
PHYSICAL REVIEW B 84, 174520 (2011)

Flow equation approach to the linear response theory of superconductors
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We apply the flow equation method for studying the current-current response function of electron systems
with the pairing instability. To illustrate the specific scheme in which the flow equation procedure determines
the two-particle Green’s functions, we reproduce the standard response kernel of the BCS superconductor. We
next generalize this nonperturbative treatment considering the pairing field fluctuations. Our study indicates that
the residual diamagnetic behavior detected above the transition temperature in the cuprate superconductors can
originate from the noncondensed preformed pairs.
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I. INTRODUCTION

The nonperturbative scheme of the flow equation method
introduced by Wegner1 and independently by Wilson with
Głazek2 proved to be a useful tool for investigating a number of
problems in condensed matter physics,3 mesoscopic systems,4

quantum optics,5 and quantum chromodynamics.6 This proce-
dure has been also recently applied to study the nonequilibrium
transport phenomena of the correlated nanoscopic systems.7

The main idea is rather simple and relies on a continuous
process that, step by step, transforms the Hamiltonian to a
diagonal or at least block-diagonal structure. One can use, for
this purpose, various operators depending on the subtleties of
the discussed problem.3

Such a continuous diagonalization scheme is reminiscent of
the renormalization group (RG) technique.8 They are similar
with regard to the treatment of high- (low-) energy states [fast
(slow) modes]. In initial steps of the continuous transformation
procedure, mainly the most off-diagonal terms (i.e., high-
energy sector) are dealt with. Subsequently, the remaining
parts closer to the diagonal are transformed. Since different
energy scales are successively transformed or renormalized
one by one, the algorithm of the flow equation method is
relative to the family of RG formulations.9 Let us remark that
such techniques are, in principle, unrestricted by limitations of
the usual perturbative methods.

In this paper, we (1) formulate the current-current response
function for the superconducting system using the flow
equation method, and (2) extend such a scheme to a state of the
preformed pairs, which, above the critical temperature Tc, lose
the long-range coherence. Our study is motivated by the recent
torque magnetometry data of the Princeton group,10 revealing
the diamagnetic features well preserved above Tc in the lan-
thanum and yttrium cuprate oxides. Similar indications have
been also reported from the dc susceptibility measurements for
Bi2.2Sr1.8Ca2Cu3O10+δ (Ref. 11) and from the high-resolution
SQUID data for Sm-based underdoped YBCO compounds.12

Since the observed diamagnetic response is rather strong, it
can be hardly assigned to the Ginzburg-Landau fluctuations.13

Adopting argumentation discussed in the literature on the
microscopic14–19 and the phenomenological grounds,20,21 we
consider the system consisting of the preformed local pairs (of
arbitrary origin) coexisting and interacting with the itinerant
electrons. Using the flow equation approach, we analyze
the diamagnetism within such a scenario. Our study can be

regarded as complementary to the recent quantum Monte
Carlo (QMC) simulations for the same cooperon-fermion
model.22 It has also some resemblance to considerations
of the superconducting fluctuations beyond the Gaussian
approximation carried out in the t-J model.23

We start by discussing the usual BCS model, treating it as
a testing field for formulation of the linear response theory
in terms of the flow equation method (readers less interested
in the methodological details can skip this section). We next
apply the same treatment to the mixture of electrons interacting
through the Andreev scattering with the preformed local pairs.
We determine the current-current response function and try
to assess the diamagnetic response above Tc. In summary, we
point out the main conclusions and give a list of problems that
might be of interest for further studies.

II. BCS SUPERCONDUCTOR

Let us first briefly illustrate how the flow equation procedure
determines the quasiparticle spectrum and the corresponding
response function for the usual BCS model

Ĥ =
∑
k,σ

ξkĉ
†
kσ ĉkσ −

∑
k

(�kĉ
†
k↑ĉ

†
−k↓ + H.c.) (1)

describing electrons coupled to the pairing field �k. We
use here the standard notation for the creation (annihilation)
operators ĉ

†
kσ (ĉkσ ) and denote by ξk = εk − μ the energies

measured with respect to the chemical potential μ. Formally,
�k can be thought of as the Bose-Einstein condensate of the
Cooper pairs �k = −∑

q Vk,q〈ĉ−q↓ĉq↑〉, which are formed by
some attractive potential Vk,q < 0.

A. Continuous diagonalization

The continuous diagonalization of the reduced BCS Hamil-
tonian (1) has been considered in the original paper by Wegner1

and by several other authors.24,25 We briefly recollect the main
steps of such a procedure (see Appendix A for the procedural
details), which shall be useful for formulating the linear
response theory.
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Following Wegner,1 we choose the generating operator η̂(l)
defined by Eq. (A3), which, for the BCS model (1), has the
following structure:

η̂(l) = 2
∑

k

ξk(l)(�k(l)ĉ†k↑ĉ
†
−k↓ − �∗

k(l)ĉ−k↓ĉk↑). (2)

Transformation of the Hamiltonian Ĥ (l) proceeds as long as
η(l) is finite, which occurs until �k(l) → 0. This is achieved
in the asymptotic limit l → ∞ [Eq. (A4)].

By substituting (2) to the general flow equation (A2) for the
Hamiltonian (1), we obtain25

d

dl
lnξk(l) = 4|�k(l)|2, (3)

d

dl
ln�k(l) = −4(ξk(l))2. (4)

Equations (3) and (4) yield an exponential flow

�k(l) = �k e−4
∫ l

0 dl′[ξk(l′)]2
(5)

and ξk(l) = ξke
4

∫ l

0 dl′|�k(l′)|2 ; therefore, the off-diagonal term
�k(l) vanishes in the limit l → ∞. By combining Eqs. (3)
and (4), we moreover notice that d

dl
{ξ 2

k (l) + |�k(l)|2} = 0,
which implies the invariance ξ 2

k (l) + |�k(l)|2 = const. Due to
�k(∞) = 0, we conclude that the quasiparticle energies take
the following BCS form:

ξ̃k = sgn (ξk)
√

ξ 2
k + |�k|2, (6)

where we introduced the shorthand notation for the asymptotic
value ξ̃k ≡ liml→∞ ξk(l).

B. Single-particle excitations

As an illustration as to how one can use this proce-
dure to obtain various Green’s functions, let us derive the
single-particle excitation spectrum determined by Gσ (k,τ ) =
−T̂τ 〈ĉkσ (τ )ĉ†kσ 〉, where T̂τ denotes chronological ordering and
τ stands for the imaginary time. Applying (2) to the flow
equation (A7) for the creation and annihilation operators, we
infer the Bogoliubov ansatz

ĉk↑(l) = uk(l)ĉk↑ + vk(l)ĉ†−k↓, (7)

ĉ
†
−k↓(l) = −vk(l)ĉk↑ + uk(l)ĉ†−k↓ (8)

with the initial boundary conditions uk(0) = 1, vk(0) = 0. By
arranging the l-dependent coefficients if front of ĉk↑ and ĉ

†
−k↓

on both sides of the flow equation (A7), we find that

duk(l)

dl
= −2ξk(l)�∗

k(l)vk(l), (9)

dvk(l)

dl
= 2ξk(l)�k(l)uk(l). (10)

From Eqs. (9) and (10), we can see that the sum rule
u2

k(l) + v2
k(l) = 1 is properly conserved. To determine the

needed asymptotic values, we can rewrite (9) as duk(l)
vk(l) =

−2ξk(l)�k(l)dl, and by substituting vk(l) =
√

1 − u2
k(l), we

can analytically solve the integral
∫ ∞

0 dl. In the asymptotics,
we obtain the usual Bogoliubov-Valatin coefficients

ũ2
k = 1 − ṽ2

k = 1

2

[
1 + ξk

ξ̃k

]
. (11)

Fourier transform of the single-particle Green’s function

Gσ (k,iω) = β−1
∫ β

0
dτ e−iωτGσ (k,τ ) (12)

(where β−1 = kBT ) takes hence the two-pole structure

Gσ (k,iω) = ũ2
k

iω − ξ̃k
+ ṽ2

k

iω + ξ̃k
, (13)

signaling the particle-hole mixing, characteristic for the BCS
state.

C. Linear response theory

We now adopt the same procedure for studying a response
of the BCS superconductor to a weak electromagnetic field
A(r,t). In the linear response, the induced current J(r,t) is
assumed to be proportional to the perturbation, i.e., J(r,t) =
− ∫

dr′ ∫ t

−∞ dt ′K(r − r′,t − t ′)A(r′,t ′). Fourier transform of
the kernel function consists of the diamagnetic and paramag-
netic contributions26

Kα,β(q,ω) = ne2

m
δα,β + e2 �α,β (q,ω). (14)

From now on, by α, β we shall denote the Cartesian coordinates
x, y, and z. The paramagnetic term can be expressed by the
(analytically continued) Fourier transform (12) of the current-
current Green’s function

�α,β(q,τ ) ≡ − 〈T̂τ ĵq,α(τ )ĵ−q,β〉, (15)

where the corresponding current operator ĵq = ĵ↑q + ĵ↓q consists
of the spin-up (↑) and -down (↓) contributions

ĵσq =
∑

k

vk+ q
2
ĉ
†
k,σ ĉk+q,σ (16)

with the velocity vk = h̄−1∇kεk.
The standard way for computing the current-current re-

sponse function (15) is based on the diagrammatic bubble-type
contributions involving the particle and hole propagators and
another contribution from the off-diagonal (in Nambu nota-
tion) single-particle propagators. In this section, we retrieve
the standard BCS result26 using the flow equation routine.

To guess the relevant flow of the current operators, we start
by analyzing the initial (l = 0) derivative(

d ĵσq (l)

dl

)
l=0

= [
η̂(l),ĵσq (l)

]
l=0

, (17)

where ĵσq (l = 0) corresponds to the definition (16). Using the
generating operator (2), we find that(

d ĵσq (l)

dl

)
l=0

= ±2
∑

k

vk+ q
2
(ξk�kĉ−k,−σ ĉk+q,σ

+ ξk+q�k+qĉ
†
k,σ ĉ

†
−(k+q),−σ ), (18)
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where the sign + (−) refers to spin ↑ (↓). Equation (18) unam-
biguously implies the following l-dependent parametrization:

ĵ↑q(l) =
∑

k

vk+ q
2
(Ak,q(l)ĉ†k,↑ĉk+q,↑ + Bk,q(l)ĉ−k,↓ĉ

†
−(k+q),↓

+Dk,q(l)ĉ†k,↑ĉ
†
−(k+q),↓ + Fk,q(l)ĉ−k,↓ĉk+q,↑),

(19)
ĵ↓q(l) =

∑
k

vk+ q
2
(Ak,q(l)ĉ†k,↓ĉk+q,↓ + Bk,q(l)ĉ−k,↑ĉ

†
−(k+q),↑

−Fk,q(l)ĉ†k,↑ĉ
†
−(k+q),↓ − Dk,q(l)ĉ−k,↓ĉk+q,↑),

with the initial boundary conditionsAk,q(0) = 1 andBk,q(0) =
Dk,q(0) = Fk,q(0) = 0. All l-dependent coefficients have to be
determined by applying the ansatz (19) in the flow equation
(A7) for the current operators ĵσq (l). On this basis, we obtain
the following set of equations:

dAk,q(l)

dl
= −2[ξk+q(l)�k+q(l)Dk,q(l) + ξk(l)�k(l)Fk,q(l)],

(20)
dBk,q(l)

dl
= 2[ξk(l)�k(l)Dk,q(l) + ξk+q(l)�k+q(l)Fk,q(l)],

(21)
dDk,q(l)

dl
= 2[ξk+q(l)�k+q(l)Ak,q(l) − ξk(l)�k(l)Bk,q(l)],

(22)
dFk,q(l)

dl
= 2[ξk(l)�k(l)Ak,q(l) − ξk+q(l)�k+q(l)Bk,q(l)].

(23)

By inspecting Eqs. (20)–(23), we can notice that

d

dl
[Ak,q(l) + Bk,q(l)] = 2[ξk+q(l)�k+q(l) − ξk(l)�k(l)]

× [Fk,q(l) − Dk,q(l)], (24)

d

dl
[Fk,q(l) − Dk,q(l)] = −2[ξk+q(l)�k+q(l) − ξk(l)�k(l)]

× [Ak,q(l) + Bk,q(l)], (25)

which implies

d

dl
[Ak,q(l) + Bk,q(l)]2 + d

dl
[Dk,q(l) − Fk,q(l)]2 = 0. (26)

Taking into account the initial boundary conditions, we hence
obtain the following invariance:

[Ak,q(l) + Bk,q(l)]2 + [Dk,q(l) − Fk,q(l)]2 = 1 (27)

valid for arbitrary l, including the limit l → ∞. Combining
(27) with the differential equations (24) and (25), we exactly
determine the asymptotic limit values

[Ãk,q + B̃k,q]2 = 1

2

(
1 + �k+q�k + ξk+qξk

ξ̃k+qξ̃k

)
, (28)

[D̃k,q − F̃k,q]2 = 1

2

(
1 − �k+q�k + ξk+qξk

ξ̃k+qξ̃k

)
, (29)

where ξ̃k =
√

ξ 2
k + �2

k. In the same way, we also check

that [Ak,q(l) − Bk,q(l)]2 − [Dk,q(l) + Fk,q(l)]2 = 1, thereby
the asymptotic values of all coefficients are found Ãk,q =
ũkũk+q, B̃k,q = ṽkṽk+q, D̃k,q = ṽkũk+q, and F̃k,q = ũkṽk+q.

Since the transformed Hamiltonian Ĥ (∞) is diagonal, we
can easily compute the current-current response function (15)
by expressing it through the particle-hole bubble diagrams (see
the left-hand-side panel in Fig. 1). Finally, it is given by

�α,β(q,iν) =
∑

k

vk+ q
2 ,αvk+ q

2 ,β

{
[Ãk,q + B̃k,q]2[fFD(ξ̃k+q)

− fFD(ξ̃k)]

[
1

iν + ξ̃k+q − ξ̃k
− 1

iν − ξ̃k+q+ξ̃k

]

+ [D̃k,q − F̃k,q]2[1 − fFD(ξ̃k+q) − fFD(ξ̃k)]

×
[

1

iν − ξ̃k+q − ξ̃k
− 1

iν + ξ̃k+q + ξ̃k

]}
,

(30)

where fFD(ω) = [exp(ω/kBT ) + 1]−1 is the Fermi-Dirac dis-
tribution function. We recognize that Eqs. (28) and (29) corre-
spond to the usual BCS coherence factors (ũk+qũk + ṽk+qṽk)2

and (ũk+qṽk − ṽk+qũk)2 and, thereby, Eq. (30) rigorously
reproduces the known BCS response function.26

III. SUPERCONDUCTING FLUCTUATIONS

Numerous experimental data10,27–35 provided a rather clear
evidence that the critical temperature Tc in the under-
doped cuprate superconductors (and similarly in the ultra-
cold fermion gases near the unitary limit36) is not related
to appearance of the fermion pairs, but corresponds to
the onset of their phase coherence. Upon approaching Tc

from above, the short-range superconducting correlations
gradually emerge. For instance, the torque magnetometry10

and other measurements11,12 have detected the diamagnetic
properties.

k + q

k

k + q

q1

q1- k

k - q

q1

q1+ k

FIG. 1. (Color online) Contributions to the current-current response function from the particle-hole bubble (the left-hand-side panel) and
from additional terms involving the finite-momentum boson propagators (the middle and right-hand-side panels). Vertices are expressed by the
corresponding momentum components of the asymptotic values l → ∞ for the coefficients used in Eq. (37).
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To investigate the electrodynamic properties of the noncon-
densed preformed pairs, we consider the model

Ĥ =
∑
k,σ

ξkĉ
†
kσ ĉkσ +

∑
q

Eqb̂
†
qb̂q

+ 1√
N

∑
k,p

gk,p(b̂†k+pĉk↓ĉp↑ + b̂k+pĉ
†
k↑ĉ

†
p↓), (31)

describing the itinerant electrons (ĉ(†)
kσ operators) coexisting

with the preformed pairs (bosonic b̂
(†)
q operators). They are

mutually coupled through the charge exchange (Andreev-type)
scattering. Such scenario (31) has been considered by various
authors in the context of high-Tc superconductivity14–21 and
for description of the resonant Feshbach interaction in the
ultracold fermion atom gases.36–38

By Eq, we denote the energy of preformed pairs measured
with respect to 2μ. Since in the superconducting state of
cuprate materials the energy gap �k has a d-wave symme-
try, we furthermore impose the anisotropic boson-fermion
coupling gk,p = g(cos kx − cos ky). If one restricts only to
the Bose-Einstein condensed pairs (i.e., to bosonic q = 0
mode), then the model (31) becomes identical with the reduced
BCS Hamiltonian (1), where �k is related to the condensate

− b̂q=0√
N

gk,−k. In what follows, we shall consider an influence
of the noncondensed preformed pairs on the current-current
response function.

A. Outline of the continuous diagonalization

Adopting again Wegner’s proposal,1 we choose the gener-
ating operator as η̂(l) = [Ĥ0(l),V̂ B−F (l)], where Ĥ0(l) stands
for the free fermion and boson contributions, whereas V̂ B−F (l)
denotes their interaction term. In explicit form, such a
generating operator is given by

η̂(l) = 1√
N

∑
k,p

αk,p(l)(b̂k+pĉ
†
k↑ĉ

†
p↓ − H.c.), (32)

where αk,p(l) = [ξk(l) + ξp(l) − Ek+p(l)]gk,p(l). By using
(32) in the flow equation for the Hamiltonian (31), we obtain39

d

dl
lngk,p(l) = −[ξk(l) + ξp(l) − Ek+p(l)]2, (33)

which implies an exponential diminishing of gk,p(l) and
guarantees its total disappearance in the asymptotic limit
l → ∞. Simultaneously, the fermion and boson energies are
renormalized according to the flow equations39

d

dl
ξk(l) = 2

N

∑
q

αk,q−k(l) gk,q−k(l) nB
q , (34)

d

dl
Eq(l) = − 2

N

∑
k

αk,k−q(l) gk−q,k(l)
[ − nF

k−q − nF
k

]
,

(35)

where n
F,B
k denote the fermion and boson occupancies of mo-

mentum k state. We have previously39,40 explored (analytically
and numerically) the flow equations (33)–(35), arriving at the
following conclusions:

(i) The renormalized fermion dispersion ξ̃k develops either
the true gap (below Tc, when a finite fraction of the Bose-
Einstein (BE) condensed bosons exists) or the pseudogap (for
Tc <T <T ∗, where T ∗ marks the onset of superconducting-
type correlations).

(ii) The long-wavelength limit of the effective boson disper-
sion Ẽq is characterized by the Goldstone mode (for T <Tc),
the remnants of which become overdamped in the pseudogap
regime (above Tc),

(iii) The single-particle spectral function of fermions (see
Appendix B) consists of the Bogoliubov-type branches sepa-
rated by the (pseudo)gap, and these features remain preserved
up to T ∗.

More recently,19 we have also investigated evolution of
the k-resolved pseudogap considering two-dimensional lattice
dispersion with the nearest- and next-nearest-neighbor hop-
ping integrals realistic for the cuprate superconductors. For
temperatures slightly above Tc, we have found that the pseudo-
gap starts to close around the nodal points restoring the Fermi
arcs, whereas in the antinodal areas, the pseudogap practically
does not change. Upon a gradual increase of temperature, the
length of the Fermi arcs linearly increases, in agreement with
the experimental angle-resolved photoemission spectroscopy
(ARPES) data.41 Similar conclusions have been achieved for
the same model (31) from theoretical studies based on the
conserving diagrammatic approach.42

B. Diamagnetism due to the preexisting pairs

Following the guidelines discussed in Sec. II C, we can
now formulate the linear response theory for the model (31),
focusing on the role played by the noncondensed q 
= 0
preformed pairs.

To impose the corresponding parametrization of the cur-
rent operators jσq , we again start from the initial deriva-
tive (17). By using the generating operator (32), we
obtain(

d ĵσq (l)

dl

)
l=0

= ∓
∑

k

vk+ q
2

∑
p

(αk,pb̂
†
k+pĉp,−σ ĉk+q,σ

+αk+q,kb̂k+q+pĉ
†
k,σ ĉ

†
p,−σ ), (36)

where − (+) refers to the spin ↑ (↓). By analyzing (36),
we deduce the following general structure of the l-dependent
current operators:

ĵ↑q(l) =
∑

k

vk+ q
2
[Ak,q(l)ĉ†k,↑ĉk+q,↑ + Bk,q(l)ĉ−k,↓ĉ

†
−(k+q),↓

+
∑

p

(Dk,p,q(l)b̂k+pĉ
†
k,↑ĉ

†
p−q,↓

+Fk,p,q(l)b̂†k+pĉp,↓ĉk+q,↑)] (37)

with the initial values Ak,q(0) = 1 and Bk,q(0) = Dk,p,q(0) =
Fk,p,q(0) = 0. The operator ĵ↓q(l) is given by the expression
analogous to (37) with Dk,p,q(l) replaced by −Fk,p,q(l) and
vice versa. Let us remark that by taking into account only the
BE condensed pairs b̂

(†)
k+p = b̂

(†)
0 δp,−k, we would come back to

the ansatz (19) reproducing the BCS solution.
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After a somewhat lengthy but rather straightforward alge-
bra, we derive the following set of the flow equations:

dAk,q(l)

dl
=

∑
p

[
αk+q,p−q(l)Dk,p,q(l)

(
nF

p−q + nB
k+p

)
+αk,p(l)Fk,p,q(l)

(
nF

p + nB
k+p

)]
, (38)

dBk,q(l)

dl
= −

∑
p

[
αk,p(l)D−p,−k,q(l)

(
nF

p + nB
k+p

)
+αk+q,p−q(l)F−p,−k,q(l)

(
nF

p−q + nB
k+p

)]
, (39)

dDk,p,q(l)

dl
= −αk+q,p−q(l)Ak,q(l) + αk,p(l)B−p,q(l), (40)

dFk,p,q(l)

dl
= −αk,p(l)Ak,q(l) + αk+q,p−q(l)B−p,q(l). (41)

For deriving the equations (38) and (39), we used the following
approximations:

b̂
†
kb̂k′ ĉ†p,σ ĉp′,σ � δk,k′nB

k ĉ†p,σ ĉp′,σ + b̂
†
kb̂k′ δp,p′nF

p

− δk,k′nB
k δp,p′nF

p , (42)

ĉ
†
p,↑ĉp′,↑ ĉ

†
p,↓ĉp′,↓ � δk,k′nF

k ĉ
†
p,↓ĉp′,↓ + ĉ

†
p,↑ĉp′,↑ δp,p′nF

p

− δk,k′nF
k δp,p′nF

p , (43)

neglecting the higher-order products δX̂ δŶ of the fluctuations
δX̂ = X̂ − 〈X̂〉, where the corresponding observables for the
case of Eq. (42) are defined by X̂ = b̂

†
kb̂k′ , Ŷ = ĉ

†
p,σ ĉp′,σ

and for (43) by X̂ = ĉ
†
p,↑ĉp′,↑, Ŷ = ĉ

†
p,↓ĉp′,↓. Such truncations

[Eqs. (42) and (43)] enable us to satisfy the flow equation
d
dl

ĵσq (l) = [η̂(l),ĵσq (l)] using the parametrization (37) imposed

on the current operators ĵσq (l). Otherwise, if we introduced

these neglected terms X̂Ŷ to the l-dependent operator ĵσq (l),
they would induce even more complex structures arising
from the commutator [η̂(l),ĵσq (l)], and formally the flow
equation (A7) could never be obeyed (except for only the
exactly solvable cases). The truncations (42) and (43), or
similar, represent thus a necessary compromise in which the
flow equation technique deals with the physical problems that
are not exactly solvable.1,2

Finally, let us determine the current-current response
function (15), keeping in mind that the statistical averaging
is feasible with respect to Ĥ (∞). Using the ansatz (37), we
find the response function

〈〈ĵq,α; ĵ−q,β〉〉

=
∑
k,p

vk+ q
2 ,αvp− q

2 ,β

(
Ãk,qÃp,−q

∑
σ

〈〈ĉ†k,σ ĉk+q,σ ; ĉ†p,σ ĉp−q,σ 〉〉 + Ãk,qB̃p,−q

∑
σ

〈〈ĉ†k,σ ĉk+q,σ ; ĉ−p,σ ĉ
†
−(p−q),σ 〉〉

+ B̃k,qÃp,−q

∑
σ

〈〈ĉ−k,σ ĉ
†
−(k+q),σ ; ĉ†p,σ ĉp−q,σ 〉〉 + B̃k,qB̃p,−q

∑
σ

〈〈ĉ−k,σ ĉ
†
−(k+q),σ ; ĉ−p,σ ĉ

†
−(p−q),σ 〉〉

−
∑
k′,p′

G̃k,k′,qG̃p,p′,−q〈〈b̂k+k′ ĉ
†
k,↑ĉ

†
k′−q,↓; b̂†p+p′ ĉp′,↓ĉp−q,↑〉〉 −

∑
k′,p′

G̃p,p′,qG̃k,k′,−q〈〈b̂†p+p′ ĉp′,↓ĉp+q,↑; b̂†p+p′ ĉp′,↓ĉp+q,↑〉〉
)

, (44)

where G̃p,p′,q ≡ D̃p,p′,q − F̃p,p′,q and we used the abbreviation 〈〈Ô1; Ô2〉〉 ≡ −〈T̂τ Ô1(τ )Ô2〉Ĥ (∞). These contributions (44) are
depicted graphically in Fig. 1. Vertices denoted by the filled squares correspond to the asymptotic value G̃, whereas the filled
circles represent Ã and/or B̃.

Performing the Matsubara summation for the particle-hole convolutions (left panel in Fig. 1) and the double Matsubara
summation for the diagrams involving one bosonic and two fermionic propagators, we obtain the following Fourier transform
of (44):

�α,β (q,iν) =
∑

k

vk+ q
2 ,αvk+ q

2 ,β

{
[Ãk,qÃk+q,−q + Ãk,qB̃−k,−q

+ Ã−k,−qB̃k,q + B̃k,qB̃k+q,−q][fFD(ξ̃k+q) − fFD(ξ̃k)]

[
1

iν + ξ̃k+q − ξ̃k
− 1

iν−ξ̃k+q+ξ̃k

]

+
∑

k′
G̃k,−k′,qG̃k+q,−(k′+q),−q

(
[1 − fFD(ξ̃k+q) − fFD(ξ̃k′)]

fBE(Ẽk−k′) − fBE(ξ̃k+q + ξ̃k′)

iν − (ξ̃k+q + ξ̃k′ − Ẽk−k′)

− [1 − fFD(ξ̃k′+q) − fFD(ξ̃k)]
fBE(Ẽk−k′) − fBE(ξ̃k′+q + ξ̃k)

iν + (ξ̃k′+q + ξ̃k − Ẽk−k′ )

)}
, (45)

where fBE(ω) = [exp(ω/kBT ) − 1]−1 is the Bose-Einstein distribution. The function (45) in a straightforward manner generalizes
the previous BCS form (30) and is the central result of our study. The dc diamagnetic properties of the system depend on the
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static value of the response function. In our present case, it is given by

�α,α(q,iν = 0) =
∑

k

v2
k+ q

2 ,α

{
2[Ãk,qÃk+q,−q + Ãk,qB̃−k,−q + Ã−k,−qB̃k,q + B̃k,qB̃k+q,−q]

fFD(ξ̃k+q) − fFD(ξ̃k)

ξ̃k+q − ξ̃k

+
∑

k′
G̃k,−k′,qG̃k+q,−(k′+q),−q

(
[fBE(Ẽk−k′) − fBE(ξ̃k+q + ξ̃k′)]

1 − fFD(ξ̃k+q) − fFD(ξ̃ ′
k)

Ẽk−k′ − (ξ̃k+q + ξ̃k′)

+ [fBE(Ẽk−k′) − fBE(ξ̃k′+q + ξ̃k)]
1 − fFD(ξ̃k′+q) − fFD(ξ̃k)

Ẽk−k′ − (ξ̃k′+q + ξ̃k)

)}
. (46)

For temperatures below Tc (when a finite fraction of the
Bose-Einstein condensed pairs exists), the main contribution
in the expression (46) comes from k′ = k terms. Under
such conditions, Eq. (46) becomes identical with the BCS
solution, consisting of (a) the superfluid fraction [i.e., the term
in Eq. (30) proportional to the coherence factor (ũk+qṽk −
ṽk+qũk)2] and the other (b) normal contribution from the
thermally excited quasiparticles, i.e., the term proportional to
(ũk+qũk + ṽk+qṽk)2.43

Above Tc (but fairly below T ∗), a considerable amount of
the preformed pairs occupies the low-momenta states Eq∼0,
therefore, expression (46) becomes reminiscent of the above-
mentioned BCS components in the response function.

IV. ITERATIVE SOLUTION

To explore the physical aspects related to the current-
current response function (45), we adopt an iterative method
for solving the coupled flow equations (38)–(41). Such a
scheme allows for an approximate estimation of the introduced
l-dependent parameters. In the following,39 we make use
of the fact that the dominant renormalization affects the
boson-fermion coupling gk,p(l), which ultimately vanishes in
the asymptotic limit l → ∞. By neglecting the simultaneous
renormalization of the fermion ξk(l) � ξk and boson energies
Eq(l) � Eq, we obtain the following solution of the flow
equation (33):

gk,p(l) � gk,pe
−(ξk+ξp−Ek+p)2

l . (47)

By substituting this result (47) to the flow equations (34) and
(35), we might in turn update the energies and the routine
can be continued at each iterative level providing a better and
better estimation for the renormalized quantities.

In this section, we apply such a scheme to the flow
equations (38)–(41), restricting ourselves to the lowest-order
solutions based on Eq. (47). We start with the initial val-
ues of the coefficients Ak,q(l) � Ak,q(0) = 1 and Bk,q(l) �
Bk,q(0) = 0 substituting them in the right-hand side of the
flow equations (40) and (41). Using Eq. (47), we analytically
solve the simplified equations (40) and (41), obtaining

Dk,p,q(l) � gk+q,p−q[e−(ξk+q+ξp−q−Ek+p)2
l − 1]

ξk+q + ξp−q − Ek+p
, (48)

Fk,p,q(l) � gk,p[e−(ξk+ξp−Ek+p)2
l − 1]

ξk + ξp − Ek+p
. (49)

Their asymptotic values are given by

D̃k,p,q � − gk+q,p−q

ξk+q + ξp−q − Ek+p
, (50)

F̃k,p,q � − gk,p

ξk + ξp − Ek+p
. (51)

By using the l-dependent coefficients Dk,p,q(l) and Fk,p,q(l),
we can next determine Ak,p(l) and Bk,p(l). By substituting
Eqs. (48) and (49) in the right-hand side of (38) and (39), we
obtain the following asymptotic values:

Ãk,q � 1 − 1

2

∑
p

[(
nF

p + nB
k+p

)|gk,p|2
(ξk + ξp − Ek+p)2

+
(
nF

p−q + nB
k+p

)|gk+q,p−q|2
(ξk+q + ξp−q − Ek+p)2

]
(52)

and

B̃k,q �
∑

p

gk,pgk+q,p−q

×
[

nF
p + nB

k+p

Xk+q,p−q

(
1

Xk,p
− Xk,p

X2
k,p + X2

k+q,p−q

)

+nF
p−q + nB

k+p

Xk,p

(
1

Xk+q,p−q
− Xk+q,p−q

X2
k,p + X2

k+q,p−q

)]
,

(53)

where Xk,p ≡ξk + ξp − Ek+p.
Since eventual diamagnetism is determined by the long-

wavelength limit of the static response function (46), we focus
on q = 0 values of the coefficients. By examining the q → 0
limit of the asymptotic values (50) and (51), we notice that the
superfluid vertices vanish:

G̃k,p,q = D̃k,p,q − F̃k,p,q
q=0−→ 0 (54)

and (similarly to the BCS treatment43) we are left only with
the normal component of the paramagnetic term

lim
q→0

�α,α(q,0)�2
∑

k

v2
k,α[Ak,0 + Bk,0]2 dfFD(ξ̃k)

dξ̃k
. (55)

At high temperatures (in a normal state), the dispersion
ξ̃k is nearly identical with the bare energy εk − μ; therefore,
Eq. (55) cancels out the diamagnetic term of the response
kernel Kα,β(q → 0,0) and, consequently, the system does
not show any diamagnetic features. On the other hand, in
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the superconducting state, the single-particle excitations ξ̃k
are gapped, and at low temperatures, d

dξ̃k
fFD(ξ̃k) ≈ −δ(ξ̃k);

therefore, the paramagnetic contribution (55) vanishes.43 One
then obtains a perfect diamagnetism with the characteristic
London penetration depth λ−2

L = ne2/m. Between these ex-
treme regimes, we can expect an intermediate behavior. In
particular, for temperatures Tc < T < T ∗, the single-particle
fermion spectrum becomes partly depleted around the Fermi
energy, so the paramagnetic term (55) would no longer be
able to compensate completely the diamagnetic contribution
generating a fragile diamagnetism.

For some quantitative illustration of this behavior, we have
analyzed temperature dependence of the superfluid fraction
ns(T ) defined by the relation26

Jx(q → 0,0) = − e2ns(T )

m
Ax(q → 0,0). (56)

In order to determine ns(T ), we substituted the paramagnetic
term (55) to the kernel function Kα,β (q → 0,0) and applied the
coefficients (52) and (53), simplifying the fermion and boson
concentrations by nF

k ≈ fFD(ξ̃k) and nB
q ≈ fBE(Ẽq). Further-

more, we replaced all energies by the renormalized values ξ̃k
and Ẽq to account for the iterative feedback effects. Following
the previous study,19 we have self-consistently determined
these renormalized energies ξ̃k, Ẽq by solving numerically the
flow equations (34) and (35) for the tight-binding lattice model
εk = −2t[cos akx + cos aky] − 2tz cos ckz assuming reduced
mobility along the z axis tz = 0.1t . Initially (at l = 0), we
have assumed bosons to be localized. To establish some
correspondence with the recent QMC studies,22 we have used
the same total concentration of carriers 0.16 and imposed the
coupling g = 0.2D (where D = 8t).

The important changeover of the boson dispersion Ẽq upon
varying temperature is shown in Fig. 2. We noticed that,
below some characteristic temperature kBT ∗ ∼ 0.05D, there
occurred a considerable reduction of the in-plane boson mass,
defined as d2Ẽq/dq2

x = h̄2/mB . Its temperature dependence
[compared to the bare planar mass of fermions mF

0 = h̄2/2ta2]
is illustrated in Fig. 3. The mentioned suppression of the
boson mass below T ∗ coincided with appearance of the
pseudogap in the fermion spectrum near μ; this property has
been discussed at length in our previous studies39,40 where
we formulated the flow equation procedure for the present
model (31). Below the other temperature kBTc ∼ 0.026D,
the Bose-Einstein condensate appeared in the system and
simultaneously the parabolic dispersion evolved into the
collective sound-wave mode Ẽq ∝ |q| (see the bottom panel in
Fig. 2).

Evolution of the effective boson and fermion spectra
revealed a substantial influence on the superfluid fraction.
In Fig. 4, we show the temperature dependence of such
ns(T ). Below the temperature T ∗ (for here chosen set of
the model parameters T ∗ ∼ 2Tc), we observed a gradual
buildup of the superfluid fraction. Passing below Tc, the
superfluid fraction exhibited a further, stronger enhancement
manifesting an onset of the long-range phase coherence caused
by appearance of the Bose-Einstein condensate of pairs. At
still lower temperatures, i.e., deep in the superconducting
state T � Tc, we observed some flattening of the superfluid

-0.10

-0.05

-0.10

-0.05

-0.10

-0.05

qxa

E
q 

/ D

-1 0 1

kBT / D = 0.08

kBT / D = 0.04

kBT / D = 0.02

~

FIG. 2. (Color online) The renormalized boson energy Ẽq ob-
tained for three representative temperature regions: T > T ∗ (top
panel), T ∗ > T > Tc (middle plot), and Tc > T (bottom panel). The
dashed lines show the level 2μ(T ).

density rather than the expected linear dependence ns(T →
0) � ns(0) − αT typical for d-wave superconducting systems
with the Dirac-type excitations around the nodal points.44,45

Presumably, these low-temperature results indicate that we
are not correctly evaluating the transverse Fermi velocity v�

and/or the longitudinal one vf ; therefore, the proper linearity
coefficient α = [2 ln (2)/π ]vf /v� (Ref. 44) is missing. We
also suspect that, in our computations, we might apparently
overestimate the role of antinodal areas, where the majority
of bosons is effectively gathered for T → 0 (see Fig. 4 in
Ref. 19). This artificial low-temperature dependence of ns(T )
needs a more careful investigation.

Summarizing this section, we have obtained the superfluid
density ns(T ), which clearly indicates a fairly broad temper-
ature regime Tc < T < T ∗ of the Meissner rigidity appearing
due to the superconducting fluctuations. Such fragile diamag-
netism originates solely from the noncondensed preformed
pairs, as has been previously suggested by several authors.46–48

0.01

0.1

1

10

100

 0  0.05  0.1  0.15  0.2
kBT / D

g = 0.2 D

Tc

T*

m
B

 / 
m

0F

FIG. 3. (Color online) Temperature dependence of the effective
boson mass mB obtained for the initially discrete energy level Eq(l =
0) = const. Our results resemble the QMC data shown in Fig. 9(a) of
Ref. 22.
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FIG. 4. (Color online) Temperature dependence of the superfluid
fraction ns(T ) normalized to the total fermion concentration n. We
can notice a broad regime where the fragile Meissner effect is caused
by the superconducting fluctuations.

We have evaluated ns(T ) by means of the new nonperturbative
method and determined the current-current response function
(45) solving iteratively the set of flow equations. Our results
seem to qualitatively capture the experimental data of the Ong
group10 and other recent measurements.49

V. SUMMARY

We have addressed the linear response of the electron sys-
tem with the pairing instabilities using nonperturbative frame-
work of the continuous unitary transformation technique.1

For the case of the Bose-Einstein condensed pairs, we have
analytically derived the BCS result (30), which in the static
and long-wavelength limit accounts for the Meissner effect.
We have next extended such treatment onto the mixture of the
noncondensed (preformed) pairs interacting with the mobile
electrons through the charge-exchange Andreev scattering.
We have determined the contributions (see Fig. 1) to the
response function (45), where the vertices are expressed by
the corresponding flow equations (38)–(41).

The central result (45) of our study generalizes the
BCS current-current response function,26 taking into account
the residual diamagnetic effects originating from the finite-
momentum preformed pairs. Such effects are studied here in
an alternative way than the perturbative corrections due to the
Aslamasov-Larkin and Maki-Thompson diagrams.13 In our
approach, the fluctuations enter the current-current response
function through the convolution of one-boson and two-
fermion propagators (see Fig. 1) instead of the higher-order
convolutions typical for the standard diagrammatic study. In
the present formalism, the influence of fluctuations affects
the vertex functions, which have to be determined from the
asymptotic solution of the flow equations (38)–(41).

In the static, long-wavelength limit, we find a clear evidence
for the pronounced diamagnetic contribution, which might be
relevant to the experimental data obtained for the underdoped
cuprate materials in the lower part of the pseudogap state.10–12

Our study is consistent with the recent quantum Monte Carlo
results for the same model.22 In both cases, the residual
diamagnetism originates from the preformed pairs, the mo-
bility of which considerably increases below T ∗. Similar ideas
concerning the noncondensed pairs have been emphasized by
several other authors.23,46–48,50–52

In order to see a more specific relation of this treatment
to the cuprate oxides, one should solve numerically the set
of flow equations (38)–(41) for the realistic model with
nearest-neighbor and next-nearest-neighbor hopping integrals.
Another issue (not addressed here) concerns the doping effects
that should affect the Fermi surface topology and influence the
populations of the fermions and the preformed pairs.22,39 It
would also be worthwhile to solve the flow equations (38)–
(41) fully self-consistently and investigate the electrodynamic
properties using the response function Kα,β(q,ω), which
generalizes the standard BCS result.

We hope that the present formulation of the linear response
theory by means of the flow equation method could stimulate
further studies of the many-body effects in various subdisci-
plines of physics.
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APPENDIX A: METHODOLOGY OF THE FLOW
EQUATIONS

We give here a brief outline of the continuous canonical
transformation for arbitrary Hamiltonian of the following
structure:

Ĥ = Ĥ0 + Ĥ1, (A1)

where Ĥ0 denotes the diagonal part (for instance, it can be the
kinetic energy of particles) and Ĥ1 stands for the off-diagonal
term (i.e., interactions or any perturbations). Upon continu-
ously transforming the Hamiltonian H (l) = U †(l)HU (l), the
l dependence (flow) is governed according to the following
differential equation1:

dĤ (l)

dl
= [η̂(l),Ĥ (l)], (A2)

where the generating operator η̂(l) ≡ dÛ (l)
dl

Û−1(l).
Choice of η(l) is usually dictated by the specific physical

situation. One of the possibilities, suggested by Wegner,1 is

η̂(l) = [Ĥ0(l),Ĥ1(l)]. (A3)

It has been proved that (A3) guarantees

lim
l→∞

Ĥ1(l) = 0 (A4)

provided that no degeneracies are encountered. Several al-
ternative proposals for η̂(l) are capable to deal with the
divergences,2 the degenerate states,53 or offer various other
advantages that have been discussed in Ref. 3.

To carry out the statistical averages of the observables

〈Ô〉Ĥ = Tr{e−βĤ Ô}/Tr{e−βĤ }, (A5)

(where β−1 = kBT ) it is convenient to use the invariance of
trace on the unitary transformations

Tr{e−βĤ Ô} = Tr{e−βĤ (l)Ô(l)}, (A6)
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where Ô(l) = Û(l)ÔÛ−1(l). The l dependence of Ô(l) is
imposed through the flow equation1

dÔ(l)

dl
= [η̂(l),Ô(l)] (A7)

similar to (A2) for Ĥ (l). Since the Hamiltonian Ĥ (l) becomes
diagonal for l → ∞, the easiest way to compute the trace
(A6) is with respect to Ĥ (∞). This, however, requires that
simultaneously with the continuous diagonalization of the
Hamiltonian, one has to analyze the flow of other physical
observables Ô → Ô(l) → Ô(∞).

APPENDIX B: EFFECTIVE QUASIPARTICLES ABOVE Tc

To determine the single-particle excitation spectrum for the
model (31), we have to transform the individual operators
ĉ

(†)
kσ (l)≡ Û (l)ĉ(†)

kσ Û−1(l), which is a bit tricky because Û (l)
is not known explicitly. Following the scheme outlined
in Sec. II B and using the operator η̂(l) chosen in the
form (32), we deduce the following ansatz for the fermion
operators40:

ĉk↑(l) = uk(l) ĉk↑ + vk(l) ĉ
†
−k↓

+ 1√
N

∑
q 
=0

[uk,q(l) b̂†qĉq+k↑ + vk,q(l) b̂qĉ
†
q−k↓],

(B1)

ĉ
†
−k↓(l) = −v∗

k(l) ĉk↑ + u∗
k(l) ĉ

†
−k↓

× 1√
N

∑
q 
=0

[−v∗
k,q(l) b̂†qĉq+k↑ + u∗

k,q(l) b̂qĉ
†
q−k↓],

(B2)

where uk(0) = 1 and the other coefficients are vanishing at
l = 0. These l-dependent coefficients can be derived from
Eq. (A7) for ĉk↑(l) and ĉ

†
−k↓(l) operators.

The corresponding set of flow equations reads as40

duk(l)

dl
=

√
nB

q=0 α−k,k(l) vk(l)

+ 1

N

∑
q 
=0

αq−k,k(l)
(
nB

q + nF
q−k↓

)
vk,q(l), (B3)

dvk(l)

dl
= −

√
nB

q=0 αk,k(l) uk(l)

− 1

N

∑
q 
=0

αk,q+k(l)
(
nB

q + nF
q+k↑

)
uk,q(l), (B4)

duk,q(l)

dl
= αq−k,k(l) vk(l), (B5)

dvk,q(l)

dl
= − αk,q+k(l)uk(l). (B6)

They are additionally coupled to the flow equations (33)–
(35) because of the terms αk,k′ (l). If one neglects the
finite-momentum boson states [when uk,q(l) = 0 = vk,q(l)],
these equations can be solved analytically,40 reproducing
the standard BCS case discussed in Sec. II B. The case
of q 
= 0 bosons is more cumbersome. We have previously
studied such a problem numerically,39,40 in particular, con-
sidering also the two-dimensional square lattice19 with the
tight-binding dispersion ξk(0) = −2t[cos(kxa) + cos(kya)] −
4t ′cos(kxa)cos(kya) − μ assuming the initial discrete en-
ergy Eq(0) = E0 and fixing the total charge concentration
2
∑

q nB
q + ∑

k(nF
k↑ + nF

k↓).
One of the valuable results obtained from such a formalism

concerned the pseudogap regime. Since above T > Tc the
condensate fraction is absent, we can notice that (B4) and (B5)
imply vk(l) = 0 = uk,q(l). In other words, the parametriza-
tions (B1) and (B2) simplify then to

ĉk↑(l) = uk(l) ĉk↑ + 1√
N

∑
q 
=0

vk,q(l) b̂qĉ
†
q−k↓, (B7)

ĉ
†
−k↓(l) = u∗

k(l) ĉ
†
−k↓ − 1√

N

∑
q 
=0

v∗
k,q(l) b̂†qĉq+k↑, (B8)

with the coefficients obeying
duk(l)

dl
= 1

N

∑
q 
=0

αq−k,k(l)
(
nB

q + nF
q−k↓

)
vk,q(l),

dvk,q(l)

dl
= − αk,q+k(l)uk(l).

Under such circumstances, we thus find that the single-
particle spectral function A(k,ω) = −π−1ImGσ (k,ω + i0+)
takes the following structure:

A(k,ω) = |ũk|2δ(ω − ξ̃k)

+ 1

N

∑
q 
=0

(
nB

q + nF
q−k↓

)|ṽk,q|2δ(ω + ξ̃q−k − Ẽq).

(B9)

The first part of (B9) describes the quasiparticle whose
renormalized dispersion ξ̃k in the temperature regime T <

T ∗
sc is discontinuous at the chemical potential (signaling a

depletion of the low-energy states). The second part of Eq. (B9)
contributes the shadow to the above-mentioned quasiparticle.
These contributions constitute the characteristic Bogoliubov-
type excitation spectrum, which has been indeed observed
experimentally in the yttrium31 and lanthanum32 compounds.
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