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The intrinsic structural metastability in cuprate high-Tc materials, evidenced in a checkerboard domain
structure of the CuO2 planes, locally breaks translational and rotational symmetry. Dynamical charge-
deformation fluctuations of such nanosize unidirectional domains, involving Cu-O-Cu molecular bonds, result
in resonantly fluctuating diamagnetic pairs embedded in a correlated Fermi liquid. As a consequence, the
single-particle spectral properties acquire simultaneously �i� fermionic low-energy Bogoliubov branches for
propagating Cooper pairs and �ii� bosonic localized glassy structures for tightly bound states of them at high
energies. The partial localization of the single-particle excitations leads to a fractionation of the Fermi surface
as the strength of the exchange coupling between itinerant fermions and partially localized fermion pairs
increases upon moving from the nodal to the antinodal point. This is also the reason why bound fermion pairs
accumulate near the antinodal points and thereby control the doping dependence of the cuprates upon ap-
proaching the singular universal optimal doping rate.

DOI: 10.1103/PhysRevB.81.014514 PACS number�s�: 74.20.Mn, 74.40.�n, 74.72.�h

I. INTRODUCTION

High-Tc superconductivity of the cuprates, it is generally
agreed upon, emerges out of an unconventional normal state.
The most remarkable signatures of its strange metal behavior
are the pseudogap in the density of states and the associated
to it remnant Bogoliubov modes. Both show up in a wide
temperature regime above Tc in the single-particle excita-
tions, observed in angle-resolved photoemission spectros-
copy �ARPES�.1 Novel scanning tunneling microscopy are
now able to measure the spatial distribution of quasiparticle
excitations on the atomic length scale2–6 and find intrinsic
textured electronic structures, ranging over a wide regime
from low doped to optimally doped and beyond. The spatial
patterns of the single-particle spectral properties indicate an
inter-relation between the low-frequency Bogoliubov modes
and their high-frequency counterparts, representing localized
glassy states. In this work we show how this feature can be
related to a scenario in which itinerant fermionic charge car-
riers scatter in and out of bosonic tightly bound pairs of them
in which they are momentarily trapped on nanosize deform-
able domains. The single-particle excitations thus appear as
superpositions of itinerant and localized entities.

Ever since the discovery of the high-Tc cuprates, experi-
mental evidence for their very unusual lattice properties has
become increasingly evident. Apart from their well-
established strongly correlated nature, these compounds are
metastable single-phase materials.7 Their metastability arises
from frozen-in structural misfits, involving an incompatibil-
ity between the Cu-O distances of square planar �Cu-O4�
configurations in the CuO2 planes and of cation-ligand dis-
tances in the adjacent layers. Metastable compounds have
been known for a long time for their intrinsic local diamag-
netic fluctuations,8 capable of inducing a strong pairing com-
ponent in the many-body ground-state wave function. The
interest in synthesizing such materials was to bypass the
stringent conditions on the upper limit of Tc, imposed by
phonon-mediated BCS superconductivity.9

On a microscopic level, the metastability in the cuprates
arises from fluctuating �Cu-O-Cu� molecular bonds in the
CuO2 planes.2,3 Their deformable ligand environments10,11

act as potential pairing centers4 for dopant holes on nanosize
domains. These domains exhibit an atomic structure,5 which
locally breaks translational as well as rotational symmetry.6

Two-degenerate spatially orthogonally oriented �Cu-O-Cu�
bonds cause the CuO2 plane structure to segregate into a
patchwork of orientationally disordered domains, separated
by a lattice of essentially undeformable molecular clusters.
Ultimately, this forms an effective bipartite lattice structure2,6

of the CuO2 planes. The charge transfer between the pairing
domains and the molecular clusters on the lattice surround-
ing them leads to resonant pairing on that latter. It is con-
trolled by an interplay between localization of the charge
carriers in form of bound pairs on the pairing domains and
their delocalization on the lattice which spatially separates
those pairing domains. On a macroscopic level, those mate-
rials exhibit an overall homogeneous crystal structure in a
coarse grained sense.12 But occasionally, such as in
La2−xBaxCuO4 for x=1 /8, the local lattice deformations of
the pairing domains can lock together in a charge-ordered
phase and thereby impeach superconductivity to occur.5

II. SCENARIO

The “formal chemical” Cu valence �not to be confused
with its ionic charge� in the d-hole doped CuO2 planes lies
between CuII and CuIII. For an isolated undoped CuO2 plane
this would correspond to stereochemical �Cu-O� distances of
1.94 Å in the �CuII-O4� basic blocks. The misfits between
the atomic structure of the CuO2 planes and those of the
adjacent layers, which furnish the dopant holes, push the
bridging oxygen of the �Cu-O-Cu� bonds out of the CuO2
plane, making them buckled. By doing so, they can better
accommodate the stereochemically assigned interatomic dis-
tance of those bonds.
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The scenario for the doped cuprates, which we want to
advocate in this work, is that the static displacements of the
bridging oxygens, which characterize the undoped and low-
doped insulating phase, become dynamic. The fluctuation of
the bridging oxygens of the �Cu-O-Cu� bonds, in and out of
the planes, tends to diminish the plane buckling which char-
acterizes the undoped material. This tendency gets more and
more pronounced as the doping is increased, driven by the
increased covalency of the CuO2 basal plane building blocks.
It however shows a marked slowing down of this behavior as
one passes through optimal doping.13 On a microscopic
level, this implies fluctuations between kinked �CuII-O-CuII�
molecular bonds �characteristic for the undoped systems� and
straight ones �CuIII-O-CuIII� with an ideal stereochemical
�CuIII-O� distances of 1.84 Å. In this process two holes get
momentarily captured in the local dynamically deformable
structure of the CuO2 planes. It results in locally correlated
charge-deformation fluctuations which break up the overall
homogeneous structure of the cuprates into a checkerboard
structure, as scanning tunneling microscopy �STM� results
�Figs. 4 and 5 in Ref. 6� have shown. The net difference in
length between the two different molecular bonds on such
charge-deformation fluctuating checkerboard pairing do-
mains will be reduced �i� because of the the dynamical nature
of these pairing fluctuations and �ii� because it involves co-
operatively several of such �Cu-O-Cu� bonds.

The likelihood of a segregation of a homogeneous lattice
structure into polaronic domains, embedded in a nonpo-
laronic matrix, such as advocated in the present scenario, had
been speculated upon for a long time. For the case of inter-
mediate electron-lattice coupling and the adiabatic to antia-
diabatic crossover regime, individual itinerant charge carriers
are known to fluctuate in and out of localized polaronic
states.14 Unfortunately, the present state of art of the theory
of many-polaronic systems can still not handle situations
other than for homogeneous or globally symmetry-broken
solutions. Nevertheless indications for resonant pairing in
such systems exist, where the single-particle spectral func-
tion has both coherent delocalized contributions and local-
ized ones in form of localized polarons, respectively, bipo-
larons. This has been discussed in the framework of
dynamical mean-field theory, numerical renormalization
group, and Monte Carlo studies.15

Given the complexity of the inter-related charge-
deformation dynamics in such systems, it appeared judicious
to introduce a phenomenological boson-fermion model
�BFM�, to capture the salient features of such intrinsically
locally dynamically unstable systems with a tendency to seg-
regate into subsystems of localized and itinerant charge car-
riers. This idea was originally proposed by one of us �J.R.� in
early 1980s in an attempt to describe the abrupt crossover
between a weak-coupling adiabatic electron-phonon-
mediated BCS superconductor and an insulating state, re-
spectively, superconducting phase, of bipolarons in the
strong-coupling antiadiabatic regime. The essential features
of this conjectured BFM was to introduce an effective local
boson-fermion exchange coupling between polaronically
bound pairs and itinerant charge carriers. This picture has
been substantiated subsequently by small cluster calculations
for electrons strongly coupled to localized lattice vibrational

modes.18 It permits to relate the effective boson-fermion ex-
change coupling back to the parameters, characterizing the
electron-lattice coupled system, i.e., local phonon frequency
and electron-phonon coupling.

In order to cast into a tractable model the physics of dy-
namically fluctuating �Cu-O-Cu� bonds, which trigger local
double charge fluctuations, we present in Fig. 1 an idealized
structure for such a local checkerboard bipartite lattice struc-
ture, which comes very close to the actually observed struc-
ture. The corresponding checkerboard pairing centers consist
of Cu4O12 domains �three nearest-neighbor Cu-Cu distances
across� on which charge carriers pair up, driven by polaronic
effects. The lattice deformations of adjacent Cu4O12 domains
are assumed to be uncorrelated in order to prevent the system
to undergo a global lattice instability. The orientational ran-
domness of the �Cu-O-Cu� unidirectional bonds, together
with the quadratic Cu4O4 plaquettes �see Fig. 1�, which sepa-
rate those polaronic Cu4O12 domains, justifies that. Ulti-
mately, this results in the picture of an overall bipartite lattice
structure for the CuO2 planes with a periodicity of four
nearest-neighbor Cu-Cu distances. d holes on the nonpo-
laronic Cu4O4 plaquettes in the cuprates are known to behave
as delocalized, though strongly correlated, entities subject to
dx2−y2-wave pairing correlations.16,17 In the present study we
shall concentrate on the purely lattice-driven pairing aspects
in the cuprates, caused by their intrinsic metastabilities. We
hence neglect here any Hubbard-type correlations leading to
hole pairing and treat the Cu4O4 square plaquettes as effec-
tive lattice sites on which the charge carriers behave as itin-
erant uncorrelated quasiparticles. When they hop on and off
the neighboring four Cu4O12 pairing domains, they interact
with their local dynamical deformations. To describe this ef-
fect in a tractable way, we represent the pairing domains by
a single deformable molecular site on which the charge car-
riers pair up due to a polaronic binding mechanism. The
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FIG. 1. �Color online� An idealized picture of the local structure
of the CuO2 planes compatible with the STM results �Refs. 2–6�. It
is composed of �i� Cu4O12 domains acting as localizing pairing
centers with directionally oriented Cu-O-Cu molecular bonds, hav-
ing central bridging O’s �gray circles� which can be displaced out of
the CuO2 plane and �ii� Cu4O4 square plaquettes housing the delo-
calized charge carriers. Small red circles denote Cu cations and the
larger blue ones the O anions not directly involved in
displacements.
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resulting local resonant pairing for such a setup and its mani-
festations in the electronic and phononic spectral properties
have been studied in some detail by exact diagonalization
studies.18

Indications for resonant pairing in the cuprates, driven by
local dynamical lattice fluctuations can be found in quite a
variety of experimental studies: the longitudinal-optical �LO�
Cu-O bond-stretching mode of about 60 meV appears to be
strongly coupled to charge carriers near the hotspot antinodal
points in the Brillouin zone �BZ� �qx ,qy�= ��� /2,0� ,
�0, �� /2�.10,11 Their pairing results in the pseudogap fea-
ture, setting in when reducing the temperature T to below a
certain strongly doping-dependent T�. Upon entering the su-
perconducting doping regime, coming from the insulating
parent compound, this LO mode splits into two modes, sepa-
rated by �10 meV.19 This indicates a crystal-lattice symme-
try breaking, linked to dynamical charge inhomogeneities
which are absent in the underdoped and overdoped insulating
phases. Pressure,20 isotope substitution studies21 and atomic
resolution d2I /dV2 spectroscopy11 show concomitant anticor-
related modulations of the pseudogap size and the frequency
of this LO buckling mode. Correlated charge-deformation
fluctuations, related to a resonant pairing superconducting
phase show up in the onset of a macroscopic superfluid state
of the charge carriers together with changes in the local lat-
tice dynamics which acquires phase-correlated macroscopic
features. They are seen in Rutherford backscattering
experiments,22 an abrupt decrease in the kinetic energy of
local vibrational modes,23 a similar abrupt increase in a low-
energy electronic background, seen in near IR excited Ra-
man scattering24 and an increase in intensity of certain
Raman-active phonon modes,25 indicative of changes in the
scattering mechanism involving the charge carriers and local
lattice modes.

III. MODEL

Superconductivity in the cuprates is destroyed, exclu-
sively, by phase fluctuations of a bosonic order parameter26,27

with the finite amplitude of it, being already established well
above Tc. It reflects the local nature of the Cooper pairs,
whose signature is �i� a Tc scaling with the zero-temperature
density of superfluid carriers28 and �ii� the XY character of
the transition.29 The inter-relation between phase and ampli-
tude fluctuations causes the appearance of bosonic phase
modes, corresponding to propagating Cooperons, whose
spectrum falls inside the gap of the fermionic single-particle
excitations. Going into the normal state, above Tc, the propa-
gating Cooperons become diffusive and the superconducting
gap changes into a pseudogap in a continuous fashion.30 The
observed Nernst,31 transient Meissner effect32 and the prox-
imity induced pseudogap33 bare this out. The gap in the
single-particle spectrum and the propagating strongly bound
Cooper pairs testify the competition between amplitude and
phase fluctuations of the order parameter in form of an anti-
correlated Tc versus T� variation upon changing the hole
doping.34,35 The insulating, not antiferromagnetically ordered
glassy state, at low temperature and low doping can be en-
visaged as a Mott correlation driven state of phase uncorre-

lated singlet-bonding pairs. With increased doping, this in-
sulating state changes into a superconducting phase
correlated state of such bonding pairs.36,37 Bonding pairs are
defined by local linear superpositions of bound pairs and
pairs of itinerant charge carriers. To what extent such an
insulating state could result from a Cooper-pair Wigner crys-
tallization, has been investigated.38,39

The features which characterize the normal and supercon-
ducting phase of the cuprates necessitate to treat amplitude
and phase fluctuations on an equal footing. This had origi-
nally also been the objective in conjecturing the BFM and to
project out coexisting effective bosonic and fermionic charge
excitations for systems which are at the frontier between
amplitude-fluctuation-driven BCS superconductors and a
phase-fluctuation-driven superfluidity of tightly bound real-
space pairs. The BFM is designed to treat a single compo-
nent system, where at any given moment a certain percent-
age of the charge carriers is locally paired and thus results in
a finite bosonic amplitude. This is achieved by imposing a
common chemical potential �determined by the bosonic en-
ergy level� for the fermionic and bosonic charge carriers. A
charge exchange term, linking the fermionic and bosonic
subsystem, then controls the inter-related dynamics between
amplitude and phase fluctuations. It drives the system either
to an insulating or superfluid state with corresponding super-
conducting, respectively, insulating, gaps being centered at
the chemical potential. The opening of such gaps does not
depend on any particular set of Fermi wave vectors and
hence is unrelated to any global translational symmetry
breaking.

The degree of anisotropy of pairing and of the charge-
carrier dispersion in the CuO2 planes monitors the relative
importance of localization versus delocalization in different
regions of the Brillouin zone. Near the antinodal points,
strong pairing results from strong intrabonding pair correla-
tions between bound hole pairs on the pairing centers and
their itinerant counterparts in their immediate vicinity.18 It
leads to their partial localization, which shows up in form of
a pseudogap in the single-particle spectral properties and de-
stroys the Fermi surface. As one moves toward the nodal
points, �kx ,ky�= ��� /2, �� /2�, along the so-called Fermi
arc in the BZ �corresponding to the Fermi surface in the
noninteracting system�, those intrabonding pair phase corre-
lations are weakened. The degree of localization then re-
duces and with it, the size of the pseudogap. At the same
time, interbonding pair phase correlations between neighbor-
ing pairing domains come into play and with it supercon-
ducting phase locking. At low frequencies, this leads to Bo-
goliubov modes, which emerge out of localized phase
uncorrelated bonding pairs.

We derive below these properties on the basis of the
BFM, adapted to the specific anisotropic features of the cu-
prates. We represent the square plaquettes, housing the itin-
erant charge carriers, by some effective lattice sites on one
sublattice and the surrounding neighboring pairing domains
as effective sites on the other sublattice. We assume a d-wave
symmetry for the exchange interaction between �i� pairs of
itinerant charge carriers ck�

�†� corresponding to the “plaquette
site” states and �ii� polaronicaly bound pairs of them bq

�†�,
corresponding to the “pairing domain site” states. The
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Hamiltonian describing such a scenario is then given by

HBFM = HBFM
0 + HBFM

exch , �1�

HBFM
0 = �

k�

��k − ��ck�
† ck� + �

q
�Eq − 2��bq

†bq, �2�

HBFM
exch = �1/�N��

k,q
�gk,qbq

†cq−k,↓ck,↑ + H.c.� . �3�

The anisotropy, which characterizes the electronic structure
of cuprates, is contained in the standard expression for the
bare charge-carrier dispersion given by �k=−2t�cos kx
+cos ky�+4t� cos kx cos ky of the CuO2 planes with t� / t
=0.4 and the bare d-wave exchange coupling gk,q=g�cos kx
−cos ky�. Given the polaronic origin of the localized pairs of
tightly bound charge carriers, we assume them as dispersion-
less bosonic excitations with Eq=2�.

The charge exchange term HBFM
exch controls the transfer of

electrons �holes� between real and momentum space40 and
monitors the interplay between the delocalizing and the lo-
calizing effect. Depending on the strength of the exchange
coupling gk,q, it results in a competition between local intra-
bonding pair correlations, favoring insulating features, and
spatial interbonding pair correlations, favoring superconduct-
ing phase locking.36 The fermionic particles thereby acquire
contributions coming from the bosonic particles and the
bosonic particles having features derived from their fermi-
onic constituents. As we shall see below, the physically
meaningful fermions in such a system are superpositions of
fermions and bosonic bound fermion pairs, accompanied by
fermion holes. This boson-fermion duality, which character-
izes the electronic state of the cuprates, results from the
“duplicituous”40 nature of their charge carriers, which sup-
ports simultaneously superconducting correlations in mo-
mentum space �fermionic Bogoliubov excitations� and real-
space correlations resulting in the pseudogap �derived from
localized bosonic bound fermion pairs�. This apparent
“schizophrenic” behavior41 of the quasiparticles can be
traced back to their different energy scales characterizing
their excitations. Large excitation energies �above the Fermi
energy� characterize their localized self-trapped nature and
small excitation energies �below the Fermi energy� their qua-
sicoherently propagating Cooper-pair nature.

In order to obtain the spectroscopic features of effective
fermionic and bosonic excitations we have to reformulate
this interacting boson-fermion mixture in terms of two effec-
tive commuting Hamiltonians, one describing purely fermi-
onic excitations and one purely bosonic ones. The boson-
fermion interaction thereby is absorbed into interdependent
coupling constants by renormalizing gk,q down to zero via a
flow-equation renormalization approach.42 At every step of
this procedure the renormalized Hamiltonian is projected
onto the basic structure given by HBFM

0 plus a renormaliza-
tion generated fermion-fermion interactions term43

HBFM
F-F =

1

N
�

p,k,q
Up,k,q

F-F cp↑
† ck↓

† cq↓cp+k−q↑. �4�

This is achieved by transforming the Hamiltonian in infini-
tesimal steps, controlled by a flow parameter � in terms of
repeated unitary transformations H���=eS���He−S���, resulting
in differential equations ��H���= ����� ,H���� with ����
����eS��� /���e−S���, determining the flow of the parameters
of our system. In its canonical form,42 ����= �H0��� ,H����
and presents an anti-Hermitian generator. For details of the
ensuing coupled nonlinear differential equations for the vari-
ous �-dependent parameters �k��� ,Eq��� ,Up,k,q

F-F ��� ,
gk,q��� ,���� we refer the reader to our previous work.43,44

The parameters, characterizing H0 and Hexch, evolve as the
flow parameter � increases. The renormalization procedure
starts with �=0, for which they are given by the bare values
�k ,Eq=2� ,gk,q together with Up,k,q

F-F �0. The chemical po-
tential ���� is chosen at each step of the renormalization
flow such as to fix a given total number of fermions and
bosons. The flow of these parameters converges for �→	
and results in two uncoupled systems: one for the effective
fermionic excitations and one for the effective bosonic ones
with a fix point fermion dispersion �k

� =�k��→	�. For iso-
tropic exchange coupling and fermion dispersion this prob-
lem had been studied previously,37,43,44 predicting the
pseudogap45 and damped Bogoliubov modes44 in angle-
resolved photoemission spectra. Both have since been veri-
fied experimentally.1

IV. BOSON-FERMION DUALITY

The anisotropy of the electronic structure of cuprates
tracks a changeover from self-trapped �localized� fermions,
in form of diffusively propagating bosonic pairs, into itiner-
ant propagating �delocalized� fermions upon going from the
antinodal to the nodal point on an arc in the Brillouin zone,
determined by �kF

� �
�=�. To illustrate that, we evaluate the
single-particle spectral function for wave vectors k
= 	k	�sin 
 , cos 
�, orthogonally intersecting this arc at vari-
ous kF�
�, where the motion of the charge carriers is essen-
tially one dimensional. 
 denotes the angle of those k vec-
tors with respect to the line �� ,��− �� ,0�, �see Fig. 3�.

In order to relate our study to a nearly half-filled band
situation, characterizing the doped cuprates, we choose �
�0.75 �in units of a nominal fermionic bandwidth of 8t�,
with the bosonic level lying just barely below the center of
the itinerant fermion band such as to reproduce the typical
shape of the CuO2 planar Fermi surface. For our choice of
the boson-fermion exchange coupling strength g=0.1, which
reproduces a typical onset temperature T�=0.016 for the
pseudogap of roughly 100 °K. For a characteristic tempera-
ture of the pseudogap phase �T=0.007�T��, it implies a
concentration of itinerant fermionic charge carriers nF
=�k�
ck�

† ck��=0.88 and that of self-trapped ones bound into
fermion pairs, nB=�q
bq

†bq�=0.075. This corresponds to a
hole doping nh=0.12 with a total number of carriers of ntot
=nF+2nB=1.03. Hole doping in such a context implies a
redistribution of the relative occupation of fermions and
bosons and a related to it a shrinking of the arcs �see Sec. V�.
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The charge carriers around the nodal point turn out to be
primarily given by delocalized fermionic one-particle states,
while at the hotspot antinodal points they are given by local-
ized bosonic bound fermion pairs, but which, as we shall see
below, will become itinerant and eventually condense as the
temperature is decreased. This is because the bare exchange
coupling gk,q is equal to zero at the nodal point �
=� /4� and
increases as one moves to the antinodal points �
=0,� /2�,
where it reaches its maximal value, equal to g. As a conse-
quence, �k

� remains essentially unrenormalized for k vectors
crossing the arc near the nodal point. Upon approaching the
antinodal point, on the contrary, �k

� acquires a sharp S-like
inflexion at kF�
�, which leads to the appearance of the
pseudogap in the single-particle density of states.

Our prime objective in the present study is to disentangle
the contributions to the single-particle spectral function com-
ing from the itinerant and from the localized features. The
latter arise from single particles being momentarily trapped
in form of localized pairs. The effective fermionic and
bosonic excitations are obtained in a renormalization proce-
dure similar to that of the Hamiltonian but this time by ap-
plying it to the fermion and boson operators themselves.44,46

The evaluation of the single-particle spectral function

AF�k,�� = −
1

�
Im�

0



d�GF�k,��e��+0+��,

GF�k,�� = 

ck↑���;ck↓
† ��H �5�

in a correspondingly renormalized manner is achieved by
applying the unitary transformation eS��� to the Green’s func-
tion itself. It results in



ck����;ck�
† �0���H

= 

eS�l�e�H���ck�e−�H���e−S�l�;eS�l�ck�
† e−S�l���H���

= 

eS�	�e�H�
ck�e−�H�

e−S�	�;eS�	�ck�
† e−S�	���H�, �6�

where the trace has to be carried out over the fully renormal-
ized fixed point Hamiltonian H�. Neglecting the residual in-
teraction Up,k,q

F-F between the fermions and restricting our-
selves to the pseudogap phase without any long-range phase
locking, we obtain the following renormalized fermion
operators46

c−k,−�
† ���
ck,���� � = uk

F���c−k,−�
†

ck,�
� �

1
�N

�
q

vk,q
F ��� bq

†cq+k,�

bqcq−k,−�
† � ,

�7�

with �-dependent parameters uk
F��� ,vk

F��� determined by the
flow equations. The single-particle fermionic spectral func-
tion resulting from such a procedure

AF�k,�� = 	uk
F�	�	2��� + � − �k

�� +
1

N
�
q�0

�nq
B + nq−k↓

F �

�	vk,q
F �	�	2��� − � + �q−k

� − Eq
�� , �8�

is illustrated in Fig. 2 for T=0.007 ��T�=0.016�, which lies
in the pseudogap phase. We choose a k traversing the arc in
the Brillouin zone at kF�
�, in a characteristic region around


=
c=15°, where the T-independent gap for 
�
c
changes over into a T-dependent gap in the single-particle
density of states for values of 
�
c �see Fig. 3�. 
c signals
the separation between localized and delocalized, respec-
tively, bosonic and fermionic, features in the Brillouin zone.

For k vectors below kF�
�, AF�k ,�� exhibits �i� low-
energy ���� delocalized single-particle excitations �the first
term in Eq. �8��, which follow essentially the dispersion �k

�

��k and �ii� a high-energy ���� broadened upper Bogoliu-
bov branch. For k→0 that latter merges into the time-
reversed spectrum −�k. For wave vectors k above kF�
�,
AF�k ,�� shows simultaneously two features: �i� low-
frequency diffusively propagating Bogoliubov modes and �ii�
high-frequency single-particle excitations with a dispersion
given by �k

� ��k and moving in a cloud of bosonic two-
particle excitations in form of bonding and antibonding
states, seen by the wings on either side of the coherent part
�the first term in Eq. �8�� of those excitations. These low- and
high-frequency excitations for a given wave vector charac-
terize the low- and high-frequency response of one and the
same phenomenon, with the latter testing the internal degrees
of freedom of the collective diffusively propagating Bogoliu-
bov modes. These internal degrees of freedom are images of
localized bonding and antibonding states, such as given by
the Green’s function in the atomic limit �t , t�=0�,47,48

Gat
F �i�n�=1 / �Gat

F �i�n�−1−�at
F �i�n�� with the self-energy

�at
F �i�n� =

�1 − Z�g2�i�n + ��
��i�n + ���i�n − 2� + �� − Zg2�

, �9�

having, apart from a characteristic BCS-type structure for
localized Cooper pairs, a substantial contribution from in-

FIG. 2. �Color online� A�k ,�� at T=0.007 ��T�=0.016� as a
function of 	k	 �in units of the inverse lattice vector� near kF �red
line�, corresponding to 
=15°, orthogonally crossing the Fermi arc.
The spectral weight of the coherent and incoherent contributions are
indicated by blue �bottom part� and yellow �top part� bars,
respectively.

FIG. 3. �Color online� Variation in the pseudogap for different k
vectors, orthogonally crossing the arc, given by angles 
. With
increasing T, �pg tend to zero at smaller and smaller values of 
.
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gap single-particle states. They are a hallmark of the non-
BCS physics involved here and expected to show up in suf-
ficiently refined ARPES studies. Z�2 / �3+cosh�g /kBT�� �for
our choice of parameters� denotes the spectral weight of non-
bonding delocalized charge carriers, described by G0

F�i�n�
=1 / �i�n−��.

A pseudogap in the density of states, ����
= �1 /N��kAF�k ,�� opens up at some T=T� at kF�
�. Its size,
�pg�
�, is determined by the distance between the peaks ei-
ther side of �kF�
�

� , when upon lowering T the deviation from
the bare density of state, �0���= �1 /N��k���−�k� becomes
noticeable. We take as a criterion a reduction to 90% of
�0��=0�. The sharp peak in AF�kF ,�� in Fig. 2, arising from
the coherent part of this spectrum, is a consequence of hav-
ing neglected the residual fermion-fermion interaction Up,k,q

F-F ,
Eq. �4�. The effect of this interaction is to broaden this delta-
functionlike peak, as we know from previous studies using
different approaches.49,50 To describe this effect within the
present flow equation approach, requires a fully self-
consistent treatment of the diagonal part of the renormalized
fermions given by �k���k

� −��ck�
† ck� and the residual

fermion-fermion interaction HBFM
F-F , an issue, which will be

treated in some future study.
The appearance of the pseudogap is associated with a re-

duction in the spectral weight of this coherent contribution
�given by the height of the blue bottom part bars in Fig. 2�.
We illustrate in Fig. 3 the variation in �pg�
� for different T.
Close to the antinodal point, the localized and bosonic domi-
nated regime, it is relatively T independent. But approaching
the nodal point, it abruptly drops to zero, even though gk,q is
still finite. Although reminiscent of BCS-type superconduct-
ing correlations �without any pseudogap� for 60° �
�30°,
the momentum dependence of the gap in the superconduct-
ing phase is T dependent and thus speaks against any BCS
mean-field-type behavior.51 The reason behind the change-
over from an essentially T-independent gap for 
�
c and a
T-dependent gap for 
�
c is the following: as 
 decreases,
the size of the pseudogap increases and at the same time its
position in the Brillouin zone at some kF�
� diminishes until
it reaches the bottom of �k

�. �see Fig. 2 in Ref. 37�. At that
point, itinerant fermionic charge carriers disappear in that
part for the Brillouin zone, having been converted into
bosonic-fermion pairs. The accumulation of such bosonic
charge carriers near the antinodal point is a direct conse-
quence of the anisotropic boson-femion exchange coupling
and d-wave pairing in those cuprates. Since the excitation
energies �size of the pseudogap� characterizing such entities
are determined by purely local effects, they are relatively
temperature as well as doping independent for 
�
c. Dop-
ing dependent however is the value 
=
c of the crossover to
itinerant fermionic charge carriers, as confirmed in ARPES
experiments.51

In order to visualize the accumulation of bosonic charge
carriers near the antinodal points let us investigate how the
fermionic charge carriers in the various regions near the arc
in the Brillouin zone get converted into diffusively propagat-
ing bound pairs of them. To do that we evaluate the renor-
malized Bose spectral function,

AB�q,�� = −
1

�
Im�

0



d�GB�q,��e��+i0+��,

GB�q,�� = 

bq���;bq
†��H, �10�

for which we had previously derived the corresponding
renormalization flow equations.46 It results in renormalized
boson operators

bq��� = uq
B���bq +

1
�N

�
k

vq,k
B ���ck↓cq−k↑ �11�

with bq
†���= �bq����† and which ultimately leads to the renor-

malized boson spectral function given by

AB�q,�� = 	uq
B�	�	2��� − Eq

��

+
1

N
�
k

fk,q−k	vq,k
B �	�	2��� − �k

� − �q−k
� � .

�12�

The corresponding number of such bosonic charge carri-
ers is given by nB�qx ,qy�=�d�AB�q ,���exp�� /kBT�−1�−1.
We plot it for a series of q vectors in Fig. 4 for T=0.007,
which sample the anisotropy of the CuO2 electronic struc-
ture, where � indicates the azimuthal angle in this plane.
Notice that along the nodal direction the number of bosons is
independent on 	q	 because of the absence of any boson-
fermion coupling. As one approaches the direction linking
the center of the zone with the antinodal points, the exchange
coupling steadily increases and consequently the intrinsically
localized bosons acquire itinerancy and gather in a region of
long wavelength. Those bosons have internal structure of
two fermions with opposite momenta centered around kF�
�.
In the inset of Fig. 4 we illustrate the total number of such
bosons along the various q vectors and notice the relative
increase, respectively, decrease compared to their average
value 0.075, depending on whether we are sampling the
nodal or the antinodal directions. The accumulation of fermi-

0.5

1.0

1.5

(0,0)

(π,0)

(0,π)

(π,π)

qy

qx

nB
(q)

θ

0.05

0.1

0.15

0o 15o 30o 45o

nB(θ)

θ

FIG. 4. �Color online� Variation in the number of paired fermi-
ons as a function of wave vectors q along different directions in the
Brillouin zone given by the angle �. The variation in the total num-
ber of such pairs is illustrated in the inset.
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ons getting converted into fermion pairs in certain parts of
the Brillouin zone, close the antinodal points, has its counter
part in the diminishing density of single-particle fermionic
excitations in the same regions. We illustrate that in Fig. 5,
where we plot the variation in the coherent part of the single-
particle dispersion, given by �k

� around kF�
�. We notice that
with diminishing 
, approaching the antinodal points, the
corresponding value of kF�
� diminishes. This announces a
shrinking of the Fermi sea, causing an emptying out of
single-particle states and consequently an increase in bound
fermion pairs. This feature had previously been observed in
connection with the transition between the superconducting
state of phase-correlated bonding pairs and the insulating
state of such phase-uncorrelated bonding pairs.37

V. SUMMARY AND OUTLOOK

The present scenario for the cuprates is based on resonant
pairing induced by local dynamical lattice instabilities. It
makes use of the fact that such systems are prone to segre-
gation of globally homogeneous structures into small nano-
size pairing domains, which locally break the translational as
well as rotational symmetry by randomly orienting unidirec-
tional �Cu-O-Cu� molecular bonds in different directions.
This leads to fermionic charge carriers having single-particle
spectral features which comprise simultaneously: �i� quasilo-
calized self-trapped charge carriers, which are momentarily
trapped in form of bound pairs in polaronic charge fluctuat-
ing local domains and �ii� delocalized states on a sublattice
in which those polaronic domains are embedded.

Due to the d-wave symmetry of pairing, which in our case
is encoded in the anisotropic boson-fermion exchange cou-
pling gk,q, the spectral properties of the single-particle exci-
tations exhibit a pseudogap with the following features: as
we move on a constant energy line in the Brillouin zone,
corresponding to the chemical potential �where such an arc
determines the Fermi surface, whenever it exists�, 	gk,q	 di-
minishes as we go from the antinodal �
�0� to the nodal
region �
�� /4�. For 0�
�
c, with 
c�15°, for our
choice of parameters and total carrier concentration ntot=nF
+2nB= �1, the size of the pseudogap, �pg, diminishes with

increasing 
 but remains relatively unaffected by changes in
temperature T. On the contrary, the single-particle excitations
on that arc for 
c�
�� /4, exhibit a �pg which, while still
decreasing with increasing 
 upon approaching the nodal
region, now is strongly T dependent. For low T, �pg remains
rather robust upon increasing 
, tending to zero gradually as
one approaches 
=� /4. Yet, with increasing T, it tends to
zero more and more rapidly at larger and larger values of 
,
�see Fig. 3�. Those features, which have been observed
experimentally,6 suggest that: �i� the pseudogap in a finite
region �0�
�
c� around the antinodal point is controlled
by predominately local pairing effects �via the intrabonding
mechanism�, which is independent on doping and largely
unaffected by superconducting phase fluctuations. �ii� The
pseudogap in a finite region �
c�
�� /4� around the nodal
point is controlled by both, local intrabonding as well as the
nonlocal superconducting interbonding correlations. The lat-
ter are sensitive to phase fluctuations and cause the depen-
dence of �pg on T as well as on doping.

Apart from these experimentally confirmed features, the
present study demonstrates that diffusively propagating Bo-
goliubov excitation should be visible in ARPES also in the
regions of the Brillouin-zone regime where a finite
pseudogap exists, such as near the antinodal point. Given the
T-independent �pg one cannot expect any significant phase
locking there. The reason for that is that the Cooperons still
have a finite mobility of their center-of-mass motion over
short distances for which phase locking is not required. Ear-
lier studies, based on self-consistent diagrammatic
approaches,30 have shown that the carriers assuring the trans-
port properties change gradually from fermionic to bosonic
bound fermion pairs as T decreases below T� and eventually
transits the pseudogap phase into a Bose metallic/
superconducting phase.37 The manifestation of diffusive low-
energy Bogoliubov modes for k�kF near the antinodal
points are thus a signature of a prevailing glassy Bose me-
tallic, respectively, superconducting, behavior in a restricted
area of the Brillouin zone. The internal structure of those
diffusively propagating Cooperons consists of self-trapped
fermions. This self-trapped nature shows up in their single-
particle excitations above the chemical potential. They reflect
their atomic localized nature, where two-particle localized
bonding and antibonding satellites trail the dispersion of
their delocalized coherent part. The low-energy diffusive col-
lective Bogoliubov excitations and the high-energy single-
particle excitations are simply two different manifestations
of the same entity. Whether there is a sharp border line for
the onset of the high-energy localized features in the Bril-
louin zone, as suggested by a so-called doping independent
“extinction line,”6,40 will have to be checked in future for the
present scenario.

Let us conclude this study with some remarks on the kind
of doping mechanism at play in the cuprate high-Tc com-
pounds. For low hole doping it can be understood in terms of
a doped Mott insulator and an antiferromagnetic ground
state, transiting into a spin-singlet liquid glassy state with
increased doping. For the remaining doping regime, ap-
proaching the optimal and overdoped regions, it remains an
open problem to be resolved. Experimentally one finds a
singular universal optimal doping rate nh

opt=0.16 holes /Cu

-0.2

-0.1

0

0.1

0.2

-π/4 0 π/4

ε*
k

kx

εkF
= µ

φ = 0o

23o

31o

45o

FIG. 5. �Color online� Variation in the renormalized single-
particle dispersion for wave vectors k orthogonally crossing the
arcs along different directions in the Brillouin zone, characterized
by the angle 
=	arcsin�kx / 	k�	. The reduction in the value of 	kF�
�	
upon approaching the antinodal regime indicates an emptying out of
the fermionic single-particle excitations in favor of an increase in
their paired states.
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atom, where Tc reaches its maximum together with a maxi-
mal volume fraction of the Meissner effect and a Hall num-
ber becoming sharply peaked.52 In scenarios, like the present
one, based on a competition between amplitude and phase
fluctuations, this doping rate also characterizes the region
where the energies of the superconducting phase stiffness
and that of the pairing coincide.26 These unusual electronic
effects are accompanied by a reduction in the buckling of the
CuO2 planes, which characterize the low-doped insulating
phase. It is caused by a reduction in the Cu-O bond lengths.13

Pressure-tuned electronic transitions, testing electronic and
lattice features at the same time,53 point to a critical pressure
which can be identified with the critical doping rate nh

opt. The
universal values of nh

opt, occurs for any optimally doped sys-
tem, whatever its chemical structure of the doping blocks
might be. This suggests that, upon approaching optimal dop-
ing, the electronic and lattice degrees of freedom get strongly
locked together54 and by doing so increase the stability of
these intrinsically metastable materials. And indeed, upon
forcing extra holes into such systems by overdoping nh
�nh

opt, it appears that they segregate into different crystalline
phases,55 with superconducting components composed of un-
derdoped and optimally doped regions. Understanding the
doping dependence of the cuprates thus reduces effectively
to understanding the structural stability of those system. This
must involve correlated macroscopic features22,23 of charge
and lattice deformations, such that precisely at optimal dop-
ing they optimally and constructively interfere with each
other. Transposing these experimental facts on the scenario
discussed in this paper, the fluctuating local domains in the
CuO2 planes get increasingly more coherently locked to-
gether as hole doping increases. This results in a decrease in
spatial phase fluctuations of the bosonic resonantly bound
fermion pairs driven by locally fluctuating lattice structures
while at the same time their conjugate amplitude fluctuations
increase. As a consequence Tc increases and T� decreases.
Previous studies56,57 on the interplay between amplitude and
phase fluctuations bares that out. The relevant quantity in our
scenario, which controls this doping dependence, is thus the
strength of the phenomenological boson-fermion exchange
coupling, which has to decrease upon approaching optimal
doping. It is that which controls the local lattice dynamics,

fluctuating between different stereochemical configurations
related to different molecular valence states and hence
charges.18

According to these experimental facts, the chemical-
doping mechanism which imposes itself in the cuprates, is
that it converts part of the itinerant electrons into polaroni-
cally driven resonating pairs in certain regions of the Bril-
louin zone �see Fig. 4�, manifests in the opening of a
pseudogap around the so-called hotspots. The self-regulating
redistribution of itinerant charge carriers and bosonic bound
pairs of them on arcs in the Brillouin zone, which are images
of the Fermi surface, is an intrinsic rather than an extrinsic58

feature of the scenario presented here. It originates from
strong electron-lattice coupling, in a system with a highly
anisotropic electronic dispersion and coupling to local lattice
modes, evidenced in the anisotropic isotope-dependent
pseudogap and responsible for the local symmetry breaking
of those systems. The doping-induced creation of bosonic
charge carriers out of the sea of itinerant electrons, leads to a
concomitant reduction in the number of the latter. This im-
plies a shrinking of the Fermi volume �see Fig. 5�, which is
tantamount to the creation of holes with respect to the half-
filled band situation for undoped insulating systems. Our
doping scenario envisages that the total number of charge
carriers, composed of bosonic-fermion pairs and itinerant
fermions remains constant throughout this doping procedure.
Their relative densities however vary as the boson-fermion
exchange coupling increases, upon going from the stable op-
timally doped case toward low doping. A recent study37 of
the transition from a superconducting phase into an insulat-
ing bonding-pair liquid state, upon increasing this boson-
fermion coupling, enforces our picture for such a doping
mechanism in the cuprates. The recently observed break-
down of their homogeneous crystal structures into
translational/rotational symmetry broken local clusters, dis-
cussed from a theoretical point in this paper, should trigger
new ways of looking at those systems.
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