one
of the electrons enters the left (L) lead and other the right (R)
one, eventually retaining the singlet character of their state. In
the reverse process an electron from a normal lead enters the
superconductor leaving the hole behind in the same or other
lead.

In a three-terminal device one distinguishes two different
Andreev processes. In the direct Andreev reflection (DAR) two
electrons entering the superconductor and the backscattered
hole are from the same lead, while in the crossed Andreev
reflection (CAR) electrons stem from different normal leads.
These nonlocal processes (CAR) are a potential source of
entangled particles as they result from a singlet state of the
Cooper pair. The processes competing with CAR are the single
electron transfers (ETs) between both normal electrodes.
As the quantitative understanding of this competition is a
prerequisite of the entangler based on quantum dot devices and
the main goal of the paper, we shall quantify the competition
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FIG. 1. (Color online) Schematic view of a three-terminal device
with a superconducting electrode (S) and two normal metallic
electrodes (L, R) connected via a quantum dot (QD).

by the nonlocal differential conductance relating the current
in the right lead flowing in response to the voltage in the left
lead.

We have found that the Coulomb interactions generally
suppress CAR processes in the large range of bias voltages.
However, there remain regions in the vicinity of the Andreev
bound states51 where the CAR processes dominate the trans-
port and the total nonlocal conductance is negative, indicating
entanglement of pairs of separated electrons: one of them
entering the left and the other one the right normal electrode.
The most interesting finding is that these subtle quantum
correlations are observed in the Kondo state, where the
nonlocal conductance dominates over single electron transfer
processes. This result agrees with the full counting statistics of
two quantum dots in a three-terminal device,52 which indicated
the possibility of observing positive current cross correlation
in a Kondo regime of a hybrid structure. Our calculations have
shown that the effect exists and we predict its observation in a
device with a single quantum dot.

We note by passing that the related hybrid structures
consisting of a quantum dot and one normal but two super-
conducting electrodes allow study of the interplay between
the Josephson effect and Coulomb correlations.53 In a related
work the systems similar to that studied here consisting of
a quantum dot contacted to normal, superconducting, and
ferromagnetic electrodes have been recently proposed to be
an effective source of pure spin currents.12,14 The effect of
noncollinear magnetization has also been discussed.54

The organization of the rest of the paper is as follows. In the
next section we present the model and approach to calculate
currents flowing in the system under applied bias voltage. The
differential conductances of the system with a noninteracting
quantum dot are calculated and discussed in Sec. III. The
effect of electron interactions on the transport currents and
conductances is studied in the Coulomb blockade regime
(Sec. IV) and beyond it (Sec. V), using approximations which
capture the Kondo correlations and are valid up to temperatures
T ≈ TK . We end up with summary and conclusions.

II. DESCRIPTION OF THE MODEL
AND METHOD OF CALCULATION

A. The hybrid device with a quantum dot

We consider a system which consists of a quantum dot (QD)
connected with two normal metal leads [the left (L) and the
right (R)] and one superconducting (S) lead, see Fig. 1. The

system can be modeled by the Hamiltonian

H = HQD +
∑

α=L,R,S

Hα + HT , (1)

where the first term describes the quantum dot, the second
electrons in the leads, and the third tunneling between the
leads and the QD. The Hamiltonian of the QD reads

HQD = ε0

∑
σ

d†
σ dσ + Un↑n↓, (2)

where ε0 is the single-particle energy level, d†
σ (dσ ) denotes the

creation (annihilation) operator of the dot electron with spin
σ , nσ ≡ d†

σ dσ , and U is the Coulomb interaction on QD. It
is assumed that the normal metal electrodes are treated within
the wide-band approximation

Hα =
∑
k,σ

εαkc
†
αkσ cαkσ , (3)

where c
†
αkσ (cαkσ ) denotes the creation (annihilation) of an

electron with spin σ and momentum k in the electrode α =
{L,R}. The third, superconducting electrode is described in
the BCS approximation by

HS =
∑
k,σ

εSkc
†
Skσ cSkσ +

∑
k

(�c
†
S−k↑c

†
Sk↓ + �∗cSk↓cS−k↑),

(4)

where we have assumed isotropic energy gap �. Coupling
between the QD and the external leads reads

HT =
∑
α,k,σ

(tαc
†
αkσ dσ + t∗αd†

σ cαkσ ), (5)

where tα is the hopping integral between QD and the α lead.
An electron and hole transfer between the QD and the leads is
described by an effective tunneling rate �α , which in the wide-
band approximation takes the form �α = 2π

∑
k |tα|2δ(E −

εαk) = 2π |tα|2ρα , where ρα is the density of states in the α

electrode in the normal state.
The bias voltage VL (VR) is applied to the left (right)

electrode, while the superconducting electrode is grounded.
Usually an additional gate is applied to the QD, by means of
which one can change the position of the single-particle level
ε0 and number of electrons n on the dot.

B. Currents and conductances

The currents, which flow from the normal electrodes to the
QD, can be calculated from the time evolution of the total
number operator55

Iα ≡ −e〈Ṅα〉 = − ie

h̄
〈[Nα,HT ]〉. (6)

After standard manipulations (6) can be rewritten as

Iα = 4e

h̄

∫
dE

2π
�α


[
fαGr

11 + 1

2
G<

11

]
, (7)

where Gr
11 and G<

11 are the matrix elements of the QD Green
function Ĝr and Ĝ< in the Nambu representation.29 Using the
equation of motion technique (EOM) for the (nonequilibrium)
Green function25,55–58 one can find currents originating from
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various types of tunneling processes. In actual calculations for
an interacting system it is important to correctly determine the
function Ĝ< (and related local Wigner distribution function)
for the nonequilibrium situation. For the noninteracting case
one can find the exact expression for Ĝ< (assuming quasielas-
tic transport, for which the current conservation rule is fulfilled
for any energy E). In the presence of interactions we use the
relation Ĝ< = Ĝr
̂<Ĝa and the ansatz proposed by Fazio
and Raimondi21 that the self-energies are proportional to that
in the noninteracting case 
̂<,> = 
̂

<,>
0 Â. The matrix Â is

determined by the condition 
̂< − 
̂> = 
̂r − 
̂a , which
guarantees a current conservation.

In the subgap regime |eV | < � only the following com-
ponents survive and the current can be expressed in terms of
Gr

11 and Gr
12 components of the retarded Green function in

Nambu space. Needless to say that in order to calculate Gr
11

and Gr
12 in the nonequilibrium system the full matrix Green

function in Keldysh-Nambu space has to be calculated. The
current flowing from the left electrode reads

ITOT
L = IET

L + IAR
L = IET

L + IDAR
L + ICAR

L , (8)

where (omitting energy E arguments)

IET
L = 2e

h̄

∫
dE

2π
�L

∣∣Gr
11

∣∣2
�R(fL − fR), (9)

IDAR
L = 2e

h̄

∫
dE

2π
�L

∣∣Gr
12

∣∣2
�L(fL − f̃L), (10)

ICAR
L = 2e

h̄

∫
dE

2π
�L

∣∣Gr
12

∣∣2
�R(fL − f̃R). (11)

fα ≡ fα(E) = {exp[(E − eVα)/kBT ] + 1}−1 and f̃α ≡
f̃α(E) = 1 − fα(−E) = {exp[(E + eVα)/kBT ] + 1}−1 are
the Fermi-Dirac distribution functions in the electrode
α = {L,R} for electrons and holes, respectively. Here IET

L

denotes the current due to the normal electron transfer (ET)
processes, while IAR

L is the Andreev current caused by the
Andreev reflection (AR). The Andreev current can be divided
into two parts: that due to the direct AR processes (DAR)
and that due to the crossed AR processes (CAR). Similarly,
one can derive the current flowing from the R electrode ITOT

R

as well as from the S electrode ITOT
S and check that the

Kirchoff’s law is fulfilled:

ITOT
L + ITOT

R + ITOT
S = 0. (12)

For higher voltages, exceeding the energy gap |eV | �
�, there would be additional contributions to the
electron transport, namely the single-particle tunneling
(2e/h̄)

∫
(dE/2π ) �L|Gr

11|2�S(fL − fS) and the branch cross-
ing processes (2e/h̄)

∫
(dE/2π ) �L|Gr

12|2�S(fL − fS). Let us
note that with �S = 0 the current in the superconducting
electrode vanishes due to the fact that the Green function Gr

12
is proportional to �S .

In a three-terminal device one can define a nonlocal
conductances, i.e., related to the current flowing in the L (R)
electrode due to the voltage applied to R (L) one. In accordance
to the contributions κ = {ET,DAR,CAR} to the currents we
shall also discuss the related conductances. Various differential
conductances are defined as

Gκ
α/β = (−1)1−δαβ

dI κ
α

dVβ

, (13)

where α = {L,R,S}, β = {L,R}, and δαβ is the Kronecker
δ. Occasionally we shall also discuss the total conductances
(κ = TOT) related to the total currents in a given lead.

C. Green function of the quantum dot

Equations (8)–(11) show that to calculate currents flowing
in the system one needs the full Green function Ĝr (E) of QD
taking into account the Coulomb interactions and the couplings
to the leads. From the Dyson equation

Ĝr (E) = ĝr (E) + ĝr (E)
̂r (E)Ĝr (E), (14)

where ĝr (E) is the Green function of the isolated or noninter-
acting dot and 
̂r (E) is the appropriate self-energy, one can
find that (omitting the energy argument E)

Gr
11 = 1/gr

22 − 
r
22(

1/gr
11 − 
r

11

)(
1/gr

22 − 
r
22

) − 
r
12


r
21

, (15)

Gr
12 = − 
r

12

1/gr
22 − 
r

22

Gr
11

= − 
r
12(

1/gr
11 − 
r

11

)(
1/gr

22 − 
r
22

) − 
r
12


r
21

. (16)

III. RESULTS FOR NONINTERACTING QUANTUM DOT

For the sake of later comparison we start the analysis
with a simple example of noninteracting electrons U = 0 on
the quantum dot, where analytical expressions can be found
at T = 0. We discuss the density of states (DOS), and the
conductances of the system. As our main focus is on the
Andreev reflection processes we assume that transmission
rates, the bias voltages, and the temperature are much smaller
than the energy gap of the superconducting electrode, i.e.,
�L, �R , �S , eVL, eVR , kBT � �. As already mentioned we
assume the validity of these relations throughout the whole
paper.

A. Density of states

For the study of the noninteracting quantum dot we take
the Green functions (15) and (16) with a Green function for an
isolated single-level QD:

ĝr =
(

1
E − ε0 + i0+ 0

0 1
E + ε0 + i0+

)
(17)

and self-energies 
r
ij (i,j = {1,2}) evaluated in the so called

“superconducting atomic limit” or deep inside the supercon-
ducting energy gap34


̂r =
(−i(�L + �R)/2 −�S/2

−�S/2 −i(�L + �R)/2

)
. (18)

It is an easy exercise to find the insightful expressions for
matrix elements Gr

11 and Gr
12 of the retarded Green function

valid in the limit of � � �α (i.e., for � → ∞):

Gr
11 = 1

2

(
1 + ε0

Ed

)
1

E − Ed + i�N/2

+ 1

2

(
1 − ε0

Ed

)
1

E + Ed + i�N/2
(19)
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and

Gr
12 = − �S

4Ed

1

E − Ed + i�N/2
+ �S

4Ed

1

E + Ed + i�N/2
.

(20)

For QD coupled to the superconducting lead, the proximity
effect leads to the BCS-like structure of the spectral function
and density of states DOS = − 1

π

Gr

11 on QD given by

DOS = 1

2π

(
1 + ε0

Ed

)
�N/2

(E − Ed )2 + �2
N/4

+ 1

2π

(
1 − ε0

Ed

)
�N/2

(E + Ed )2 + �2
N/4

. (21)

Density of states is a sum of the two Lorentzian curves
centered at the E = ±Ed = ±

√
ε2

0 + �2
S/4 and with the width

of the peak �N/2 = (�L + �R)/2. It means that in the QD,
two Andreev bound states are formed: the “particle” state
at E = Ed and the “hole” state at E = −Ed , due to the
proximity effect. For small �S � �N , the particle and hole
peaks effectively merge into a single one at energy E ≈ ε0. On
the other hand, for the strong coupling to the superconducting
lead �S � �N one observes in the DOS two separate peaks
[with their weights depending on ε0 as visible from Eq. (19)
or (21)] due to the proximity effect.

B. Asymmetric bias

With energy independent self-energies and for temperature
T = 0 we find analytical formulas for the conductances. We
show here the expression valid for the bias eVL applied to
the left electrode, with R and S electrodes grounded (eVR =
eVS = 0):

GET
L/L(eVL) = GET

R/L(eVL) = 4e2

h

1

2

�L�R

[
(ε0 + eVL)2 + �2

N/4
]

[
(eVL + Ed )2 + �2

N/4
][

(eVL − Ed )2 + �2
N/4

] , (22)

GDAR
L/L (eVL) = 4e2

h

1

4

�2
S�

2
L[

(eVL + Ed )2 + �2
N/4

][
(eVL − Ed )2 + �2

N/4
] , (23)

GCAR
L/L (eVL) = −GCAR

R/L (eVL) = 4e2

h

1

8

�2
S�L�R[

(eVL + Ed )2 + �2
N/4

][
(eVL − Ed )2 + �2

N/4
] . (24)

These formulas clearly demonstrate resonant transmission
through two bound states ±Ed .

In the three-terminal hybrid system various electronic
transfer processes compete with each other. First of all,
electron tunneling (ET) between normal electrodes competes
with the Andreev reflection (AR). The nonlocal differential
conductance GTOT

R/L = GET
R/L + GCAR

R/L (with the current measured
at the right electrode as a response to voltage in the left one)
can be positive when the ET processes dominate, or negative
for a strong crossed Andreev reflection [compare Eqs. (22)
and (24)]. For an asymmetric coupling �R > 2�L the CAR
processes can dominate over the DAR processes [compare
Eqs. (23) and (24)].

Figure 2(a) presents the total conductance GTOT
L/L in the left

junction in the case of weak coupling �S and for various
couplings to the right electrode. In this case the particle-hole
(p-h) splitting is not visible and GTOT

L/L is dominated by ET
processes. The conductance increases with an increase of
�R and reaches maximum for symmetric coupling to the
normal electrodes �L = �R . For larger �R > �L the amplitude
decreases. When ε0 �= 0 the total conductance peaks are shifted
and reduced.

For �S > �N [Fig. 2(b)] the p-h splitting is manifested
in GTOT

L/L as two peaks centered at eVL = ±Ed . Now, the
proximity effect is strong and the AR processes are relevant.
The amplitude of the conductance always decreases with �R .
From the formulas (23) and (24) one can find that when the
�R < 2�L the contribution from the CAR processes is smaller
than that one from the DAR processes. On the other hand, the
CAR processes contribute to the conductance more effectively
than the DAR processes when �R > 2�L. The relative height

of the total conductance peaks changes also in a different way
with ε0. That around eVL = −Ed for large values of ε0 changes
like (2e2/h)γ 2/(ε2

0 + γ 2), with some effective coupling γ ,
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FIG. 2. (Color online) Conductance GTOT
L/L for (a) a week coupling

�S = 0.2�L and (b) a strong coupling �S = 6�L to the S electrode
for various couplings �R = 0 (black solid line), �R = 0.05�L

(red dashed line), �R = 0.5�L (blue dash-dot line), and �R = �L

(magenta dotted line) at ε0 = 0 and for VR = VS = 0.
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FIG. 3. (Color online) Conductance GTOT
R/L (black solid line)

measured at the R electrode with respect to the potential eVL applied to
the L electrode for (a) �S = �L and (b) �S = 6�L. GET

R/L (red dashed
line) and GCAR

R/L (magenta dash-dot line) present the conductance
contributions due to the direct electron transfer and CAR processes,
respectively. The other parameters are �R = 0.5�L, ε0 = 0, and
VR = VS = 0.

while the peak around eVL = Ed saturates in this limit at the
value (2e2/h).

C. Competition between ET and CAR: Negative conductance

The nonlocal conductance GCAR
R/L is a direct measure of the

entangled current. As mentioned, the competing process is that
due to direct electron transfer between normal electrodes. The
results for Gκ

R/L are presented in Fig. 3. The total conductance
GTOT

R/L in the R junction has only two components: normal
ET, which is always positive, while the CAR processes give
negative contribution to the total conductance. As long as
the �S < �N the ET contribution is larger than the CAR
contribution and theGTOT

R/L is positive, see Fig. 3(a). However, in
the opposite case �S > �N , the GTOT

R/L can be negative, because
the CAR processes dominate over the direct electron tunneling
(ET). For the symmetric case (with ε0 = 0) GTOT

R/L is negative
between the Andreev bound states. When the gate voltage
is applied to the QD (ε0 �= 0) the electron-hole symmetry
is broken and the GTOT

R/L characteristics are asymmetric with
respect to eVL = 0. This behavior is caused by the ET
contribution, in which amplitude depends on the position of ε0

[see numerator of Eq. (22)]. Now, the ET contribution prefers
the hole (electron) resonance level −Ed (+Ed ) for ε0 < 0
(ε0 > 0). On the other hand, GCAR

R/L is always symmetric with
respect to ε0 = 0 and eVL = 0, see Eq. (24).

The dominance of the CAR over ET processes in the
nonlocal conductance GR/L requires �S > �N and is visible

for the voltages eVL fulfilling

|ε0 + eVL| �
√

�2
S − �2

N, (25)

as it can be easily deduced from Eqs. (22) and (24). In other
words, CAR processes dominate for the voltages eVL for which
the anomalous self-energy (�S/2 in the noninteracting case)
dominates the nominator of the Gr

11 Green function.

IV. EFFECT OF COULOMB BLOCKADE

The noninteracting quantum dot in contact with the
superconductor develops two Andreev bound states at
±

√
ε2

0 + �2
S/4 and the nonlocal conductance is dominated by

the Copper pair splitting processes for the voltage −Ed <

eVL < Ed . With the Coulomb interaction taken into account,
the exact solution is no longer available and approximations
are necessary. In order to gain some insight into the effect
of correlations we shall use the formally exact expression
for the Green functions (14) and calculate the self-energies
approximately. We again assume that the superconducting
order parameter � is the largest energy scale and calculate the
contributions to the leads induced self-energy to lowest order
in the coupling getting Eq. (18). The contribution of Coulomb
interactions to the self-energy will be calculated in the
Hubbard I approximation,59 equation of motion (EOM), and
iterative perturbation approach (IPT). Since we consider the
paramagnetic case 〈n↑〉 = 〈n↓〉 = n/2, the total accumulated
charge n at QD (required to get correct value of Coulomb
self-energy) is calculated in the self-consistent way from the
equation

n = 2
∫

dE

2πi
G<

11(E). (26)

The lesser Green function

G<
11 = i

∣∣Gr
11

∣∣2
(�LfL + �RfR) + i

∣∣Gr
12

∣∣2
(�Lf̃L + �Rf̃R)

(27)

is calculated using the Green functions (15) and (16) with the
following Green function for an isolated single-level QD in
presence of the Coulomb interactions:55

gr
11 = 1 − 〈n↓〉

E − ε0 + i0+ + 〈n↓〉
E − ε0 − U + i0+ ,

(28)

gr
22 = 1 − 〈n↑〉

E + ε0 + i0+ + 〈n↑〉
E + ε0 + U + i0+ .

The local current conservation rule is fulfilled within this
approximation and one can describe the Coulomb blockade
effect in transport through QDs. The approximation neglects,
however, spin-flip processes in tunneling and ignores the
Kondo correlations so it can be applied for high temperatures
(well above the Kondo temperature TK ). Equation of motion
and IPT techniques allow us to go beyond the Coulomb
blockade and will be considered in the next section.

A. Density of states modified by Coulomb interactions

We start by presenting numerical results for the density
of states at equilibrium. To simplify calculations we assume
temperature T = 0. For finite T > 0 one also has to include
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FIG. 4. (Color online) The equilibrium DOS for a large Coulomb
interaction U = 7�L and �S = 2�L, and for (a) ε0 = −U/2 (the
electron-hole symmetry point), (b) ε0 = 0 (the end of the Coulomb
blockade range), and (c) ε0 = 4�L (the empty dot regime) with �R =
0.5�L.

thermal broadening in all plots presented below, but the physics
is the same.

The density of states of the interacting quantum dot shows
four peaks. With Coulomb interaction U the Green function
Gr

11(E) [Eq. (15)] has four poles and the spectrum consists of
four Andreev bound states. This is related to splitting of the dot
spectrum into lower and upper Hubbard levels and the mixing
of empty and doubly occupied states. For the particle-hole
symmetric case ε0 = −U/2, all peaks have the same amplitude
[see Fig. 4(a)]. For a large Coulomb interaction two pairs of
Andreev peaks are separated by a wide Coulomb blockade
region. The gate voltage can be used to tune the positions and
the amplitude of the Andreev peaks. At ε0 = 0 one reaches
the end of the Coulomb blockade region. DOS becomes
asymmetric and dependent on the electron concentration n

[see Fig. 4(b)]. With a further increase of ε0 the system goes
to the empty dot regime, in which only two rightmost peaks
survive [see the plot in the Fig. 4(c)]. The inner peak has
a Lorentzian shape, while the outer one is very narrow and
asymmetric. Moreover, DOS reaches zero between the peaks.
This indicates the Fano resonance and destructive interference
of waves scattered on the Andreev bound states.

The positions of the Andreev bound states can be found
from poles of the Green function Gr

11. In the limit �L, �R → 0
one gets an analytical expression

EA
λ,λ′ = λ√

2

√
ε2

0 + ε2
U + �2

S/4 + λ′δ, (29)

where δ =
√

(ε2
0 + ε2

U + �2
S/4)2 − (�2

Sε
2
n + 4ε2

0ε
2
U ), εU =

ε0 + U , εn = ε0 + (1 − n/2)U , and λ,λ′ = ±1.
In the double occupancy regime (for n → 2) one finds

the inner peaks at EA
±,− = ±

√
(ε0 + U )2 + �2

S/4 and the
outer peaks at EA

±,+ = ±|ε0|. Similarly for n → 0 (the empty

dot regime) EA
±,− = ±

√
ε2

0 + �2
S/4 and EA

±,+ = ±|ε0 + U |.
The height of the DOS peaks changes nonmonotonically.
For example, in the empty dot regime the states EA

+,− and
EA

+,+ survive and they have the same height, while the peaks
corresponding to the states EA

−,− and EA
−,+ are suppressed to

zero. Moreover, in the empty dot regime, the width of the peak
at EA

+,+ goes to zero, while the peak at EA
+,− has the width

�N/2 – the same value as for the noninteracting electrons. In
the Coulomb blockade region ε0 ∈ [−U,0] the spectrum EA

λ,λ′
is hybridized. The DOS peaks show strong changes going
between different branches of EA

λ,λ′ .

B. Linear transport

Here we study the influence of Coulomb interactions on the
transport characteristics obtained in the linear regime, i.e., in
the limit of a small bias voltage Vα → 0.

Results of the gate voltage dependence of the local and
nonlocal conductances are presented in Fig. 5 for a small
(U < �S) and large (U > �S) Coulomb interaction. The total
conductancesGTOT

L/L (0) andGTOT
R/L(0) as well as their components

show particle-hole symmetry. The relative importance of
the CAR and ET contributions to the linear conductances
can be tuned by the gate voltage. The conductance GTOT

L/L (0)
has two well separated peaks at the ends of the Coulomb
blockade region, i.e., close to ε0 ≈ −U and ε0 ≈ 0. The main
contribution to the conductance presented in Fig. 5 comes
from the Andreev reflection processes, because the proximity
effect is large (�S > �N ). The behavior of GTOT

R/L(0) is shown
in the bottom panels in Fig. 5. Again, in close analogy to
the noninteracting case, one can see competition between the
Andreev reflection and the direct electron transfer processes.
As a result the conductance GTOT

R/L(0) can be negative. However,
in contrast to the noninteracting case, when the conductance
GTOT

R/L(0) < 0 in the whole region between the Andreev bound
states [see Fig. 3(b)], now we observe GTOT

R/L(0) > 0 inside
this region and it becomes negative [GTOT

R/L(0) < 0] in the
vicinity of resonant levels. This is a manifestation of the
Coulomb blockade effect, which suppresses stronger Andreev
reflection processes than the direct electron transfers [compare
the components GET

R/L(0) and GCAR
R/L (0) in Fig. 5]. It is worth

noting that the signatures of the four Andreev bound states are
only visible in the ET components of both local and nonlocal
conductances in the linear regime.

C. Nonlinear transport characteristics

Outside the linear voltage regime we calculate currents and
differential conductances taking full voltage dependence of the
Fermi functions in the current formulas.

Figures 6 and 7 present the conductance GTOT
L/L and GTOT

R/L as
a function of the bias VL. Comparing with the noninteracting
case (Fig. 2), in the presence of Coulomb interactions two
additional conductance peaks appeared [Fig. 6(a)], which
correspond to Coulomb excitations. One sees the Coulomb
blockade valley between them: the conductance GTOT

L/L and all
its components GET

R/L, GDAR
L/L , GCAR

L/L are reduced to zero in this
region. The main contribution to the conductance GTOT

L/L is from
the DAR processes [see the blue dotted curve corresponding
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FIG. 5. (Color online) Characteristics of conductance in the linear
response regime, i.e., VL,VR,VS → 0. Top panel:GTOT

L/L (0) (black solid
line) with its components GET

L/L(0) (red dashed line), GDAR
L/L (0) (blue

dotted line), and GCAR
L/L (0) (magenta dash-dot line). Bottom panel:

GTOT
R/L (0) (black solid line) with its components GET

R/L(0) (red dashed
line) and GCAR

R/L (0) (magenta dash-dot line). The results for (a) a
small Coulomb interaction U = 2�L and �S = 6�L; and (b) a large
Coulomb interaction U = 7�L and �S = 2�L for the asymmetric
coupling to the left and right electrode �R = 0.5�L.

to GDAR
L/L in Fig. 6(a)]. Figures 6(a), 6(b), and 6(c) present

evolution of the conductance characteristics when the system
goes to the empty dot regime. Notice that the asymmetry in the
total conductance characteristics GTOT

L/L is due to the ET con-
tribution GET

L/L, because GDAR
L/L and GCAR

L/L are almost symmetric
with respect to VL = 0. Moreover, in the empty dot regime the
ET contribution is enhanced, the AR processes are weakened.
For ε0 = 4�L the DAR processes dominate for VL < 0 (see the
blue dotted curve), whereas for VL > 0 the ET tunneling plays
an important role (the red dashed curve). Conductance and its
components are strongly suppressed between two right peaks,
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FIG. 6. (Color online) Voltage dependence of conductance GTOT
L/L

(black solid line) with its components GET
L/L (red dashed line), GDAR

L/L

(blue dotted line), and GCAR
L/L (magenta dash-dot line) for (a) ε0 =

−U/2, (b) ε0 = 0, and (c) ε0 = 4�L. The other parameters are VR =
VS = 0, U = 4�L, �S = 6�L, and �R = 0.5�L.

what suggest a dynamical Coulomb blockade. In this range the
current is dynamically blocked for short time intervals, when
an electron occupies the quantum dot.

The competition between the ET and CAR processes is well
seen in Fig. 7 presenting the conductance GTOT

R/L determined
on the R junction. For the symmetric case ε0 = −U/2 the
CAR processes are more strongly suppressed than the ET
tunneling in the Coulomb blockade regime, and therefore,
the total conductance GTOT

R/L becomes positive. A similar effect
one observes in Fig. 7(c) in the dynamical Coulomb blockade
region between two right peaks. Figure 7(b) presents the
intermediate case ε0 = 0, where one can see how the Andreev
bound states changed their role and how the ET and CAR
processes compete with each other.

In the interacting case the nonlocal conductances are
given by the energy integrals of the modules squared of
Gr

11(E) and Gr
12(E) elements of the Green function for ET

and CAR components, respectively [cf. integrals in Eqs. (9)
and (11)]. From the first equality in formula (16) relating both
components of the matrix Green function it follows that the
contribution to CAR processes will dominate if∣∣∣∣ 
r

12

1/gr
22 − 
r

22

∣∣∣∣
2

> 1 (30)
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FIG. 7. (Color online) Voltage dependence of the conductance
GTOT

R/L (black solid line) with its components GET
R/L (red dashed line)

and GCAR
R/L (magenta dash-dot line) for (a) ε0 = −U/2, (b) ε0 = 0,

and (c) ε0 = 4�L. The other parameters are VR = VS = 0, U = 4�L,
�S = 6�L, and �R = 0.5�L.

over the energy region; 0 < E < eVL at T = 0 K. This
mainly happens close to the Andreev resonances, when the
denominator in (30) is small in comparison to the anomalous
self-energy. This condition is general; the energy dependencies
of the normal and anomalous self-energies over the integration
range decide whether the CAR or ET processes dominate.
The CAR component of the conductance show electron-hole
symmetry with four Lorentzian resonance peaks around the
Fermi energy EF = 0. In contrast, the ET components have
non-Lorentzian peaks, because an electron channel is preferred
for transmission that leads to asymmetry well seen in Figs. 6(b)
and 6(c) and Figs. 7(b) and 7(c).

V. BEYOND COULOMB BLOCKADE:
KONDO CORRELATIONS

From the physical point of view the Coulomb repulsion U is
responsible for the charging effect and, at lower temperatures,
for the Kondo effect, i.e., formation of the singlet resonant
state between the spin localized on a QD and spins of
itinerant electrons60 from the normal leads. These effects
spectroscopically manifest themselves by the appearance of
the peaks around E = ε0 and E = ε0 + U and the Kondo (or
Abrikosov-Suhl) resonance in the density of states at the Fermi

energy of the normal lead.61,62 The width of the resonance is
a characteristic scale, which is the Kondo temperature TK . To
estimate its value for a given set of parameters we use the
formula60

kBTK =
√

U�N exp

[
π

2

ε0(ε0 + U )

U�N

]
. (31)

In nonequilibrium transport via a quantum dot attached to
two external electrodes two such resonances appear at the
positions corresponding to the chemical potentials in the
biased system.58 If the quantum dot is also coupled to
the superconducting electrode the competition is observed21

between the above mentioned features and the proximity
induced on-dot pairing.

To analyze the competition between currents beyond the
Coulomb blockade limit we treat the electron interactions
using the equation of motion (EOM) procedure55 and iterative
perturbation theory (IPT).4 Both techniques have been previ-
ously used for studying interacting quantum dots in different
setups.50,56,63

The equation of motion approach,48 which in general64

“can form a basis for a qualitative analytic treatment of
the Kondo effect” is probably one of the simplest methods,
qualitatively capturing65 the physics of the nonequilibrium
Kondo correlations at arbitrary U . The results, however, are
not reliable on a quantitative level because of poor resolution
of the Kondo peak. The comparison of the results obtained
by EOM and the noncrossing approximation (NCA) shows66

that the positions of the Kondo resonances are well described
for a system out of equilibrium. However, the method badly
reproduces the half-filled situation (even on a qualitative level).
For this reason we shall complementary use the iterative
perturbation approach which is known to give correct results
at half filling49 and has been adopted to the nonequilibrium
transport via quantum dots.4,50,63

To capture the Kondo physics we use the Dyson equa-
tion (14) with the noninteracting Green function (17) and
impose the matrix self-energy 
̂r,U (E) in the following
diagonal form:


̂r,U (E) �
(


N (E) 0
0 − [
N (−E)]∗

)
. (32)

Within the EOM approach the self-energy 
N (E) reads56

(omitting the energy argument E)


N = E − ε0

− [E − ε0 − 
0][E − ε0 − 
0 − U − 
3] + U
1

E − ε0 − 
0 − [
3 + U (1 − 〈n↓〉)] ,

(33)

where55


0 =
∑

α=L,R

∑
k

|tα|2
E − ξαk

� −i

2
(�L + �R) , (34)


ν =
∑

α=L,R

∑
k

[ |tα|2
E − ξαk

+ |tα|2
E − U − 2ε0 + ξαk

]

×
{

f (ξαk) for ν = 1
1 for ν = 3,

(35)

and ξαk = εαk − eVα .
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FIG. 8. (Color online) Voltage dependence of conductance GTOT
L/L

obtained at low temperature kBT = 0.01�L in the Kondo regime for
�S = 6�L (black solid line), �S = 4�L (red dashed line), �S = 2�L

(blue dotted line), and �S = 0 (magenta dash-dot line). The other
parameters are U = 14�L, ε0 = −3�L, �R = 0.5�L, and VR = VS =
0. The estimated kBTK ≈ 0.39�L. The dotted vertical lines show the
positions of subgap Andreev bound states for the case �S = 6�L.
Inset shows the results obtained within the Hubbard I approximation
for �S = 6�L.

The diagonal form of the self-energy (32) neglects any
influence of the correlations U on the induced on-dot pairing.
Such an approximation has been shown56 to give a qualitative
agreement with the experimental data obtained for InAs
quantum dots.45 Approximation (32) provides some insight
into the physics of the hybrid structures discussed in this work
but other advanced techniques67 would be needed to describe
an interplay between the Kondo and Andreev effects4 on some
qualitative level. Analysis of the Kondo correlations56,68 under
the nonequilibrium conditions69 can be done, for instance,
using the suitably generalized noncrossing approximation66,67

or the numerical renormalization group approach.34,70

Let us recall56 that within the EOM method the optimal
conditions for enhancing the Andreev conductance by the
Kondo resonance occur when �S ∼ �L. One notices that
the couplings to the normal electrodes �R and �L control
the broadening of the quasiparticle peaks at ε0 and ε0 + U . It
means that for �S ∼ �L the particle-hole splitting is not well
pronounced in the single particle spectrum in comparison to
the results discussed in Secs. III and IV.

Figure 8 shows the total differential conductance measured
in the left lead for various couplings to the superconducting
electrode. In the calculations we have assumed low tempera-
ture and large U = 14�L value to get all peaks separated and
well developed Kondo resonance. For �S = 0 we have two
broadened resonant levels at ε0 and ε0 + U and the Kondo peak
appearing at the eVL = 0. The zero bias resonance is due to the
Abrikosov-Suhl resonances which appear at the Fermi levels
of normal leads. Increasing coupling to the superconducting
lead results in the four broadened Andreev states. The dotted
vertical lines in the figure show the positions of the Andreev
bound states calculated from Eqs. (29) for �S = 6�L. The
central peak corresponding to the Kondo resonance is observed
for all values of coupling to the superconducting electrode. As
already mentioned, this feature has been recently observed
experimentally45 in the two-terminal quantum dot. In the
inset we show total (local) conductance obtained within the
Hubbard I approximation for �S = 6�L. Note the nearly
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FIG. 9. (Color online) Characteristics of conductance in the
Kondo regime. (a) GTOT

L/L (black solid line) with its components
GET

L/L (red dashed line), GDAR
L/L (blue dotted line), and GCAR

L/L (magenta
dash-dot line). (b) GTOT

R/L (black solid line) with its components GET
R/L

(red dashed line) and GCAR
R/L (magenta dash-dot line). The results

are obtained for kBT = 0.01�L (i.e., well below kBTK ≈ 0.39�L)
using the model parameters U = 14�L, ε0 = −3�L, �R = 0.5�L,
�S = 6�L, and VR = VS = 0. Notice that the DAR and CAR channels
are dominating and they are responsible for the zero bias features.

complete disappearance of one of the Andreev peaks in the
Coulomb blockade regime and its partial recovery as well as
the appearance of zero bias anomaly when Kondo correlations
are taken into account (the main figure).

The contributions to the local conductance GTOT
L/L are shown

in Fig. 9 for strong coupling to the superconducting lead
(�S = 6�L) at temperature kBT = 0.01�L, lower than the
Kondo temperature kBTK ≈ 0.39�L evaluated from Eq. (31).
The zero bias enhancements of conductances are clearly visible
in the DAR and CAR components. For the assumed values
of parameters the direct Andreev reflection component GDAR

L/L

dominates close to eVL = 0. It is a symmetric function of
voltage applied to the left electrode. On the other hand,
the conductance due to the direct electron transfer between
the normal electrodes is not so strongly influenced by the
Kondo correlations. Increasing temperature suppresses the
Abrikosov-Suhl resonance in the density of states and thereby
has a detrimental effect on the zero bias anomaly in the
conductance GTOT

L/L . The heights of other peaks change only
slightly to accommodate the spectral weight of such a
vanishing peak.

One of our main findings is the appearance of negative
nonlocal conductance GTOT

R/L at zero bias as shown in the
lower panel of Fig. 9. In the right electrode CAR and ET
processes compete with each other and for all voltages, except
close to eVL = 0, the direct transfer dominates. Only around
zero bias the CAR dominates. This is due to the increased
effective transmission via quantum dot due to the resonant
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state as it follows from the condition (30). Due to strong
energy dependence of the self-energy, the CAR contributions
to the nonlocal conductance dominate only in the vicinity of
the Kondo resonance. In this case the collective many-body
state60 is responsible for the effect. Similar behavior related to
the increase of the effective transmittance has been previously
observed in studies of different tunnel structures71–73 in high
transparency limit.

To get the information about the interplay between Andreev
and Kondo effects in the half-filled dot limit we use the IPT
approach. This approximation to the self-energy is known
to give correct results for the density of states49 and the
linear transport coefficients. In the spirit of the previous
approximation (32) we calculate diagonal self-energy. In this
approach the self-energy is chosen in such a way that it
properly interpolates4,50,63 between exact second order in U

perturbative and the atomic limit formulas and has correct
high frequency behavior.

In the “superconducting atomic limit” the energy gap
� exceeds the Kondo scale characterized by the Kondo
temperature (� � kBTK ). This means no direct tunneling
of electrons between the dot and superconducting electrode.
Due to the proximity between the quantum dot and the
superconducting electrode the empty and doubly occupied
states on the dot are mixed and the transport proceeds via
Andreev states as discussed in the Introduction.

The tendency of the system to induce the superconducting
correlations and the energy gap in the dot spectrum competes
with the formation of the Abrikosov-Suhl resonance at the
Fermi level. This resonance is a result of coupling to the normal
leads and screening of the dot spin by spins of electrons in
the conduction leads. The result of the competition obtained
within IPT is shown in the Fig. 10, which presents the energy
dependence of the dot density of states for half-filled case
(2ε0 + U = 0) for U = 7�L and U = 14�L and a few values
of the couplings to the superconducting lead �S .

In Fig. 10 evolution of the subgap Andreev bound states is
shown. Unfortunately in this approach the analytic expression
for the bound state energies like (29) is not available.
Nevertheless, in the figure we plot the positions of the bound
states obtained from (29) as dotted lines and note good
agreement with the positions of various features obtained from
the numerical calculations, especially at high energies. This
shows that the high energy spectrum undergoes small changes
required to fulfill model independent sum rules, like that for the
total number of states. At low energies and low temperatures
T the zero energy resonance dominates the physics.

The central dip in the density of states (Fig. 10) visible
for large values of �S is related to the proximity induced
pairing correlations on the dot. This feature disappears for a
small �S � �L. It is more pronounced for smaller values of
U , when the superconducting proximity effect dominates. For
large values of the on-site repulsion (e.g., U = 14�L) four
Andreev states are clearly visible for large coupling to the
superconducting lead (e.g., �S = 16�L). The insets to Fig. 10
show the density of states close to the Fermi energy. The width
of the unsplit Kondo resonance for �S = �L depends on the
correlation strength, being smaller for larger U . The increase of
�S from �L to 6�L results in the strong decrease of the Kondo
peak accompanied by the apparent increase of the splitting.
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FIG. 10. (Color online) The density of states of the correlated
quantum dot for �S = �L (red solid line), �S = 6�L (blue dashed
line), and �S = 16�L (magenta dash-dot line) and (a) U = 7�L, ε0 =
−3.5�L (the estimated Kondo temperature kBTK ≈ 0.52�L) and (b)
U = 14�L, ε0 = −7�L (the estimated Kondo temperature kBTK ≈
0.12�L). The other parameters are kBT = 0.001�L and �R = 0.5�L.
In the insets the region around E = 0 is magnified. The dotted vertical
lines indicate the positions of the Andreev bound states as calculated
for the Hubbard I approximation.

Splitting of the Kondo resonance74 is a characteristic feature
of the half-filled quantum dot and usually disappears for 2ε0 +
U �= 0, similarly to the EOM results presented in Fig. 9. It
results from the interplay between the superconducting pairing
and the Kondo singlet.

VI. SUMMARY AND CONCLUSIONS

The contributions of various elementary transport processes
to the currents flowing in a system consisting of the quan-
tum dot contacted to one superconducting and two normal
electrodes have been studied. Special attention was paid to
the subgap local and the nonlocal Andreev type scattering
events. For the noninteracting quantum dot and at T = 0 we
obtained analytic expressions for differential conductances of
all transport channels [Eqs. (22)–(24)]. The main emphasis was
on the influence of Coulomb interaction on the usual electron
transfer (ET) between normal electrodes and the direct (DAR)
and crossed (CAR) Andreev scattering and their interplay.

Treating the correlated quantum dot within the Hubbard I
approximation (applicable for the description of the Coulomb
blockade) we have numerically determined the effective en-
ergy spectrum and the differential conductancesGL/L andGR/L

for each transport channel. The ET processes have been shown
to compete with the crossed Andreev reflections, thereby
limiting a possibility of obtaining the entangled electron pairs.
The CAR processes dominate charge transport if the coupling
to the superconducting electrode is much stronger than to the
normal one. Coulomb interactions usually suppress the CAR
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conductances of the system except in the close vicinity of the
Andreev bound states. The interplay between the direct and
crossed Andreev reflections show up both in local GL/L and
nonlocal GR/L differential conductances.

To address the correlation effects in the Kondo regime we
have used two complementary methods, based on the equation
of motion procedure and the iterative perturbation theory.
Itinerant electrons of the normal leads form the many-body
spin singlet state with electrons localized on the quantum dot.
As a result, the narrow Abrikosov-Suhl resonance appears
in the spectrum at the chemical potential for sufficiently low
temperatures (T < TK ). This feature has a qualitative influence
on the ET, DAR, and CAR components of the conductance.
All these transport channels reveal an enhancement of the low
bias differential conductance, analogous to what have been
observed experimentally in the metal-QD-superconductors
junction.45 The domination of the CAR processes in the
nonlocal conductance of the Kondo correlated quantum dots is
the most interesting finding. It shows that subtle quantum cor-
relations (entanglement) between electrons forming Cooper
pair are not destroyed by the formation of the many particle
collective singlet states known as a Kondo cloud.

In the Kondo regime the CAR is a dominant nonlocal
transport channel at low voltages, leading to a negative value
of the total zero bias conductance limVL→0 GR/L. Let us note

that the crucial role of interactions on the currents and current
cross correlations has also been found in the work on the hybrid
devices with two quantum dots.75 Electron interactions which
are expected to destroy quantum correlations in an electron
gas in fact induce them in a suitably tuned nanodevices. In the
three-terminal system with all normal electrodes the Coulomb
interactions lead to qualitative feedback effects showing up in
the shot noise.76

It would be interesting to verify experimentally if the contri-
butions Gκ

α/β to the total differential conductance would indeed
reveal the properties discussed in this paper. As the direct
comparison of our results with the previous experiments10,11,46

on the three-terminal structures with two embedded quantum
dots is impossible, we propose that the setup of Deacon
et al.45 with an additional normal electrode could serve the
purpose.
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10L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger, Nature

(London) 461, 960 (2009).
11L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, and

C. Strunk, Phys. Rev. Lett. 104, 026801 (2010).
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(2007).

43J. D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. L. Yeyati, and
P. Joez, Nat. Phys. 6, 965 (2010).

44M. Meschke, J. T. Peltonen, J. P. Pekola, and F. Giazotto, Phys. Rev.
B 84, 214514 (2011).

45R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida,
K. Shibata, K. Hirakawa, and S. Tarucha, Phys. Rev. Lett. 104,
076805 (2010); Phys. Rev. B 81, 121308(R) (2010), and the
supplemental on-line information.

46J. Schindele, A. Baumgartner, and C. Schönenberger, Phys. Rev.
Lett. 109, 157002 (2012).

47A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.
JETP 19, 1228 (1964)].

48D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp. 3,
320 (1960)].

49H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996).

50A. Levy Yeyati, A. Martı́n-Rodero, and F. Flores, Phys. Rev. Lett.
71, 2991 (1993); J. C. Cuevas, A. Levy Yeyati, and A. Martı́n-
Rodero, Phys. Rev. B 63, 094515 (2001).

51T. Meng, S. Florens, and P. Simon, Phys. Rev. B 79, 224521 (2009).
52H. Soller and A. Komnik, Physica E 44, 425 (2011).
53M. G. Pala, M. Governale, and J. König, New J. Phys. 9, 278 (2007);

see also 10, 099801 (2008).
54Y. Zhu, Q.-F. Sun, and T.-H. Lin, Phys. Rev. B 65, 024516 (2001).
55H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics

of Semiconductors, 2nd ed. (Springer, Berlin, 2008).
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