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Decoherence effect on Fano line shapes in double quantum dots coupled between normal and
superconducting leads
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We investigate the Fano-type spectroscopic line shapes of the T-shape double quantum dot coupled between
the conducting and superconducting electrodes and analyze their stability on a decoherence. Because of the
proximity effect the quantum interference patterns appear simultaneously at ±ε2, where ε2 is an energy of the
side-attached quantum dot. We find that decoherence gradually suppresses both such interferometric structures.
We also show that at low temperatures another tiny Fano-type structure can be induced upon forming the Kondo
state on the side-coupled quantum dot due to its coupling to the floating lead.
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I. INTRODUCTION

When nanoscopic objects such as quantum dots, nanowires,
or thin metallic layers are placed in a neighborhood of super-
conducting material they partly absorb its order parameter. On
a microscopic level this proximity effect causes electrons near
the Fermi energy to become bound into pairs. Upon forming a
circuit with external leads (which can be chosen as conducting,
ferromagnetic, or superconducting) such effect can induce a
number of unique properties in the normal and anomalous
tunneling channels.1 For instance, the relation between cor-
relations and the on-dot induced pairing has been recently
experimentally probed by the Andreev spectroscopy2,3 and the
Josephson current measurements4–7 signifying the important
role of the Kondo effect on the subgap current.

Here we address the Andreev-type transport through the
double quantum dot (DQD) nanostructure coupled between
the normal (N ) and superconducting (S) leads. We focus on
the subgap regime, i.e., energies considerably smaller than the
pairing gap � of the superconductor. Under such conditions
the eigenstates of uncorrelated quantum dots represent
either the singly occupied states |↑〉, |↓〉 or the coherent
superpositions of empty and doubly occupied configurations
u|0〉 + v|↑↓〉. The effective Bogoliubov-type quasiparticle
excitations affect in turn all the spectroscopic features
originating, for instance, from the internal structure, the
correlations, perturbations, etc. Due to the proximity effect all
these features are going to show up simultaneously at negative
and positive energies.

To highlight this sort of emerging physics we examine
in some detail the interference patterns originating from a
charge leakage t (assumed to be much weaker than �N and
�S) between the central (QD1) and another side-attached
quantum dot (QD2). We also analyze stability of these patterns
with respect to a decoherence induced by the coupling �D

to the floating lead (D) as sketched in Fig. 1. Practically
this D electrode can be thought as a substrate on which the
quantum dots are deposited or can mimic the effects caused
by phonons/photons.8

The scheme illustrated in Fig. 1 resembles the prototype
for a dephasing originally considered (assuming all three leads
to be conductors) by Büttiker9 and later on by several other
authors.10,11 The coherent channel represents such electrons
which traverse the central quantum dot, moving directly

between N and S electrodes. This coherent part coexists
with another (incoherent) current contributed by electrons
flowing to the side-attached quantum dot, and scattered by
the charge reservoir D. Electrons entering such a fully chaotic
fermionic cavity undergo the phase randomization, thereby
this tunneling channel is related to the dephasing mechanism.
In practical terms any decoherence is expected to suppress
the quantum features, therefore stability of the Fano-type
interference patters can be regarded as a useful probe of
an interplay between the coherent and incoherent tunneling
channels (for more specific argumentation that dephasing
is indeed observable via the expectation values; see, e.g.,
Ref. 12). To estimate the dephasing rate 1/τφ one would need
to determine the reduced density matrix ρ̂(t) and investigate
the asymptotic exponential decay ∼e−t/τφ of the off-diagonal
terms. The dynamics can be inferred, for instance, from
the Bloch-Redfield equations13,14 or adopting other real-time
methods. Such a nontrivial aspect is, however, beyond the
scope of our present study.

In the absence of the floating D electrode the T-shape
double quantum dot systems have been already studied
considering the case of both metallic leads (see, e.g., Ref. 15)
as well as the metallic/superconducting hybrids.16–18 In the
regime of weak interdot coupling t this configuration allows
for a realization of the Fano-type line shapes (for a survey
on the Fano effect in various systems, see Ref. 19). These
features arise when the electron waves are transmitted between
the external electrodes via a broad QD1 spectrum and they
happen to interfere with the other electron waves, resonantly
scattered on the discrete QD2 levels.20 Hallmarks of the
destructive/constructive quantum interference show up in a
form of the asymmetric line shapes G0

(x+q)2

x2+1 + G1 in the
tunneling conductance, where the dimensionless argument x is
proportional to eV − ε2, q denotes the asymmetry parameter,
and G0,1 are some background functions slowly varying with
respect to V . Such line shapes have been indeed observed
experimentally for the DQD coupled between the metallic
leads.21,22 Similar Fano-type features have been also reported
from the spectroscopic measurements for a number of systems,
e.g., the cobalt adatoms deposited on Au(111) surfaces,23 the
semiopen nanostructures,24,25 the dithiol benzene molecule
placed between the gold electrodes,26 the “hidden order” phase
of the heavy fermion compound URu2Si2,27 the dopant atoms
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FIG. 1. (Color online) Schematic view of the T-shape double
quantum dot coupled to normal (N ) and superconducting (S)
electrodes and in addition affected by the floating (D) lead that is
responsible for a decoherence.

located in the metal near a Schottky barrier metal-oxide-
semiconductor field-effect transistor (MOSFET),28 and many
others.19

As far as the proximity effect in N -DQD-S heterojunctions
is concerned we have recently emphasized18 the possibility to
observe the particle/hole Fano-type line shapes in the subgap
Andreev transport. Here we would like to explore how such
Fano-type structures are stable on a decoherence. Since the
floating lead (D) does not belong to the closed circuit we
assume that a net current to/from such an electrode vanishes,
and it merely serves as the source of decoherence. Formally
our study extends the previous results of Ref. 8 onto the
anomalous Andreev transport. To our knowledge such problem
has not been addressed yet in the literature and it might be
of practical importance for the experimental measurements.
Influence of the bosonic (phonon/photon) modes shall be
discussed elsewhere.

In the next section we briefly state formal aspects of
the problem. Next, we discuss a changeover of the Fano-
type line shapes with respect to the asymmetric coupling
�S/�N controlling efficiency of the proximity effect. We also
investigate the stability of the particle/hole Fano features with
respect to decoherence (in the spectrum and in the Andreev
transmittance). Finally, we take into account the correlations.
We argue that for strong enough coupling �D the Kondo
resonance formed on the side-attached quantum dot QD2 can
induce a tiny interferometric pattern at ω = 0. Such Kondo
driven Fano structure could be detectable in the low bias
Andreev conductance.

II. THEORETICAL FORMULATION

The double quantum dot nanostructure shown in Fig. 1 can
be described by the Anderson impurity Hamiltonian

Ĥ = Ĥbath + ĤDQD + ĤT , (1)

where the bath Ĥbath = ∑
β Ĥβ consists of three external

charge reservoirs (β = N,S,D), ĤDQD refers to the double
quantum dot, and ĤT stands for the hybridization part. We
treat the conducting leads (β = N,D) as free Fermi gas

Ĥβ = ∑
k,σ ξkβ ĉ

†
kσβ ĉkσβ and represent the isotropic supercon-

ductor by the bilinear BCS form ĤS = ∑
k,σ ξkS ĉ

†
kσS ĉkσS −

�
∑

k(ĉ†k↑S ĉ
†
−k↓S + ĉ−k↓S ĉk↑S). Using the second quantization

ĉ
(†)
kσβ denotes the annihilation (creation) operators for spin

σ =↑ ,↓ electrons in the momentum state k and the energy
ξkβ = εkβ − μβ measured with respect to the chemical poten-
tial μβ .

Following Ref. 8 we assume that the charge transport
occurs through the T-shape configuration (Fig. 1) only via the
central (i = 1) quantum dot, whereas the side-attached QD2

is responsible for the quantum interference. Hybridization of
the quantum dots to the external reservoirs of charge carriers
is given by

ĤT =
∑

β=N,S

∑
k,σ

(Vkβ d̂
†
1σ ĉkσβ + H.c.)

+
∑
k,σ

(VkD d̂
†
2σ ĉkσD + H.c.). (2)

Such couplings indirectly affect both the quantum dots through
the interdot hopping t in

ĤDQD =
∑
σ,i

εi d̂
†
iσ d̂iσ + t

∑
σ

(d̂†
1σ d̂2σ + H.c.)

+
∑

i

Ui d̂
†
i↑d̂i↑ d̂

†
i↓d̂i↓. (3)

We use standard notation for the annihilation (creation)
operators d̂

(†)
i for electrons of the quantum dots i = 1,2. The

corresponding energy levels are denoted by εi and Ui stand for
the on-dot Coulomb potential.

Let us emphasize that only the electrodes N and S belong
to a closed circuit (as is displayed in Fig. 1), and under
nonequilibrium conditions μN �= μS play a role of the source
and sink for the charge current. The third floating lead D can
temporarily absorb/reinject electrons, but appropriate tuning
of the chemical potential μD (Ref. 29) can guarantee that
no current would be contributed on average from it. Electrons
scattered by such a floating lead experience the inelastic events,
leading to their phase randomization. Some quantitative
aspects of this dephasing driven by the voltage probe D have
been discussed (for the case of conducting electrodes) by
a number of authors.9–11 From the physical point of view,
matching the dephased electrons (inelastically scattered by
the floating lead) with other electrons (coherently tunneled
only through the central quantum dot), the conductance of
the resulting total current would reveal their subtle interplay,
depending on the magnitude of �D .

For simplicity, we assume that the chemical potentials μβ

are safely distant from the band edges and one can impose
the wide-band limit approximation, introducing the coupling
constants �β = 2π

∑ |Vkβ |2δ (
ω − ξkβ

)
. We shall use �N as

a convenient unit for the energies.

III. PARTICLE-HOLE FANO LINE SHAPES

To account for the proximity effect we have to deal with
the mixed particle and hole degrees of freedom. Among the
possible ways for doing this one can use the Nambu spinor
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FIG. 2. (Color online) Particle and hole Fano-type line shapes
appearing at ±ε2 in the spectral function ρd1(ω) of the central quantum
dot. Calculations are done for the following parameters: ε1 = 0, ε2 =
2�N , Ui = 0, t = 0.2�N , and � = 10�N .

notation �̂
†
j = (d̂†

j↑,d̂j↓) and �̂j = (�̂†
j )†. Spectroscopic and

transport properties of the system can be determined from
the matrix Green’s function Gj (t,t0) = −iT̂ 〈�̂j (t)�̂†

j (t0)〉. In
the equilibrium case this function depends solely on the time
difference t − t0 and its Fourier transform can be expressed by
the following Dyson equation:

Gj (ω)−1 = gj (ω)−1 − �0
j (ω) − �e−e

j (ω), (4)

where gj (ω) are the Green’s functions of the isolated quantum
dots,

gj (ω) =
(

1
ω−εj

0

0 1
ω+εj

)
, (5)

and the self-energies consist of the noninteracting part �0
j (ω)

with the additional correction �e−e
j (ω) due to the electron-

electron correlations.
Appearance of the particle and hole interference Fano struc-

tures (see Fig. 2) can be explained restricting first to the uncor-
related quantum dots. The self-energies �0

j (ω) are given by

�0
j (ω) =

∑
k,β

Vkβ gβ(k,ω) V ∗
kβ + t Gj ′ (ω) t∗, (6)

where the interdot hopping contribution refers to j ′ �= j . The
Green’s functions of the conducting leads β = N,D have the
diagonal form

gβ(k,ω) =
(

1
ω−ξkβ

0

0 1
ω+ξkβ

)
(7)

whereas the superconducting lead is characterized by the BCS
structure

gS(k,ω) =
⎛
⎝ u2

k
ω−Ek

+ v2
k

ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

u2
k

ω+Ek
+ v2

k
ω−Ek

⎞
⎠ (8)

with the corresponding coefficients

u2
k,v

2
k = 1

2

[
1 ± ξkS

Ek

]
, ukvk = �

2Ek
,

and the quasiparticle energy Ek =
√

ξ 2
kS + �2.

In the wide-band limit we obtain for β = N,D

∑
k

Vkβ gβ(k,ω) V ∗
kβ = −i

�β

2

(
1 0

0 1

)
(9)

and for the superconducting electrode

∑
k

VkS gS(k,ω) V ∗
kS = −i

�S

2
γ (ω)

(
1 �

ω
�
ω

1

)
(10)

with

γ (ω) = |ω| �(|ω| − �)√
ω2 − �2

− iω �(� − |ω|)√
�2 − ω2

. (11)

In a far subgap regime |ω| � � only the off-diagonal terms
of the matrix (10) are preserved tending to the static value
−�S/2. This atomic limit case has been studied by several
groups and the results have been recently summarized in the
Ref. 30. For arbitrary � we obtain the following set of coupled
equations:

G1(ω)−1 =
[
ω + i

�N + γ (ω)�S

2

]
I − ε1σ z

+ i
γ (ω)��S

2ω
σ y − |t |2 G2(ω), (12)

G2(ω)−1 =
[
ω + i

�D

2

]
I − ε2σ z − |t |2 G1(ω), (13)

where I stands for the identity matrix and σ y,z denote the usual
Pauli matrices.

Figure 2 shows the spectral function ρd1(ω) obtained
in the equilibrium situation for both uncorrelated quantum
dots (Ui = 0) assuming a weak interdot hopping t = 0.2�N

(decoherence is not taken into account here). To focus on the
subgap regime |ω| � � we used � = 10�N and other effects
related to the gap edge singularities are separately discussed
in the Appendix. For an increasing ratio �S/�N we can notice
the following qualitative changes: (a) the initial Lorentzian
centered at ε1 splits into two quasiparticle peaks centered at
±E1 � ±

√
ε1 + (�S/2)2 (due to the proximity effect), (b) the

usual Fano-type line shape formed at ε2 is for larger values
of �S accompanied by the appearance of its mirror reflection
at −ε2 (we shall refer to these peaks as the particle/hole Fano
structures), (c) Fano-type line shapes of these particle/hole
features are characterized by an opposite sign of the asymmetry
parameter q, (d) the asymmetry parameters exchange the sign
for such �S when the quasiparticle energy

√
ε2

1 + (�S/2)2∼ε2.
For a closer inspection on the above-mentioned changes

we examine in the upper (bottom) panel of Fig. 3 the spectral
function ρd1(ω) obtained for �S/�N = 1.5 (8) when ε2 is
smaller (larger) than the quasiparticle energy E1. We also
check the decoherence effect on these particle and hole Fano
line shapes. We notice that already a weak coupling �D to
the floating lead washes out both these particle and hole
Fano structures. Thus we conclude that decoherence has a
detrimental effect on the quantum interferometric features.
To provide physical argumentation for this behavior let us
recall that the resonant level at ε2 gradually broadens upon
increasing �D . For this reason the electron waves are scattered
on the side-attached quantum dot without any sharp change
of the phase, thereby the Fano-type interference is no longer
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FIG. 3. (Color online) Spectral function ρd1(ω) of the central
quantum dot in the equilibrium situation. The upper panel corresponds
to �S = 1.5�N (when the quasiparticle energy Ed1 < ε2) while
the lower one refers to �S = 8�N (when Ed1 > ε2). We used for
computations the model parameters ε1 = 0, ε2 = 2�N , t = 0.2�N ,
Ui = 0, and several values of �D .

possible.20 In other words, the particle/hole Fano-type line
shapes seem to be rather fragile entities with respect to �D .
This remark should be taken into account by experimentalists
while constructing the double quantum dot structures on a
given substrate material.

IV. ANDREEV SPECTROSCOPY

Any practical observation of the interferometric parti-
cle/hole Fano line shapes could be detectable only in the
tunneling spectroscopy. For this purpose one could measure
the differential conductance at small bias (i.e., in the subgap
regime |eV | < �) when charge transport is provided solely via
the anomalous Andreev current IA(V ). Skipping the details we
apply here the popular Landauer-type expression

IA(V ) = 2e

h

∫
dωTA(ω)[f (ω − eV,T ) − f (ω + eV,T )],

(14)

derived previously in Refs. 31 and 32. The Andreev current
depends on occupancy f (ω ± eV,T ) of the conducting lead
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FIG. 4. (Color online) Andreev transmittance TA(ω) for the same
parameters as in Fig. 3 (�D is expressed in units of �N ).

(N ) convoluted with the transmittance TA(ω). The latter
quantity can be determined from the off-diagonal part of the
retarded Green’s function G1(ω) via32,33

TA(ω) = �2
N |G1,12(ω)|2. (15)

The Andreev transmittance (15) is a dimensionless quantity
and, roughly speaking, it is a measure of the proximity induced
on-dot pairing. Of course the transmittance (15) depends
indirectly on various structures appearing in the spectrum
of the central quantum dot, including the particle-hole Fano
features.

In particular, the zero-bias differential conductance

GA(V = 0) = 4e2

h

∫
dωTA(ω)

[
−df (ω,T )

dω

]
(16)

at low temperatures simplifies to

GA(0) = 4e2

h
TA(ω = 0), (17)

so the optimal Andreev conductance 4e2/h occurs when TA(ω)
reaches the ideal value 1. In Fig. 4 we plot ω dependence of
the Andreev transmittance for the same set of parameters as
discussed in Sec. III. We obtain the symmetric transmittance
TA(−ω) = TA(ω) because anomalous Andreev scattering in-
volves both the particle and hole degrees of freedom. For this
reason we notice that at ω = ±ε2 there appear the Fano-type
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structures of identical shapes but characterized by an opposite
sign of the asymmetry parameter q. Again decoherence proves
to have a detrimental influence on both these interferometric
structures (compare the curves in Fig. 4 which correspond to
several representative values of �D).

V. CORRELATION EFFECTS

Let us now consider additional changes of the Fano line
shapes caused by the electron correlations. We shall restrict
to the Coulomb repulsion at the side-attached quantum dot
U2 because the effects of U1 have been already studied
previously.18 Briefly summarizing those studies we can point
out that the Coulomb repulsion U1 leads to the charging
effect and (at low temperatures) can induce the narrow Kondo
resonance in the spectrum ρd1(ω) for ω ∼ 0. The latter
effect is experimentally manifested by a slight enhancement
of the zero-bias Andreev conductance.2 Interference effects
(originating from the interdot coupling t) would qualitatively
affect such a Kondo feature if ε2 ∼ 0. Effects of the Fano
interference depend also on the ratio �S/�N controlling
efficiency of the induced on-dot pairing which competes with
the Kondo physics.33

So far the correlations have been intensively studied mainly
for the case of a single quantum dot coupled between the
metallic and superconducting electrodes.1 For this purpose
there have been adopted various many-body techniques,
such as the mean-field slave-boson approach,34 noncross-
ing approximation,35 iterated perturbative scheme,30,36 modi-
fied slave-boson method,31 numerical renormalization-group
calculations,37–39 and others.32,33,40–42 The interest focused
predominantly on an interplay between the on-dot pairing and
the Kondo state.30 It has been experimentally proved2 that such
interrelation is governed by the ratio �S/�N . For �S  �N

the on-dot pairing plays a dominant role (suppressing or
completely destroying the Kondo resonance). In the opposite
regime �S � �N the Kondo state is eventually observed
(coupling �N to the normal lead is necessary for that).

In this section we study the role of correlations U2

in the side-coupled quantum dot taking also into account
decoherence caused by the floating lead. For simplicity we
shall neglect the impact of U2 on the off-diagonal parts of
G2(ω) because the pairing induced in QD2 for small interdot
hopping t can be anyhow expected to be marginal. Thus
we determine the Green’s function G2(ω) from the Dyson
equation (4) imposing the diagonal self-energy

�e−e
2 (ω) �

(
�N (ω) 0

0 −[�N (−ω)]∗

)
. (18)

Formally �N (ω) denotes the self-energy of the Anderson
impurity immersed in the normal Fermi liquid. Obviously such
self-energy is not known exactly43 therefore we have to invent
some approximations.

Among possible choices we adopt the equation of mo-
tion method44 which is capable to reproduce qualitatively
the Coulomb blockade and the Kondo effects. Besides its
simplicity this method is, however, not very precise with regard
to the low-energy structure of the Kondo peak ρd2(ω ∼ 0) =

2
π�D

T 2
K

ω2+T 2
K

. Nevertheless our results might give some hints
on the qualitative trends and a quality of this information
could be improved using more sophisticated tools. Skipping
the technicalities discussed by us in Appendix B of Ref. 18 we
express the self-energy �N (ω) by

[ω − ε2 − �N (ω)]−1

= ω̃ − ε2 − [�N3(ω) + U2(1 − 〈n̂2↓〉)]
[ω̃ − ε2][ω̃ − ε2 − U2 − �N3(ω)] + U2�N1(ω)

, (19)

where ω̃ = ω − ∑
k |VkD|2/(ω − ξkD) � ω + i�D

2 . The
other symbols are defined as follows: �N1(ω) =∑

k |VkD|2 f (ξkD, T ) [(ω − ξkD)−1 + (ω − U2 − 2 ε2 +
ξk D)−1] and �N3(ω) = ∑

k |VkD|2[(ω − ξkD)−1 + (ω − U2 −
2ε2 + ξkD)−1]. This expression (19) for �N (ω) substituted to
the self-energy (18) yields the Green’s function G1(ω) of the
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FIG. 5. (Color online) Evolution of the Fano-type line shapes
for several couplings �D as indicated. Calculations have been done
for T = 0.001�N (lower than TK ), using the model parameters
ε1 = 0, ε2 = −2�N , t = 0.2�N , �S = 1.5�N , and assuming the large
superconducting gap � = 10�N .
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central quantum dot via the exact relation (12). In this way we
can numerically determine the effect of U2 on ρd1(ω) and on
the Andreev transport.

For a weak interdot hopping t (which is necessary to allow
for the Fano-type quantum interference) we notice that the
correlations U2 can be manifested in the spectral function
ρd1(ω) by (i) the charging effect and (ii) another characteristic
structure due to the Kondo effect.

(i) The first effect can be observed only if a decoherence
is sufficiently weak, strictly speaking for �D � 0.1�N . Under
such circumstances the particle and hole Fano line shapes (at
±ε2) are accompanied by two additional Coulomb satellites
at ±(ε2 + U2). These interferometric features (see the top and
middle panels of Fig. 5) are completely washed out from the
spectrum when �D slightly exceeds the value 0.1�N . This
destructive effect of a decoherence resembles the behavior
discussed in Sec. III (see Fig. 3) for the case of uncorrelated
quantum dots.

(ii) Instead of the particle/hole Fano line shapes and their
Coulomb satellites we can eventually observe a different
qualitative structure at ω ∼ 0 when the coupling �D is large
[provided that temperature T < TK (�D)]. Its appearance is
related to the Kondo resonance formed at the side-attached
quantum dot (see the dashed curve in the bottom panel
of Fig. 5). Due to the interdot hopping t the mentioned
Kondo resonance affects the central quantum dot in pretty
much the same way as did the narrow resonant level ε2 in
a weak-coupling regime �D . Consequently we thus again
observe the tiny Fano line shape in the spectral function ρd1(ω)
of the central quantum dot and in the Andreev transmittance
TA(ω) near ω ∼ 0.

Since the Kondo-induced interferometric structure is hardly
noticeable on the large energy scale we show it separately in
Fig. 6 restricting to a narrow regime around the Fermi level
ω = 0. Let us remark that the Kondo resonance in ρd2(ω) and
its Fano-type manifestation in ρd1(ω) are both very sensitive
to temperature. This fact proves that the considered Fano line
shape at ω ∼ 0 is intimately related to the Kondo effect on the
side-attached quantum dot.

0

 0.1

 0.2

-0.5 0  0.5
ω / ΓN

ρ d
2
(ω

)

 0.17

 0.2

 0.23

-0.05 0  0.05
ω / ΓN

ρ d
1
(ω

)

FIG. 6. (Color online) Influence of the Kondo effect appearing
in ρd2(ω) on a tiny Fano-type structure of the central quantum dot
spectrum ρd1(ω) near ω = 0. The curves have been calculated using
the same parameters as in Fig. 5 for the following temperatures:
T/�N = 0.001 (solid line), 0.01 (dashed line), and 0.1 (dotted line).

VI. CONCLUSIONS

In summary, we have investigated the influence of decoher-
ence and electron correlations on the interferometric Fano-type
line shapes of the double quantum dot coupled in T-shape
configuration to the conducting and superconducting leads.
We find evidence that the decoherence can consequently smear
out the Fano line shapes of the particle and hole states. On a
microscopic level this detrimental influence can be assigned
to a broadening of the resonant levels near ±ε2, so that
consequently the phase shift of the scattered electron waves
is no longer sharp and therefore the Fano-type interference
cannot be satisfied.19

The correlations U2 on the side-attached quantum dot have
the additional qualitative influence. For a weak coupling �D

the particle/hole Fano structures at ±ε2 are accompanied by the
appearance of their Coulomb satellites at ±(ε2 + U2). All these
interferometric features gradually disappear upon increasing
�D (i.e., when a dephasing is more effective). On the other
hand, in the opposite regime of strong coupling �D , the narrow
Kondo resonance appears in the spectral function ρd2(ω) of
the side-coupled quantum dot. Its formation gives rise to the
new interferometric structure appearing in the spectrum of
the central quantum dot at ω ∼ 0. This temperature-dependent
Fano-type line shape is observable in the spectral function
ρd1(ω) and would be detectable in the Andreev conductance.
Such Kondo-induced Fano effect is, however, very tiny, so its
experimental verification might be challenging.
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APPENDIX: GAP EDGE FEATURES

There is also another important energy scale, relevant for
the present study, which is related to a magnitude of the energy
gap � of superconducting lead. To illustrate its influence on
the spectral function ρd1(ω) we show in Fig. 7 variation within
the region 0 � � � 4�N . When the energy gap is small we
see that the proximity effect is very fragile. For this reason
we hardly notice the Fano-type structure at −ε2 because the

on-dot pairing is rather ineffective. The Fano resonance starts
to be well pronounced at −ε2 when � becomes comparable (or
larger) than �S . Additionally, the energy gap � is responsible
for two tiny dips appearing at ω = ±�. They are signatures of
the gap edge singularities of superconducting lead. Roughly
speaking, outside the energy regime |ω| > min {�,�S/2} the
charge tunneling occurs via the usual single-particle channel
and the Andreev tunneling is there no longer dominant.31–36
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