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Quantum system abruptly driven from its stationary phase can reveal nontrivial dynamics upon approaching a
new final state. We investigate here such dynamics for a correlated quantum dot sandwiched between the metallic
and superconducting leads, considering two types of quenches feasible experimentally. The first one is related to
a sudden change of the coupling between the dot and the superconducting lead, while the other one is associated
with an abrupt shift of the quantum dot energy level. Using the time-dependent numerical renormalization group
method, we examine and quantify the interplay between the proximity induced electron pairing with correlations
caused by the on-dot Coulomb repulsion. We determine and discuss the time-dependent charge occupancy, on-
dot pair correlation, transient currents, and analyze the evolution of the subgap quasiparticles, which could be
empirically observed in the tunneling conductance. To get some insight into the dynamics of a biased junction,
we make use of a mean-field approximation. We reveal the signatures of the time-dependent 0-π transition and
demonstrate that the evolution of local observables exhibits damped quantum oscillations with frequencies given
by the energies of Andreev bound states.
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I. MOTIVATION

A quantum impurity (dot) attached to a bulk supercon-
ductor can develop the quasiparticle bound states inside the
pairing gap ω ∈ (−�,�) [1]. These in-gap states originate
either from the proximity effect, when the Cooper pairs leak
onto this nanoscopic object converting it into superconducting
grain, or are driven by the exchange interaction between the
quantum dot spin with unpaired electrons of a superconductor.
Depending on the specific mechanism, they are dubbed the
Andreev [2] or Yu-Shiba-Rusinov bound states [3], respec-
tively. Such in-gap states have been experimentally observed
in magnetic atoms and molecules deposited on superconduct-
ing substrates [4–7] and in quantum dots embedded into the
Josephson [8–10], Andreev [11–13] or multiterminal hetero-
junctions [14–16].

Recent fast progress of the time-resolved techniques allows
us to probe the dynamical properties of these bound states.
Several groups have investigated theoretically this issue, in-
specting a response time to step-like pulse [17], multiple
Andreev (particle-to-hole) reflections [18], sequential tunnel-
ing [19], influence of time-dependent bias [20], waiting time
distributions [21,22], and short-time counting statistics of
the nonequilibrium transport [23]. Moreover, the emergence
of metastable bound states in the phase-biased Josephson
junction [24,25], transient effects in the Andreev [26] and
Josephson [27] circuits, bound states of the periodically driven
systems [28–31], cross-correlations between charge currents
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in the Cooper-pair-splitter geometry [32–34], and heterostruc-
tures with topological superconductors, hosting the Majorana
modes [35–37], have also been studied.

Any sudden or smooth change of the model parameters
is followed by thermalization processes [38–40]. In the case
of superconducting heterostructures such relaxation mecha-
nism requires specifically a continuum electronic spectrum,
either from outside the pairing gap � [25] or from some
additional metallic reservoir [26]. In particular, by abruptly
disrupting the quantum system from its ground state the
subsequent dynamics may reveal nontrivial behavior upon
evolving to its new final state, sometimes undergoing the
dynamical quantum phase transitions [41]. The dynamics trig-
gered by such quantum quench, when the initial state |�(t0)〉
of the Hamiltonian Ĥ0 undergoes evolution to |�(t )〉 =
e−iĤt/h̄|�(t0)〉 of the Hamiltonian Ĥ (t > t0) �= Ĥ0, has been re-
cently the topic of intensive studies [42]. Such time-dependent
phenomena can be conveniently explored in nanoscopic
heterostructures, by virtue of the available experimental
methods, which enable controllable change of the system’s
parameters Ĥ0 → Ĥ .

In this work we study the dynamical properties of the
correlated quantum dot (QD) placed between the normal (N)
and superconducting (S) electrodes, as schematically sketched
in Fig. 1. We focus on two types of quenches, caused by (i)
abrupt change of the coupling �S to the superconducting lead
and (ii) a sudden alternation of the gate potential, lifting the
QD energy level εd . We explore the time-dependent signa-
tures of the subgap quasiparticles appearing in the correlated
quantum dot. In particular, we examine their behavior in a
vicinity of the singlet-doublet quantum phase transition. To
accomplish this, we employ the time-dependent numerical
renormalization group (tNRG) method [43–45], studying the
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FIG. 1. The considered heterostructure, consisting of a correlated
quantum dot (QD), with Coulomb repulsion U and energy level εd ,
coupled to the normal (N) and superconducting (S) leads. The dot’s
level can be tuned by the gate potential VG(t ).

quench dynamics of unbiased N-QD-S heterostructure. Our
calculations for time-dependent observables reveal:

(i) Quantum oscillations with the period T = 2π/EA,
where ±EA stand for energies of the in-gap quasiparticles,

(ii) Relaxation rate 2�N/h̄ appearing in the exponentially
decaying amplitudes of these oscillations,

(iii) Signatures of the dynamical 0-π transition upon
changing the ground state of QD,

(iv) Competition between the on-dot pairing and the
Coulomb repulsion manifested in the time-dependent suscep-
tibility and the QD spin.

Since the verification of these time-dependent phenomena
would require measurements of the tunneling currents under
nonequilibrium conditions, we have also analyzed the dy-
namics of the biased N-QD-S heterostructure. Although the
tNRG is considered as very accurate and reliable [46], it can
be used only at equilibrium. Therefore, to shed some light
onto the time-dependent properties of biased junctions, we
have adopted a mean-field approach, restricting ourselves to
the lowest-order approximation with respect to the Coulomb
potential. Under static conditions such an approach has been
shown to qualitatively reproduce the transition between the
Bardeen-Cooper-Schrieffer (BCS)-type and the singly occu-
pied configurations when varying the coupling �S or the
QD energy level εd evidenced by a crossing of the bound
states [2]. Quantitative results of the lowest and higher-order
perturbative treatment are, however, less accurate [47]. We
note that, generally, reliable calculations of time-dependent
nonequilibrium phenomena of biased quantum dot junc-
tions with strong electron correlations pose a formidable
challenge, and there are various sophisticated techniques
to accomplish this goal. In particular, this challenging task
could be addressed by means of various renormalization
group schemes [48–51], continuous time quantum Monte
Carlo simulations [52–54], time-resolved density-functional
theory [55,56], the continuous unitary transformation tech-
nique [57], full counting statistics [24,25,34], Green’s func-
tions, and perturbative methods [58–60]. The quench problem
can be also described using the conformal field theory and
several predictions were successfully confronted with results
provided by numerical simulations [61–63]. Therefore, the
mean-field results for the time-dependent Andreev conduc-
tance presented here should be regarded as providing only the
first insight into the nonequilibrium system’s behavior, and

might be a starting point for further studies by more reliable
methods.

The paper is organized as follows. In Sec. II we for-
mulate the microscopic model, describe the specific quench
protocols, and outline two computational methods for deter-
mination of the time-dependent physical observables. Next,
in Sec. III, we analyze the evolution of the quantum dot
occupancy, the on-dot pair correlation and the charge current
induced by the quantum quenches in the unbiased hetero-
junction. Section IV presents the time-dependent transport
properties of the biased system. Finally, in Sec. V we conclude
the paper and summarize the main results.

II. FORMULATION OF THE PROBLEM

In this section we present the microscopic model and
specify two types of the quantum quenches that could be
practically realized. We also outline the computational meth-
ods for description of the time-dependent superconducting
proximity effect and electron correlations.

A. Microscopic model

The considered N-QD-S heterostructure can be described
by the single impurity Anderson Hamiltonian

Ĥ =
∑

σ

εd (t )d̂†
σ d̂σ + U n̂↑n̂↓︸ ︷︷ ︸
ĤQD

+
∑

β

(Ĥβ + V̂β−QD), (1)

where d̂σ (d̂†
σ ) is the annihilation (creation) operator of the

quantum dot electron with spin σ whose (time-dependent)
energy is εd (t ) and U denotes electrostatic repulsion between
the opposite spin electrons. We treat the metallic lead as free
fermion gas ĤN =∑

k,σ ξkĉ†
kσ ĉkσ , where ξk = εk − μN is the

energy εk of itinerant electrons measured from the chemical
potential μN . The superconducting lead is described by the
BCS model ĤS =∑

q,σ ξqĉ†
qσ ĉqσ −∑

q �(ĉ†
q↑ĉ†

−q↓ + ĉ−q↓ĉq↑)
with energies ξq = εq − μS and the isotropic pairing gap �.

Coupling of the QD to the metallic lead is given by
the hybridization term V̂N−QD = ∑

k,σ (Vk d̂†
σ ĉkσ + h.c.) and

V̂S−QD can be expressed by interchanging the indices k ↔ q.
We focus here on the in-gap states, therefore for simplicity
we can assume the energy-independent couplings �N (S) =
π

∑
k(q) |Vk(q)|2 δ(ω−εk(q) ). For |ω| 	 �, the coupling �S

can be regarded as the proximity induced pairing poten-
tial, whereas �N controls the inverse life-time of the in-gap
quasiparticles. As we shall see, these couplings manifest
themselves in the dynamical quantities in qualitatively differ-
ent ways.

B. Quench protocols

The quantum quench can be in general represented by the
following time-dependent Hamiltonian

Ĥ (t ) = θ (−t )Ĥ0 + θ (t )Ĥ, (2)

where θ (t ) is the step function. The initial Hamiltonian Ĥ0

is replaced (at time t = 0) by another Hamiltonian Ĥ . In
particular, this abrupt change can be realized within the same
structure of the model (1) modifying only its parameters.
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The expectation value of an arbitrary observable Ô(t ) can
be then expressed as (for the time-independent Hamiltonian)

O(t ) ≡ 〈Ô(t )〉
= Tr{e−iĤt ρ̂0eiĤtÔ}
= Tr{ρ̂0ÔH (t )}
≡ 〈ÔH (t )〉, (3)

where ρ̂0 denotes the initial equilibrium density matrix of
the system described by Ĥ0 and ÔH (t ) is the Heisenberg
representation of Ô.

We shall examine the dynamical behavior of various quan-
tities, considering two different types of quantum quenches.
In the first case, we impose an abrupt change of the coupling
to superconducting lead

Vq(t ) =
{

0 for t � 0
Vq for t > 0,

(4)

which is formally equivalent to the assumption �S (t ) =
�S θ (t ). The second quantum quench refers to the time-
dependent QD energy level

εd (t ) =
{
εd for t � 0
εd + VG for t > 0,

(5)

and it can be practically achieved by applying the gate poten-
tial VG(t ) = VG θ (t ). Although in both considered quenches
the system evolves according to the same final Hamiltonian,
we shall see that different initial conditions strongly affect
the transient behavior. For computing the time-dependent
expectation values of our interest, such as the QD oc-
cupancy nσ (t ) ≡ 〈d̂†

σ (t )d̂σ (t )〉, the induced pairing χ (t ) ≡
〈d̂↓(t )d̂↑(t )〉 and the charge currents jS,N (t ) we use two tech-
niques, briefly outlined below.

C. Equation of motion approach

In the absence of interactions (U =0) one can exactly
determine all required observables, solving the set of cou-
pled equations of motion for appropriate operators. Yet, even
for U =0, the observables exhibit nontrivial evolution. For
an abrupt switch on of the coupling of uncorrelated QD to
both external electrodes we have previously determined the
characteristic time scales of the subgap bound states [26,27].
Technically, one has to solve the Heisenberg equation of mo-
tion of the localized d̂ (†)

σ and itinerant ĉ(†)
k/qσ electron operators,

respectively. To accomplish this, we have expressed these
equations of motion by introducing the Laplace transforms
Ô(s) = ∫ ∞

0 e−st Ô(t )dt , which are useful for considering the
specific initial conditions Ô(0). Next, computing the inverse
Laplace transforms we have determined the time-dependent
operators Ô(t ) and derived analytical expressions for the
needed expectation values, such as nσ (t ) ≡ 〈d̂†

σ (t )d̂σ (t )〉.
A typical evolution of the uncorrelated QD spectrum in-

duced after switching on the coupling �S (t ) is illustrated in
Fig. 2. Initially, the dot is described by energy level εd , the
broadening (inverse lifetime) of which is equal to 2�N . After
attaching the superconductor this quasiparticle state evolves
into a pair of Andreev bound states that develop at ±EA. For
U = 0 and � → ∞, the energy of Andreev states is given

FIG. 2. The illustration of the post-quench evolution driven
by a sudden change of the coupling to superconductor �S (t ) =
�Sθ (t ), presenting the quasiparticle peak existing till t = 0 at εd ,
which changes into a pair of Andreev bound states at ±EA. Such
changeover is accompanied with damped quantum oscillations of
frequency ω = EA.

by EA =
√

ε2
d + �2

S . Interestingly, such a quasiparticle spec-
trum is gradually developed through a sequence of quantum
oscillations of characteristic frequency ω = EA, in a fashion
reminiscent of the Rabi-type oscillations.

To prove it explicitly, let us consider the effective Hamil-
tonian Ĥ = ∑

σ εd d̂†
σ d̂σ + (�Sd̂†

↑d̂†
↓ + h.c.) in the absence of

interactions U = 0 and neglecting the normal lead �N = 0.
Assuming the quantum dot to be initially empty nσ (0) = 0,
we can determine the probability P(t ) for inducing the on-dot
pair at time t > 0 using the standard treatment of two-level
systems [64] given by

P(t ) = �2
S(E1−E2

2

)2 + �2
S

sin2

⎡
⎣t

√(
E1 − E2

2

)2

+ �2
S

⎤
⎦. (6)

For the initial energy E1 = 0 and the final one E2 = 2εd ,
we thus obtain the following oscillatory behavior: P(t ) =
[ �S

EA
sin(tEA)]

2
. The additional coupling �N to a continuous

spectrum of the normal lead would activate the relaxation
processes, responsible for damping.

This approach fails when considering electron interactions,
because the corresponding equations of motion cannot be
closed. For a weakly correlated system, however, the Coulomb
repulsion term can be linearized within the Hartree-Fock-
Bogoliubov (HFB) approximation

d̂†
↑d̂↑d̂†

↓d̂↓ � n↑(t )d̂†
↓d̂↓ + n↓(t )d̂†

↑d̂↑ − n↑(t )n↓(t )

+χ (t )d̂†
↑d̂†

↓ + χ∗(t )d̂↓d̂↑ − |χ (t )|2, (7)

155420-3
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and the Hartree-Fock term can be incorporated into the renor-
malized QD energy level ε̃d (t ) ≡ εd (t ) + Un−σ (t ), whereas
the anomalous contribution rescales the effective pairing po-
tential �̃S (t ) ≡ �S (t ) − Uχ (t ). Unfortunately, the operators
d̂σ (t ) and ĉk/qσ (t ) are no longer analytically solvable. In such
a case, the expectation values can be computed by solving
numerically the set of coupled equations of motion for nσ (t ),
〈d̂↓(t )d̂↑(t )〉, 〈d̂†

σ (t )ĉkσ (0)〉, and 〈d̂σ (t )ĉk−σ (t )〉 (see Ref. [26]
for details).

Concerning the validity of this mean-field approxima-
tion (7), it can be expected to give credible results for the
Coulomb potential U smaller than the pairing strength �S .
It has been shown [65], that the lowest-order approximation
qualitatively reproduces the even-odd parity transition of the
proximitized QD, which at half-filling is realized at U ∼
�S . Quantitative comparison of perturbative results with the
numerical renormalization group calculations and the quan-
tum Monte Carlo simulations under the stationary conditions
has been systematically discussed in Ref. [47]. Neverthe-
less, as far as real nonequilibrium conditions are concerned,
the mean-field approximation should be regarded as giving
only the first insight into the system’s behavior, while a
more accurate analysis of time-dependent properties of bi-
ased heterojunctions requires resorting to much more involved
methods [48,50,53,56,57].

D. Time-dependent numerical renormalization group

The essential part of our results is obtained by the
tNRG technique, which is an extension of the Wilson’s nu-
merical renormalization group (NRG) method, suitable for
reliable study of the quantum impurity systems at equilib-
rium [43–46,66,67]. An invaluable advantage of this approach
is its very accurate treatment of many-body correlations in a
fully nonperturbative manner [46].

For studying the quench dynamics of the time-dependent
Hamiltonian (2), we use the NRG method to solve both the
initial (Ĥ0) and final (Ĥ ) Hamiltonians independently [68].
In the NRG procedure these Hamiltonians are diagonalized
in an iterative manner, keeping at each iteration at least NK

energetically lowest-lying eigenstates labeled with superscript
K . The discarded high-energy states, labeled with superscript
D, are collected from all the iterations and used to construct
the full many-body initial and final eigenbases [44]

∑
nse

|nse〉D0 D
0〈nse|= 1̂ and

∑
nse

|nse〉D D〈nse|= 1̂, (8)

corresponding to Ĥ0 and Ĥ , respectively. The index s labels
the eigenstates at iteration with integer number n, while e
indicates the environmental subspace representing the rest of
the Wilson chain. Here, we note that all eigenstates of the
last iteration are considered as discarded. In the next step,
an initial full density matrix ρ̂0 is constructed for the system
described by Ĥ0 at thermal equilibrium [69]

ρ̂0 =
∑
nse

e−βED
0ns

Z
|nse〉D0 D

0〈nse|, (9)

where β ≡ 1/T is the inverse temperature and

Z ≡
∑
nse

e−βED
0ns (10)

is the partition function.
The actual time-dependent calculations are performed in

the frequency space. The expectation value of the frequency-
dependent local operator O(ω) ≡ 〈Ô(ω)〉 expressed with the
use of the corresponding eigenstates is given by

O(ω) =
XX ′ �=KK∑

n

∑
n′

∑
ss′e

X〈nse|wn′ ρ̂0n′ |ns′e〉X ′

× X ′〈ns′e|Ô|nse〉X δ
(
ω + EX

ns − EX ′
ns′

)
, (11)

where ρ̂0n′ is the part of the initial density matrix given at
iteration n′ and wn′ is the weight of the contribution evaluated
by tracing out the environmental states [69]. Calculation of
the expectation value is performed in an iterative fashion
by adding all the contributions, as described in Ref. [70].
Subsequently, the discrete data is weakly smoothed with a
log-Gaussian function and broadening parameter b � 0.1, and
then Fourier-transformed into the time domain to eventually
obtain a time-dependent expectation value of the local opera-
tor [71]

O(t ) =
∫ ∞

−∞
O(ω)e−iωt dω. (12)

For our tNRG calculations we have used the discretization
parameter 1.5 � � � 2, setting the length of the Wilson chain
to N = 100 and keeping at least NK = 2000 eigenstates at
each iteration. More detailed description of the tNRG im-
plementation in the matrix product state framework has been
presented in Ref. [70].

III. DYNAMICS OF UNBIASED SETUP

In this section we analyze the dynamics of unbiased het-
erojunction, which can be accurately calculated by using the
tNRG method. However, for the sake of further analysis, we
also present the results obtained with the aid of the mean-
field (HFB) approach. In the weak correlation limit, U 	 �S ,
we have found that both computational procedures are fairly
convergent. In what follows, we present some representative
results of the time-dependent quantities, restricting to the
superconducting atomic limit � → ∞. We assume a small
coupling to the normal lead, �N = 0.01, to guarantee long
lifetimes of in-gap quasiparticles, what effectively also ex-
tends the temporal scale of relaxation processes [26].

Figure 3 shows the time-dependent occupancy n(t ), charge
current jS (t ) (in units of 4e

h̄ �S) and the real part of the pair
correlation χ (t ) obtained for a sudden change of the QD
level εd (t ). Since the other current jN (t ) obeys the charge
conservation law, jS (t ) + jN (t ) = e dn(t )

dt , we skip its presen-
tation here. Figure 4 displays the same quantities obtained for
a sudden switching of the coupling �S (t ) = U θ (t ). In both
cases we notice that the initial observables gradually evolve
to their new steady-state-limit values over the characteristic
time interval τ ∼ 1/�N . Meanwhile, they undergo the quan-
tum oscillations, whose frequency depends on the energies
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FIG. 3. Comparison of the time-dependent observables obtained
by tNRG technique (solid lines) and HFB approximation (dashed
lines) for a sudden change of the QD level εd from −U/2 to −U .
The couplings of QD to external leads are assumed to be �S = 0.2,
�N = 0.01 and the Coulomb potential U = 0.1 (in units of the band
half-width).

of in-gap quasiparticles. This behavior, previously obtained
by us analytically for the noninteracting case [26,65,72,73]
(Fig. 2), shall be analyzed here focusing on the correlation
effects.

Figures 3 and 4 also present a direct comparison of the
results obtained by the two approaches. The time-dependent
observables calculated by tNRG are presented with the solid
lines and the dashed lines display the mean-field approach
data. We notice a relatively good qualitative agreement be-
tween both methods, albeit a closer inspection reveals the
quantitative differences. First of all, the period of quantum
oscillations is smaller in tNRG than in the HFB approach.
Moreover, the damping of oscillatory behavior obtained
within tNRG is more efficient. These differences stem from
the fact that correlations give rise to a renormalization of the
subgap quasiparticle energies and their lifetimes [74]. This
renormalization is not precisely reproduced by HFB approach
and such discrepancies would be particularly noticeable in the
Kondo regime [72–75] (not discussed here).

A. Quench in coupling �S

To understand the dynamics of the correlated quantum dot
driven by an arbitrary quench, it is useful to recall the exact
stationary solution for �N = 0 and � → ∞. Depending on
the model parameters, i.e., εd , U and �S , the quantum dot can
be either in the singly occupied |σ 〉 or the BCS-type u|0〉 −
v|↑↓〉 ground state [74]. When(

εd + U

2

)2

+ �2
S =

(
U

2

)2

, (13)

there occurs a quantum phase transition from the (spinful)
doublet to the (spinless) singlet configuration. It has crucial
importance for an interplay between the on-dot pairing and

FIG. 4. Comparison of the tNRG results (solid lines) with the
mean-field values (dashed lines) obtained for εd = 0, U = 0.1 and
�N = 0.01 after the quench in �S from zero to its final value �S = U .

the correlation effects. For the finite coupling �N �= 0, such
transition is replaced by a crossover, yet the essential features
of such distinct singlet/doublet phases are clearly preserved.

For the half-filled QD (εd = −U/2) this quantum phase
transition (crossover) would occur at �S = U/2. Figures 5
and 6 present the variation of physical quantities with re-
spect to time (horizontal axis) and the final coupling �S

(vertical axis) for the nearly half-filled quantum dot obtained
by tNRG and the mean-field approximation, respectively.
Again we notice, that in the tNRG results the oscillations
are strongly suppressed in comparison to predictions of the
mean-field approach. Here, the system is slightly detuned
from the particle-hole symmetric point, but QD is still in the
Kondo regime characterized by a strong reduction of charge
fluctuations. In consequence, the associated current jS (t ) is
diminished. As expected, in the doublet region (�S < U/2)
the pair correlation is negligibly small (bottom panel) and
we hardly observe any significant charge flow jS (t ) (middle
panel) due to the dominant Coulomb repulsion. For stronger
couplings �S > U/2, the quantum dot tends be in the BCS-
type ground state, and this evolution is achieved through
damped quantum oscillations (Fig. 5). With increasing �S , the
quasiparticle energies move further and further away, there-
fore the frequency of oscillations increases.

Figures 7 and 8 present the same quantities obtained by
tNRG and HFB in the case when QD evolves to the BCS-type
configuration for all values of �S . It can be seen that with
increasing �S the amplitude of oscillations grows, and so
does the frequency. This behavior of N-QD-S setup can be
better understood by recalling the Andreev bound state en-

ergies [74–76], γ U
2 + η

√
ξ 2

d + �2
S , of the correlated quantum

dot obtained in the limit of �N = 0, where ξd = εd + U/2
and η, γ = ±1. Clearly, the increase of �S changes the quasi-
particle energies resulting in larger oscillation frequencies
displayed in Figs. 5–8. Using the exact solution in the absence
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FIG. 5. The time-dependent occupation number n(t ), current
jS (t ) and real part of the pair correlation χ (t ) = 〈d↓(t )d↑(t )〉 after
quench in �S (t ) from zero to its final value �S (indicated on vertical
axis). Results are obtained by tNRG using the model parameters
U = 0.1, �N = 0.01 and εd = −U/2 − δ, where δ = U/20.

of relaxation processes (i.e., �N = 0), we have found the
following analytical results:

nσ (t ) = �2
S

ξ 2
d + �2

S

sin2
(
t
√

ξ 2
d + �2

S

)
, (14)

Reχ (t ) = −ξd (�S/2)

ξ 2
d + �2

S

sin2
(
t
√

ξ 2
d + �2

S

)
, (15)

Imχ (t ) = −(�S/2)√
ξ 2

d + �2
S

sin
(
2t

√
ξ 2

d + �2
S

)
. (16)

We have assumed here the initially empty quantum dot
nσ (0) = 0 for the quantum quench of the coupling to su-
perconducting lead from zero to �S . We have checked that
such oscillations are in good agreement with the fully self-
consistent numerical results obtained for �N �= 0.

Comparison between the tNRG and the mean-field results
reveals that, most features are qualitatively similar in both
methods. Quantitatively, however, there are some differences,
as discussed in the previous section.

B. Quench in orbital level position

We now inspect the second type of quantum quench due
to abrupt change of the energy level, cf. Eq. (5). Figure 9
presents the time-dependent observables obtained by tNRG
for the same parameters as in Fig. 3, assuming �S = 2U .
The orbital level is initially tuned to the particle-hole sym-

FIG. 6. The mean-field results obtained after the quench of �S

for U = 0.1, �N = 0.01, εd = −U/2 − U
20 which can be compared

to the tNRG data presented in Fig. 5.

metry point, εd (t � 0) = −U/2, marked by the horizontal
dashed line in Fig. 9, and its final value after the quench is
indicated on the y axis, correspondingly.

One can see that the evolution of physical observables to
their new stationary values is realized through the damped
quantum oscillations, analogous to the behavior displayed
in Fig. 3. These oscillations show up for a wide range of
final values of energy level εd . In this regard, the absolute
difference |εd (t � 0) − εd (t > 0)| affects merely the ampli-
tude of such oscillations. This is especially evident, when
examining the time dependence of all observables near the
particle-hole symmetry point. For εd = −U/2, however, these
quantum oscillations completely disappear and we have pre-
viously provided physical reasoning for such phenomenon
analyzing the transient effects of the uncorrelated system [26].
The oscillations originate from the leakage of Cooper pairs
onto the quantum dot and such processes are hardly possible
when the initial configuration is exactly half-occupied. Away
from the half-filling, the Cooper pairs can flow back and forth,
as manifested by the quantum oscillations in all observables.
Their frequency depends on the energies EA of the bound
states (see Fig. 2) reminiscent of the Rabi oscillations of two-
level quantum systems. The relaxation mechanism originates
here from the coupling �N to the continuum spectrum of the
metallic lead.

The abrupt change of the QD energy level has a consider-
able impact on the long-time limit of the charge occupation.
For instance, we obtain n(t → ∞) ≈ 0.57 for εd/U = 0.5
and n(t → ∞) ≈ 1.23 for εd/U = −1, respectively. The oc-
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FIG. 7. The time-dependent occupation number n(t ), current
jS (t ) [in units 4e

h̄ �S] and the real part of χ (t ) = 〈d↓(t )d↑(t )〉 after the
quench in �S (from zero to its finite value indicated in vertical axis).
Results are obtained by tNRG for the model parameters εd = 0,
U = 0.1 and �N = 0.01.

cupancy oscillations are mostly pronounced right after the
quench in the early time interval t�N � 1. Later on, they are
exponentially suppressed with the relaxation rate τ ∼ 1/�N .
Some intriguing effect can be observed in the time-dependent
supercurrent jS (t ), whose evolution is characterized by the
oscillations shifted by π upon crossing the half-filling εd =
−U/2. The maxima perfectly coincide with minima around
εd = −U/2, marked by the dashed lines in Fig. 9. This effect
resembles 0 − π phase transition, whose nature has been
widely discussed in the literature for the stationary condi-
tions [47,77]. As already mentioned, the other current jN (t )
is associated with the QD occupancy n(t ) and jS (t ) through
the charge conservation law jS (t ) + jN (t ) = e dn(t )

dt .
The oscillatory behavior after the quench of QD energy

level is least evident in the real part of the time-dependent
pair correlation χ (t ). This quantity could be regarded as a
qualitative measure of the induced on-dot pairing and it in-
directly affects the charge current jN (Sec. IV). Its magnitude
is meaningful predominantly in the BCS-type ground state,
as evidenced by the NRG studies [74]. The most significant
variations of Reχ (t ) are realized in the short-time limit, when
the occupation number n(t ) has its minima for quenches to
εd > 0. We once again recall that when the quantum dot
is strongly coupled to superconductor (�S/U = 2), the large
value of Reχ (t ) firmly establishes in both the initial and final

FIG. 8. Evolution of the observables obtained within the mean-
field approximation after the quench in �S (from zero to its finite
value indicated in vertical axis) for εd = 0, U = 0.1 and �N = 0.01.
These data can be compared to tNRG results shown in Fig. 7.

states. For this particular regime, the quench does not affect
the long-time limit in a considerable way.

Further modifications of the oscillatory time-dependent
quantities can be observed when changing the coupling to the
superconductor �S . We examine typical results obtained for
the N-QD-S setup, using the parameters initially tuned to the
quantum phase transition (�S/U = 0.5). Figure 10 displays
the evolution after the quench in the quantum dot energy level,
identical to that discussed above. Due to reduction of the cou-
pling �S , the oscillations have lower frequency as compared
with the previous case, cf. Eqs. (14)–(16). Additionally, the
quench influences the frequency in such way that it is shifted
toward higher values as the difference |εd (t � 0) − εd (t > 0)|
increases. This behavior gives an interesting prospect for a
device generating transient supercurrents with the frequency
controlled by appropriate switching of the gate potential VG in
a steplike manner. Let us note that the oscillations of the imag-
inary part of χ (t ) preserve their amplitude. Smaller values of
the pairing potential relax the constraints on the long-time
limit of the charge occupancy. Here we have, n(t → ∞) ≈
0.2 for εd/U = 0.5 and n(t → ∞) ≈ 1.55 for εd/U = −1,
thus spanning a wider range of n(t → ∞) in comparison with
the case of �S/U = 2 (Fig. 9). On the other hand, the real
part of χ (t ) is restricted to a much smaller range, both during
the time evolution and after achieving the asymptotics, as
expected upon suppressing the pairing amplitude.
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FIG. 9. The time-dependent occupation number n(t ), current
jS (t ) and the real part of 〈d↓(t )d↑(t )〉 after the quench in QD level
εd from −U/2 to its final value indicated in vertical axis. Results are
obtained by tNRG for �S/U = 2, assuming U = 0.1 and �N = 0.01.

C. Dynamical susceptibility

Dynamical properties of the N-QD-S heterostructure
can be further revealed by studying the interplay of the
superconducting correlations with the local magnetism. To
get an insight into such a competition, let us examine the
magnetic susceptibility defined by χB ≡ d

dB 〈Sz〉B=0, where Sz

denotes z-th component of the QD spin. Figure 11 presents
the static value of χB as a function of temperature T for
different couplings �S . In the absence of the superconducting
lead (�S = 0) the maximum of magnetic susceptibility occurs
at temperature T ≈ �N . It acquires a reduced value of χBT ≈
0.19 as compared to the free-spin case, where χBT = 1/4.
With decreasing temperature, the Kondo effect comes into
play resulting in a full screening of the quantum dot spin for
T/�N � 10−3, where χBT → 0. However, when the system
is coupled to the superconducting lead, the temperature-
dependent susceptibility is substantially modified. As the
coupling �S is enhanced, the maximum of susceptibility is
reduced and shifted toward higher temperatures. Moreover,
the full screening of the orbital level holds at significantly
higher temperatures due to the strong superconducting cor-
relations [75]. Finally, for high temperatures, exceeding the
values of couplings and Coulomb potential (T > �S, �N ,U ),
all lines converge near χBT ≈ 0.125.

By varying the coupling strength �S , the most pronounced
change of magnetic susceptibility occurs at temperature T ≈
�N . To get an understanding of the dynamical aspects of this
dependence, we show in Fig. 12 the time-dependent suscep-

FIG. 10. The time-dependent occupation number n(t ), current
jS (t ) and the real part of 〈d↓(t )d↑(t )〉 obtained by tNRG after the
quench in QD level εd from −U/2 to its final value indicated in
vertical axis for �S/U = 0.5, U = 0.1, �N = 0.01.

tibility and the squared magnetization after the quench of
the coupling �S . Let us remark that magnetic susceptibility
(being a measure of a response to external magnetic field)
is a property of the system specified in the equilibrium case.
Here, we estimate its temporal evolution by calculating the
magnetization in a very small but finite external magnetic field
Bz, which allows us to approximate the time dependence of the
susceptibility as Sz(t ) ≈ χB(t )T .

We consider two initial values of coupling to the su-
perconductor, �S (t < 0)/U = 0.25 (left column) and �S (t <

0)/U = 0.75 (right column), associated with the previously
discussed spinful and spinless phases, respectively. Let us
recall that at the particle-hole symmetry point εd = −U/2
the charge and supercurrent dynamics is fully suppressed. We
first focus on the case when the evolution is determined after
the quench from the spinful configuration with initial value
�S (t < 0)/U = 0.25, see the left column in Fig. 12. When
the final value of the coupling strength to superconductor is
chosen in such a way that the system remains in the same
phase, i.e., �S (t > 0)/U < 0.5, both χB(t ) and S2

z (t ) [panels
(a) and (c)] monotonically evolve in a rather moderate man-
ner to a new, slightly modified long-time limit, in agreement
with the final thermal expectation values. This regime extends
below the cyan dashed lines, indicating a crossover between
the phases. However, when �S (t > 0)/U > 0.5 (values of �S

above the cyan line), the system undergoes a transition to the
spinless phase and the time dependences reveal a rapid drop
of the magnetic properties at time t�S ∼ 101. Qualitatively,
for the considered system both quantities χB(t ) and S2

z (t )
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FIG. 11. The magnetic susceptibility as a function of temperature
T obtained by NRG for several values of �S , as indicated, for the
following parameters: εd = −U/2, �N = 0.01 and U = 0.1. Suscep-
tibility is multiplied by temperature T .

have a very similar time dependence and some differences
are mainly due to distinct thermal expectation values of the
initial and final states. Additionally, the squared magnetization
evolves in a smoother manner, while the magnetic susceptibil-
ity may undergo weak oscillations at times around t�S ∼ 102

before fully relaxing to the new final state. As a reference, in
Fig. 12(e) we also show S2

z (t ) evaluated for T/�N ∼ 10−7,
which is in good agreement with dependences at higher
temperatures. However, χB(t ) at T/�N ∼ 10−7 no longer ex-
hibits the discussed behavior due to the full suppression of
the magnetic susceptibility at low temperatures, as shown in
Fig. 11.

On the other hand, when the dot is in the initial spin-
less phase and the coupling varries from �S (t < 0)/U = 0.75
[see the right column in Fig. 12], the response looks signif-
icantly different in comparison to the above-discussed case.
A striking difference is that here the dynamics is no longer
strongly dependent on the coupling �S . To clearly show this
effect, we plot the time-dependent expectation values as func-
tions of t�N . For a relatively small change in the coupling
�S (t > 0)/U > 0.5, i.e., when after the quench the system
remains in the spinless phase, the quantities sustain a mild
and monotonic evolution toward new thermal limit. However,
when the system undergoes a phase transition to the spinful
configuration and �S (t > 0)/U < 0.5 [regime below the cyan
dashed line], an enhancement of the magnetic susceptibility
and the squared magnetization is considerable. The buildup
of χB(t ) is noticeable at times t�N ∼ 100, revealing simi-
lar oscillations as in the case of transition to the opposite
direction. Finally, the new asymptotics is achieved at times
101 < t�N <102, depending on the magnitude of the quantum
quench. The dynamical behavior of S2

z (t ) is again similar to
the evaluated time-dependent magnetic susceptibility, but it
exhibits suppressed quantum oscillations and the buildup is
considerably ahead of χB(t ). At times t�N ≈ 100, it achieves
maximum, which is quickly followed by thermalization to a

FIG. 12. The time-dependent susceptibility χB(t ) and square of
the magnetization S2

z (t ) after the quench in �S from initial value
indicated at the top of each column. Results shown in (a)–(d) are
calculated for temperature T/�N = 100, while (e) and (f) are deter-
mined for T/�N ∼ 10−7. Cyan dashed lines indicate the coupling
strength �S (t ) = U/2 associated with the quantum phase transi-
tion. Results are obtained by tNRG for εd = −U/2, �N = 0.01
and U = 0.1.

new value obtained for times t�N 	 101. Finally, the low
temperature behavior of S2

z (t ), see Fig. 12(f), allows one to
predict dynamical magnetic behavior of the system at higher
temperatures and conversely.

IV. BIASED HETEROJUNCTION

Finally, we briefly discuss the time-dependent charge trans-
port through the N-QD-S heterostructure when the chemical
potential μN is detuned from μS by an applied bias eV =
μN − μS . For convenience, we assume μS =0. The calcu-
lations of time-dependent properties of biased junction are
performed by means of the mean-field approach within the
Hartree-Fock-Bogoliubov approximation, cf. Eq. (7). We no-
tice that although certain degree of qualitative agreement
between the mean-field and tNRG results presented in pre-
vious section may trigger optimistic conclusions, the use of
the HFB approach for the biased setup should be considered
as merely giving the first insight into the out-of-equilibrium
system’s behavior.

Figure 13 illustrates how the time-dependent current flow-
ing to the superconductor changes with the applied bias
voltage. With increasing the bias voltage, one can see that
the characteristic current oscillations depart from the particle-
hole symmetry point, approximately by the magnitude of the
applied voltage |eV |. As a consequence, at finite bias, there
is a rather constant nonequilibrium current flowing between
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FIG. 13. The time-dependent current jS (t ) obtained within the
mean-field approach in the presence of finite bias voltage V . The
panels (a), (b), and (c) correspond to eV/U = 0, −0.5 and −1.0,
respectively. The model parameters are �S/U = 0.5, U = 0.1, and
�N = 0.01.

the dot and the superconductor, while the time-dependent
current oscillations are visible for εd � −U/2 + eV and εd �
−U/2 − eV , see Fig. 13.

Let us now focus on the differential conductance
GN (V, t ) = d

dV jN (t ) of the charge current induced between
the quantum dot and the normal lead. We remind that the
other current jS (t ) can be inferred from the conservation law
jS (t ) = dn(t )

dt − jN (t ). The charge flow from the metallic lead
to QD can be formally expressed by the following expectation
value: jN (t ) = e〈 d

dt

∑
k,σ ĉ†

kσ (t )ĉkσ (t )〉. Determining the time
derivative from the equation of motion, one obtains

jN (t ) = 2e
∑
k,σ

Im{Vk〈d̂†
σ (t )ĉkσ (t )〉}, (17)

where the operators of itinerant electrons are governed by
ĉkσ (t )= ĉkσ (0)e−iξkt −i

∫ t
0dt ′Vke−iξk (t−t ′ )d̂σ(t ′) [26]. The re-

maining computational difficulty is related here with the
time-dependent operators d̂ (†)

σ (t ). These operators can be de-
termined, depending on specific quantum quench, from the
equation of motion algorithm described in detail by us for
the uncorrelated N-QD-S heterostructure in Ref. [26] (see
Appendix A.1 therein). Our study addresses the subgap trans-
port driven by bias voltage V , smaller than the pairing gap
�, which in conventional superconductors is on the order
of meV. Otherwise, one should resort to more sophisticated
methods to deal with the time-dependent transport phenomena
under nonequilibrium conditions in the presence of correla-
tions, e.g., exploiting symmetries, fluctuation relations and/or
dualities [78–80].

FIG. 14. Variation of the differential conductance GN (in units of
2e2/h) with respect to voltage V and time t obtained by the mean-
field approximation after a sudden coupling of the QD to external
leads at t = 0+ for �N = 0.01, �S = 0.1, εd = −U/2 and assuming
(a) U = 0.025, (b) U = 0.1.

The steady-state limit current jN (∞) can be independently
determined, for instance, from the Landauer formalism. Such
Andreev-type spectroscopy has been widely discussed in the
literature [2,3]. Here, we are mainly interested in the time evo-
lution of the tunneling current jN (t ) towards its steady-state
limit, which encompasses the relaxation processes (imposed
by the coupling �N ) and the quantum oscillations with fre-
quencies sensitive to the ratio of �S/U and dependent on the
QD level εd .

We first consider the situation when at t = 0+ the QD is
simultaneously coupled to the both external leads. Under such
circumstances, we can observe signatures of the emerging
bound states, manifested in the time-dependent differential
conductance GN (V, t ). Figure 14 presents these transient ef-
fects for several model parameters εd , �S , U (as indicated).
The plots clearly show gradual buildup of the in-gap states
at energies ±EA characterized either by the symmetric (for
εd = −U/2) or asymmetric spectral weights (away from the
half-filling). These features are well established around t ∼
1/�N and until such time, the transient behavior reveals the
quantum oscillations with the period given by 2π/EA.

Let us now focus on the quantum quenches described by
Eqs. (4) and (5). Figure 15 displays the differential conduc-
tance obtained for the half-filled QD (εd = −U/2) suddenly
attached to the superconducting lead. We set the Coulomb
potential U = 0.1 and impose the quench �S (t ) = Uθ (t ).
Initially, the normal quantum dot is characterized by the
quasiparticle peaks at energies εd and εd + U , which for the
half-filled QD occur at ±U/2. The superconducting proximity
effect drives the quantum dot to the new quasiparticle states,
cf. Eqs. (14)–(16). The emergence of such new quasiparticles
resembles the transient phenomena presented in Fig. 14. This
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FIG. 15. The differential conductance GN as a function of volt-
age (vertical axis) and time (horizontal axis) after the quench in
�S from zero to 0.1 obtained by the mean-field calculations for
� = 0.01, U = 0.1 and εd = −U/2.

is rather not surprising, considering the fact that �N is much
weaker as compared to �S and U .

Figure 16 shows GN (V, t ) after the quench of QD level
from εd (t � 0) = −U/2 to εd (t > 0) = U/2. In this figure
we have assumed �S = U , guaranteeing that at the initial and
final stages the quantum dot is safely in the BCS-type config-
uration. A sudden change of the energy level is responsible for
the modification of the energies of subgap quasiparticles ±EA

and inducing asymmetry of their spectral weights.
Finally, we discuss the evolution of the quasiparticle spec-

tra manifesting transitions between the singlet and doublet
configurations. Such a situation can be achieved in two steps,
as displayed in Fig. 17. Initially, at t = 0+, the half-filled
quantum dot is coupled to both electrodes, with �S > U/2
(upper panel) and �S < U/2 (bottom panel). We analyze the
transient effects in the time interval t ∈ (0, 5/�N 〉. Next, for
t = 5/�N , we abruptly reverse these couplings. Such change
triggers transitions from the doublet to singlet phase (upper
panel) and from the singlet to doublet phase (bottom panel),
respectively. We notice that the postquench behavior is not

FIG. 16. The differential conductance GN obtained by mean-
field approach for �N = 0.01 and �S/U = 1, imposing a sudden
change of the QD energy level εd = U/2 → −U/2.

FIG. 17. The differential conductance GN calculated by the
mean-field approach across the doublet-singlet transition driven by
the quench in �S: from 0.03 up to 0.07 (upper panel) and from 0.07
down to 0.03 (bottom panel). The quench was imposed at t = 5/�N

using the model parameters: �N = 0.01, U = 0.1 and εd = −U/2.

completely identical in both cases, but the quasiparticle fea-
tures in the upper/bottom panel right before the quench are
pretty similar to the asymptotic quasiparticle features visible
in the bottom/upper panels.

V. SUMMARY AND OUTLOOK

We have studied the dynamical properties of the correlated
quantum dot coupled to the metallic and superconducting
leads, considering two quantum quenches driven by (a) a
sudden shift of the energy level and (b) an abrupt change of
the coupling between the quantum dot and the superconduc-
tor. To accurately treat the correlation effects, we have used
the time-dependent numerical renormalization group method
to study the dynamics of an unbiased junction. For both
types of quantum quenches, we have observed that the time-
dependent observables (such as quantum dot charge, induced
on-dot pairing, and local currents) gradually evolve to their
stationary-limit values through a series of damped quantum
oscillations. The frequencies of these oscillations coincide
with the energies of the in-gap quasiparticles, whereas the
relaxation rate depends on the strength of coupling to metallic
lead �N . These findings are summarized in Fig. 18 for rep-
resentative values of �N/U ratio, showing that the amplitude
of quantum oscillations is indeed governed by an envelope
function e−t/τ with the characteristic time scale τ = (2�N )−1.

We have also considered two specific realizations of quan-
tum quenches, inducing a changeover of the quantum dot
ground state between the singlet and doublet (spinless and
spinful) configurations. Traversing from the BCS-type to the
doublet configuration (and vice versa), we have found a π shift
in the time-dependent charge current jS (t ) flowing from the
superconductor to the quantum dot. This phenomenon can be
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FIG. 18. Variation of nσ (t ) induced by shifting the QD energy
level εd from −U/2 to −U for several couplings �N (as indicated).
Solid lines display the tNRG results, thick-dashed (gray) curves refer
to e−2t�N sin2(t

√
ξ 2

d + �2
S ) and thin-dashed (red) lines present the

exponential envelope function. Results are obtained for �S = 0.2 and
U = 0.1.

regarded as the dynamical signature of the 0 − π transition,
widely studied in the stationary charge transport through a
correlated quantum dot embedded in the Josephson-type junc-
tion [2,65,77].

Furthermore, we have predicted qualitative changes of
the time-dependent magnetic properties upon approaching
the quantum phase transition after the quench of either the
energy level εd or the coupling �S . The dynamical suscep-
tibility and the squared quantum dot spin clearly reveal a

competition between the on-dot pairing and the Coulomb
correlations. Signatures of such competition are manifested
in the time-dependent on-dot pairing, which is empirically
accessible through the subgap tunneling spectroscopy. For this
reason, we have also investigated the nonequilibrium charge
transport of the biased N-QD-S nanostructure by using the
mean-field approach with respect to the Coulomb repulsion.
We have shown that the time- and voltage-dependent An-
dreev conductance reveals all qualitative details of the subgap
quasiparticles. Consequently, studying the quantum quenches
allows for a precise identification of the energies, lifetimes
and other (for instance magnetic) properties of the subgap
quasiparticles.

Finally, we find it of importance to make a comment
on the methodology used in this paper. For the dynamics
of unbiased heterostructure we have used the very accu-
rate time-dependent numerical renormalization group method.
The numerical results obtained by this method can be con-
sidered as very reliable. On the other hand, to get some
insight into the system dynamics in the case of finite bias
voltage, the case which cannot be captured by tNRG, we
have resorted to the mean-field method, which is however
much less accurate. Because the mean-field calculations of the
charge transport can be considered as reliable only for weakly
correlated systems, our HFB results should be viewed as pro-
viding some first insights into the time-dependent properties
of the biased junction. In this regard, we note that it would be
worthwhile to reexamine the dynamical effects of the strongly
correlated N-QD-S nanostructure under nonequilibrium con-
ditions in future studies by employing more reliable methods
[48,50,53,56,57,63].
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