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How to measure the Majorana polarization of a topological planar Josephson junction
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We analyze the topological superconductivity and investigate the spectroscopic properties manifested by
the zero-energy modes, induced in a metallic strip embedded into a Josephson-type junction. Focusing on the
Majorana polarization of such quasiparticles, we propose feasible means for its empirical detection, using the
spin-selective Andreev reflection method. Our study reveals a gradual development of a transverse gradient of
the Majorana polarization across the metallic strip upon increasing its width. We also inspect the spatial profile
and polarization of the Majorana quasiparticles in the presence of a strong electrostatic impurity. We show that,
depending on its position, such a defect can lead to a substantial localization of the Majorana mode.
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I. INTRODUCTION

Topological materials, including those which are either in-
sulators or superconductors, differ qualitatively from their or-
dinary counterparts due to the emergence of protected in-gap
modes. Such quasiparticles, which develop at boundaries or
internal defects, are topologically protected (thus being good
candidates for stable qubits), and obey fractional statistics
(which is appealing for quantum computations). Experimental
efforts for the realization of these exotic quasiparticles have so
far largely focused on one-dimensional structures, e.g., semi-
conducting nanowires proximitized to superconductors [1–5],
nanochains of magnetic atoms deposited on superconducting
substrates [6–11], and lithographically fabricated nanostruc-
tures [12]. Another direction in pursuit of topological super-
conductivity relies on two-dimensional systems, where the in-
gap quasiparticles are chiral modes [13–17]. Such Majorana
edge modes have indeed been observed in STM measure-
ments, using nanoscopic islands of magnetic atoms deposited
on superconducting substrates [18–20]. Further interesting
perspectives are related with mixed-dimensionality systems,
where the localized and delocalized Majorana quasiparticles
coexist with one another [21,22]. In particular, nanowires
attached to larger structures [12] could enable a controllable
transfer of the Majorana modes between these constituents
[23], probing their Chern numbers [24].

Yet another promising platform for the realization of topo-
logical superconductivity hosting the Majorana modes has
been suggested in Refs. [25,26] using normal strips charac-
terized by a strong spin-orbit coupling, embedded between
two superconducting leads with differing phases (see Fig. 1).
Signatures of the zero-energy modes have already been re-
ported for such heterostructures, consisting of aluminum on
indium arsenide [27] and an HgTe quantum well coupled to
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a thin aluminum film [28]. The major virtue of a Josephson-
type geometry is its tunability to the topologically nontrivial
regime, that can be controlled experimentally by the phase
difference. Another method for a controllable transition to
the topological phase is possible by embedding two gate-
tunable Josephson junctions in a phase-sensitive SQUID ge-
ometry, as reported for epitaxial Al/InAs heterostructures
[29]. Experiments on these Josephson-junction heterostruc-
tures [27–29] have triggered further intensive studies [30–33].
The proximitized strips are hoped, for instance, to enable a
current-controlled braiding of the Majorana modes [34]. It has
also been suggested [35] that weak disorder might promote
localization of the Majorana quasiparticles.

Topological superconductivity of the phase-controlled
Josephson heterostructures has been observed spectroscopi-
cally in the narrow (albeit finite-width) normal strips placed
between conventional superconductors. The group in Copen-
hagen used for this purpose a (1.6–5 μm long and 40–120 nm
wide) InAs region [27], while in Harvard they explored
(1–4 μm long and 400–600 nm wide) HgTe quantum wells
[28]. In both cases, dimensionality might have played an
important role, affecting the character of the boundary modes.
A convenient tool to deal with this issue is the Majorana
polarization, introduced in Ref. [36], which is capable to
inspect and identify topological nature of the zero-energy
quasiparticles [21,36–38].

Formally, the Majorana polarization is the local expecta-
tion value of the particle-hole operator for a given eigenstate
[36]. It has been shown to be useful for calculating the topo-
logical phase diagram when alternative methods (specific ei-
ther for one- or two-dimensional systems) cannot be adopted,
and for recognizing whether the low-energy states are the
true Majorana quasiparticles [21,36,37]. In the present con-
text, the quasi-two-dimensionality of the proximitized strips
is expected to induce transverse gradients in the Majorana
polarization [39]. They would be observable in the phase of
the Majorana polarization vector, and in its absolute value.
Transverse gradients of the Majorana polarization, relative to
the density, could be an indication of a delocalization process
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FIG. 1. A schematic view of a metallic strip (dark purple), em-
bedded between superconducting regions (yellow) which differ in
phase by φ, probed by a polarized STM tip (light gray). A magnetic
field �B = B0x̂ is applied to the whole structure.

that ultimately might be detrimental to the zero-energy modes.
Details concerning the Majorana polarization are presented in
Sec. III B.

Furthermore, we prove (in Sec. IV) that the modulus of
the Majorana polarization would be accessible experimentally
using selective equal spin Andreev reflection spectroscopy
[40]. A similar technique has been already applied to detect
the spin polarization of the Majorana quasiparticles of Fe
atom chains deposited on superconducting Pb [10,38] and
to probe the zero-energy mode confined in a vortex core of
a two-dimensional Bi2Te3/NbSe2 heterostructure [41]. The
method proposed here could be an unambiguous probe of the
Majorana nature of the zero-energy quasiparticles.

Finally, we address how robust the Majorana quasiparticles
of the phase-controlled Josephson junctions are against an
electrostatic scattering potential placed in various regions
of the proximitized strip. Our study reveals that, when this
local defect is placed in an interior of the strip, its influence
on the Majorana modes is practically negligible, but when
placed near a region of the existing Majorana quasiparticle
we observe a tendency toward reducing the spatial extent
of the zero-energy modes, analogous to what has been
predicted by Haim and Stern in the disordered case [35].
These phenomena are in stark contrast to the properties of
Majorana quasiparticles of strictly one-dimensional systems,
where strong local defects usually produce additional pairs of
the Majorana modes.

The paper is organized as follows. In Sec. II we present the
microscopic model and outline methodological details. Next,
in Sec. III, we inspect the spatial profiles of the zero-energy
modes and consider their Majorana polarization, focusing on
their evolution upon varying the width of the proximitized
strip. Section IV presents the selective Andreev spectroscopy
and shows that it can probe the modulus of the symmetrized
Majorana polarization. Section V discusses the localization of
the Majorana quasiparticle driven by a pointlike electrostatic
defect, and Sec. VI summarizes the main results.

II. MICROSCOPIC MODEL

For a schematic of the planar Josephson heterostructure
(see Fig. 1), here we employ the microscopic scenario
discussed in Refs. [25,26,32]. The model tight-binding

Hamiltonian

H = H0 + HZ + HS (1)

consists first of the free term

H0 =
∑
〈i, j〉
σ, σ ′

[iλ(di j × �σσσ ′ )z − tδσσ ′]d†
iσ d jσ ′ − μ

∑
iσ

d†
iσ diσ

(2)

describing itinerant electrons hopping all over the sample. t
is the hopping integral between the nearest-neighbor atomic
sites on a square lattice, λ is the strength of the Rashba
spin-orbit coupling, di j is the vector connecting nearest
neighbors, and σ stands for the vector of the Pauli matrices.
The second (Zeeman) term

HZ = B0

∑
i

∑
σσ ′

d†
iσ σx

σσ ′diσ ′ (3)

accounts for the influence of an external magnetic field
B0 which is parallel to the interface between the metallic
and superconducting regions, as reported experimentally
[27,28]. The last part appearing in the model Hamiltonian (1)
describes the onsite pairing in the left (SL) and right (SR)
superconducting regions,

HS =
∑

i

(�id
†
i↓d†

i↑ + H.c.), (4)

where

�i =
⎧⎨
⎩

�e−iφ/2 for i ∈ SL,

�eiφ/2 for i ∈ SR, and
0 for i ∈ N.

(5)

Here the metallic strip region is denoted by N . The phase
difference between the superconducting layers SR and SL is φ

and � is real.
We studied the finite-size version of this model, consisting

of Nx sites along the x direction and Ny sites along the y
direction. For specific computations we assumed Nx = 91
and Ny = 30, unless stated otherwise. The eigenstates and
eigenenergies of the heterostructure were determined numer-
ically, solving the Bogoliubov–de Gennes equations with the
canonical transformation(

di↑
d†

i↓

)
=

∑
n

[
un

i↑ vn
i↑

−(vn
i↓)∗ (un

i↓)∗

] (
γn

γ †
n

)
, (6)

where γ (†)
n stand for the Bogoliubov quasiparticles which

diagonalize the Hamiltonian: H = ∑
n Enγ

†
n γn + const.

III. TOPOGRAPHY OF THE MAJORANA MODES

Upon substituting the metallic strip between the supercon-
ducting reservoirs, their Cooper pairs leak into the normal
region, inducing onsite electron pairing. This proximity effect
is efficient nearby the bulk superconductors, up to distances
smaller than the coherence length ξ . Here, we consider metal-
lic samples comprising a few Nw atomic rows, whose spatial
width Nwa � ξ , where a is the interatomic distance. Under
such a condition the proximity effect induces superconduc-
tivity across the entire metallic region. A fully self-consistent
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study of the pairing gap in all parts of this heterostructure has
been discussed in Ref. [30].

The topological superconducting phase originates from the
triplet pairing, which can be achieved by combining the onsite
pairing with the spin-orbit Rashba interaction and Zeeman
splitting [5]. It has been demonstrated [25,26,30–33] that
a transition from the topologically trivial to the nontrivial
superconducting state is sensitive to the Josephson phase φ.
Characteristic features of the emerging Majorana quasiparti-
cles can, however, additionally depend on the width Nwa of
the metallic strip. In what follows, we analyze such qualitative
changes observable in the spectral function and the Majorana
polarization vector. We also propose a method for empirical
detection of the Majorana polarization (Sec. IV).

A. Zero-energy spectral function

Focusing on the optimal condition for the topological
superconducting state φ = π , we have checked that the onsite
pairing 〈di↓di↑〉 spreads nearly uniformly onto the metallic
strip, both along and across it. Furthermore, we also noticed
some feedback of the metallic sector onto superconducting
regions manifested by partial reduction of the local pairing,
sometimes referred to as the inverse superconducting proxim-
ity effect.

In presence of the spin-orbit interaction and the Zeeman
field, the proximitized strip develops intersite pairing of iden-
tical spin electrons, i.e., triplet pairing. For sufficiently strong
magnetic fields B0, such a triplet superconducting phase be-
comes topologically nontrivial, leading to the emergence of
the zero-energy quasiparticles [25,26]. Their signatures can
be observed in the local density of states

ρi(ω) =
∑
n,σ

[∣∣un
iσ

∣∣2
δ(ω − En) + ∣∣vn

iσ

∣∣2
δ(ω + En)

]
. (7)

As we consider a finite-size system we have broadened the
delta peaks to Lorentzian functions of width 0.02�.

Figure 2 displays the spatial profiles of the local density of
states at zero energy ρi(0), obtained for very narrow metallic
strips. We note that the Majorana quasiparticles of the narrow
metallic strip are well localized at its ends. Their overall
topography is practically identical with all features of one-
dimensional systems, including the characteristic oscillations
along the metallic strip [42]. It comes as perhaps some sur-
prise that this narrow width of metallic region is neither essen-
tial for the development of the topological superconducting
phase, nor important for the spatial profile of the Majorana
modes. Even in the extreme case Nw = 0, i.e., without any
metallic piece between the phase-differing superconductors,
such modes are still present. On the other hand, when the
width Nw increases we see a gradual smearing of the zero-
energy quasiparticles. This is a consequence of the reduced
proximity-induced gap in wider strips which naturally reduces
the localization of any mid-gap states.

B. Majorana polarization

Majorana modes are quasiparticles with energy En = 0
(we denote such doubly degenerate eigenstates by n ≡ n0)
and which are eigenstates of the particle-hole transformation

FIG. 2. The spatial profiles ρi(0) of the Majorana quasiparticles
appearing in a metallic strip consisting of 1, 2, and 5 rows of
atomic chains, as indicated. We have used the model parameters
� = 0.25t , φ = π , λ = 0.5t , B0 = 0.1t , μ = −3.75t . The Majorana
polarization (10) for the area in the green square is shown in Fig. 3.

operator. We analyze here another valuable source of informa-
tion about these modes encoded in the Majorana polarization
[36,37,43,44]. This quantity is particularly useful for charac-
terizing the Majorana modes of quasi-two-dimensional topo-
logical superconductors [21,36,39] where its phase develops
both longitudinal and transverse variation. As we shall see,
its texture brings an important message about the delocalized
Majorana quasiparticles.

Formally, the particle-hole overlap can be defined for any
eigenstate |ψn〉 [21,36]:

Pin = 〈ψn|C r̂i|ψn〉 =
∑

σ

σz
σσ 2un

iσ vn
iσ , (8)

where r̂i is projection onto site i and C is the particle-
hole operator. More generally, one may wish to consider
the particle-hole overlap un

iσ1
vm

jσ2
. In particular, the equal-spin

pairing (σ1 = σ2) induced between the neighboring sites i and
j for the zero-energy quasiparticles (En = 0 = Em) would be
of our interest here. For convenience we introduce the local
Majorana polarization

Pi = Pi↑ − Pi↓, (9)

where

Piσ = 2un0
iσ v

n0
iσ . (10)

This complex quantity (9) allows one to probe the Majorana
eigenstates En0 = 0.

Let us start by checking the contributions Piσ from each
spin σ to the Majorana polarization in the narrow metallic
strips, when the zero-energy quasiparticles are well localized
near its ends. To be specific, we focus on the region marked
by the dashed lines in the bottom panel in Fig. 2. Both
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FIG. 3. Components of the Majorana polarization Piσ obtained
for the region highlighted by the dashed frame in Fig. 2. The magni-
tude of the arrows shows |Piσ | and their direction shows ArgPiσ . We
note that the phase of the Majorana polarization is only well defined
up to a global shift. The shaded region is the metallic strip.

constituents Piσ are depicted in Fig. 3 on the lattice sites of
the marked metallic region. We clearly note that the directions
of the arrows depicting Pi↑ are opposite to Pi↓, which is typ-
ical for strictly one-dimensional topological superconductors
(see Fig. 2 in Ref. [38]) and for higher dimensions as well
[21,36,39]. The magnitudes of the two components, shown
by the length of the arrows, are however very different. It is
important to emphasize that for the realization of a true Majo-
rana bound state (MBS) the local phase of Pi↑ − Pi↓ must be
constant. Such a constraint Pi↑ = eiϕ |Pi↑| = −eiϕ |Pi↓| seems
to be satisfied in our case only for narrow metallic strips.

There are in fact two conditions on Pi which are required
for Majorana modes. The first, which we have seen here,
is that its phase must be constant. The phase of Pi does
not appear to be measurable in any simple way. What is
measurable, as we will show in Sec. IV, is its modulus |Pi|.
For a Majorana mode we require |Pi| = ρ0

i , and this gives a
measurable determination of Majorana modes. Upon increas-

ing the width of the metallic strip the Majorana polarization
gradually develops varying orientations, both along and across
the sample. Emergence of the transverse gradient is very
sensitive to the width Nw, as illustrated in Fig. 4. We thus
observe that the Majorana polarization vector has more subtle
structure in comparison to the spectral function ρi(0). In the
next section we shall discuss empirical means to probe this
quantity.

IV. POLARIZED ANDREEV SPECTROSCOPY

Here, we discuss an empirical method based on spin-
polarized Andreev reflection spectroscopy [40], which could
probe the absolute value of the Majorana polarization. Let us
consider a scanning tunneling microscope (STM) tip brought
in contact with site j of our heterostructure. The influence of
this external reservoir of itinerant electrons can be incorpo-
rated by augmenting the model Hamiltonian (1) with the local
term

Hj =
∑
k,σ

(εk − μtip )c†
kσ ckσ

︸ ︷︷ ︸
STM tip

+
∑
k,σ

(tk,σ c†
kσ d jσ + H.c.)

︸ ︷︷ ︸
hybridization

, (11)

where the chemical potential of the tip μtip = μ + eV can be
varied by a bias potential V . εk is the dispersion of the tip
electrons and tk,σ denotes the tunneling amplitude from the
tip to the heterostructure and vice versa. The quasiparticle
spectrum at site j can be indirectly inferred from measure-
ments of the charge transport induced by the voltage V applied
between the STM tip and the sample. In the subgap regime,
i.e., for e|V | � �, the sole contribution to such a current is
from Andreev scattering processes. This mechanism relies
on the conversion of electrons arriving from the STM tip
into the Cooper pairs of the superconducting heterostructure,
reflecting holes back into the STM tip.

FIG. 4. The Majorana polarization Pi obtained for the heterostructure comprising Nw = 4 (top) and Nw = 10 (bottom) atomic rows in the
metallic strip, marked by the shaded region. Numerical results are obtained for the same model parameters as in Fig. 2 but using Nx = 100,
Ny = 20. The magnitude of the arrows shows |Piσ | and their direction shows ArgPiσ . We note that the phase is only well defined up to a global
shift.
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Since we are interested in probing the topological super-
conducting phase related to the intersite pairing of identical
spin electrons, similar to the Kitaev scenario [45], let us as-
sume a complete polarization of the tip electrons. Under such
circumstances, only one spin component participates in the
charge transport. On a microscopic level we can thus imagine
an electron of spin σ arriving from the polarized STM tip at
site j, where it forms the triplet pair with another electron of
the same spin from the neighboring site i, reflecting a hole
back into the tip.

The charge flow from the STM tip can be defined as
Iσ (V ) = −e〈 d

dt

∑
k c†

kσ ckσ 〉. Using the Heisenberg equation
of motion we can recast it in terms of the lesser Green’s
function Iσ (V ) = 2e

h̄

∑
k Re{tk〈〈d jσ ; c†

k,σ 〉〉<} whose determi-
nation is feasible within the Keldysh approach. Let us remark,
however, that due to the intersite (triplet) pairing the operator
d jσ would be coupled to the neighboring site operator diσ . For
this reason such a current originating from Andreev scattering
through the sites j and i (as illustrated in Fig. 1) will be
explicitly denoted by subindices Iσ (V ) ≡ Iσ

i j (V ).
Following the steps, outlined previously by one of us in

Ref. [38], the spin-polarized Andreev current can be expressed
by the popular Landauer-type formula

Iσ
i j (V ) = e

h

∫
dω T σ

i j (ω) [ f (ω−eV )− f (ω+eV )], (12)

where f (ω) = [1 + exp(ω/kBT )]−1 is the Fermi-Dirac distri-
bution function. The main quantities of our interest would be
the spatially dependent transmission probabilities, character-
izing conversion of electrons into holes on the neighboring
sites [38]

T σ
i j (ω) = �2

N

∣∣Fσ
i j (ω)

∣∣2
, (13)

where Fσ
i j (ω) = 〈〈d̂iσ ; d̂ jσ 〉〉ω is the Fourier transform of the

off-diagonal (in Nambu representation) retarded Green’s func-
tion. For practical reasons (since we focus on a narrow trans-
port window being a fraction of meV around the chemical
potential μ) we have introduced a constant coupling strength
�N ≡ 2π

∑
k |γk|2δ(ω − εk ). Formally, this is equivalent to

the wide-band-limit approximation.
In the absence of the STM tip the Green’s function Fσ

i j (ω)
can be found explicitly from the Bogoliubov–de Gennes di-
agonalization (6). In particular, for σ =↑ the transformation
di↑ = ∑

n [un
i↑γn + vn

i↑γ †
n ] implies

lim
tk,σ=0

〈〈di↑; d j↑〉〉ω =
∑

n

[
un

i↑vn
j↑

ω − En
+ vn

i↑un
j↑

ω + En

]
(14)

and a similar expression (with minus sign) holds for σ =↓.
The effect of the hybridization term introduced in Eq. (11)
can be modeled in the wide-band-limit approximation by the
substitution ω → ω + i �N

2 (see Appendix A in Ref. [46] for
a detailed derivation). Physically, it means that the STM tip
gives rise to a broadening of the subgap quasiparticles, i.e., to
a finite lifetime. The Green’s function F↑

i j (ω) is thus given by

F↑
i j (ω) =

∑
n

[
un

i↑vn
j↑

ω − En + i �N
2

+ un
j↑vn

i↑
ω + En + i �N

2

]
, (15)

FIG. 5. Comparison of the Majorana polarization (9) with its
symmetrized version defined in Eq. (18) computed for the central row
of the metallic strip using Nw = 5 and the same model parameters as
presented in Fig. 6.

where the complex coefficients un
j↑ and vn

j↑ have to be ob-
tained numerically from the diagonalization procedure.

Focusing on the zero-energy limit ω → 0, dominated by
the Andreev scatterings via the Majorana quasiparticle (de-
noted here by En0 = 0), we obtain the transmittance (13)
simplified to

T σ
i j (ω = 0) � ∣∣2un0

iσ v
n0
jσ + 2un0

jσv
n0
iσ

∣∣2
. (16)

Equation (16) substituted into the spin-resolved Andreev cur-
rent formula (12) yields, at low temperatures, the following
zero-bias differential conductance:

lim
V →0

dIσ
i j (V )

dV
� 4e2

h

∣∣un0
iσ v

n0
jσ + un0

jσ v
n0
iσ

∣∣2
. (17)

This result demonstrates that the polarized Andreev spec-
troscopy could probe the spin-dependent contribution (10) to
the Majorana polarization. Strictly speaking, however, such
tunneling processes occur on the links (involving the neigh-
boring sites j and i) rather than on individual local sites. For
this reason the differential conductance (17) would measure
the symmetrized Majorana polarization

P〈i j〉,σ = un0
iσ v

n0
jσ + un0

jσ v
n0
iσ (18)

over the neighboring sites i and j, instead of the strictly
local definition (10). Since the diagonalization coefficients
are slowly varying in space, un

jσ ≈ un
iσ , vn

jσ ≈ vn
iσ , the sym-

metrized P〈i j〉,σ and local Pi,σ Majorana polarizations are
fairly similar (see Fig. 5). Some discrepancy appears at the
most peripheral sites, probably due to the boundary condi-
tions.

Let us finally recall that the complex vector un0
i↑v

n0
i↑ is typi-

cally perfectly opposite to un0
i↓v

n0
i↓ (see Fig. 3). Such antialign-

ment implies that a modulus of the Majorana polarization can
be expressed as (9) |Pi| = |Pi↑ − Pi↓| = |Pi↑| + |Pi↓|, and
the same holds for the symmetrized Majorana polarization.

By measuring the zero-bias conductance
dIσ

i j (0)
dV of the spin-

selective Andreev current flowing through the neighboring
sites i and j one can thus evaluate the absolute value of the
symmetrized Majorana polarization

|P〈i j〉| =
√

h

4e2

√
d

dV
[I↑

i j (V ) + I↓
i j (V )]V =0. (19)
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FIG. 6. The spatial profile of |Pi|/ρ0
i for the potential zero-

energy Majorana quasiparticles appearing in the metallic strip con-
sisting of 1, 2, and 5 rows of atomic chains, as indicated. We have
used the same model parameters as in Fig. 2: � = 0.25t , φ = π ,
λ = 0.5t , B0 = 0.1t , μ = −3.75t . The difference between the well-
isolated MBS and the delocalized states in the wider strip is evident.

As far as the spatial variation of the phase is concerned, its
determination would be evidently more cumbersome. This
problem is beyond the scope of this study.

Although the spatial variation of the phase is not currently
measurable, we can compare the absolute value of |Pi| with
ρi(0). For a MBS these must be the same, therefore, if we plot
the ratio of these measurable quantities |Pi|/ρi(0), it should be
flat for a MBS. In Fig. 6 we show results for Nw ∈ {1, 2, 5},
comparable to Fig. 2, which show that the MBS profile is
indeed flat. For Nw = 5, when the two MBS at either end
of the strip start to overlap, this quantity is no longer flat.
Thus, this can be used as an experimental determination of
whether localized states are actually MBS. It is worth noting
that increasing the length Nx of the system would result in
|Pi|/ρi(0) being flat even for Nw > 5.

Our Eq. (19) demonstrates analytically the feasibility of
measuring a modulus of the symmetrized Majorana polar-
ization, which we have so far illustrated for relatively small
system sizes (Fig. 5). Now, we would like to verify its useful-
ness for probing an experimentally realistic situation. For this
purpose we have used the KWANT package [47] to compute the
local (10) and symmetrized (18) Majorana polarizations for
the larger sample, comprising 2000×300 sites, adopting the
model parameters reported in Refs. [27,28]. Figure 7 displays
profiles of these polarizations obtained near a boundary of the
proximitized metallic strip. It clearly shows that in realistic
samples the symmetrized Majorana polarization is practically
identical with the local one.

V. LOCALIZATION OF THE MAJORANA MODES

In Sec. III we have shown that upon increasing the width
Nw of a metallic strip the topological superconducting state

FIG. 7. Same as in Fig. 5 obtained by KWANT package for the
larger size system Nx = 2000, Ny = 300, and Nw = 5. In analogy to
Refs. [27,28] we have assumed the model parameters t = 32 meV,
� = 0.16 meV, λ = 2.85 meV, B0 = 0.12 meV, μ = −120 meV,
imposing the phase difference φ = π .

reveals (i) smearing of the Majorana quasiparticle, and (ii)
development of the transverse gradient of the Majorana polar-
ization. One may ask, however, whether there is any chance
of localization of the Majorana modes. In this section we
illustrate that such an effect could be observable due to local
defects introduced in certain regions of the metallic strip.

Topological superconductivity in one-dimensional wires
and atomic chains has been shown to be robust against
weak disorder [48–55], noise [56], inhomogeneous spin-orbit
coupling [57], reorientation of the magnetic field [39,58],
and thermal fluctuations [59–62]. Sufficiently strong scat-
tering centers, however, could effectively break these one-
dimensional systems into separate segments, inducing addi-
tional pairs of the Majorana modes [46]. Such a mechanism
can be expected to be inefficient in two-dimensional systems.
To verify this conjecture for the quasi-two-dimensional het-
erostructure discussed in this paper we take into consideration
a pointlike electrostatic defect Himp = V0d†

i0σ
di0σ positioned

at site i0 of the metallic region. We assume this scattering po-
tential to be rather strong, V0 = 10t , as otherwise its influence
would be less visible.

Let us first assume the scattering potential to be placed in
a central part of the metallic region [Fig. 8(a)]. Neither the
zero-energy spectral function nor the Majorana polarization
reveal any influence of such an electrostatic impurity on the
existing Majorana quasiparticles, in contrast to the properties
of one-dimensional topological superconductors [46]. This
behavior seems to be quite natural because the Majorana
modes are safely distant from the impurity.

Contrary to this situation, let us next consider the scattering
potential near the left side of the metallic strip [Figs. 8(b)
and 8(c)]. We selected the specific sites i0 = 4 and 8, in order
to guarantee a considerable overlap of the local defect with
the left-hand Majorana mode. Under such circumstances, the
scattering potential has a substantial influence both on the
spectral function (left panels) and the Majorana polarization
(right panels). This electrostatic impurity reduces the spatial
extent of the Majorana quasiparticle on the left-hand side,
whereas the other Majorana quasiparticle is practically left
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FIG. 8. The spatial density profile of the zero-energy Majorana quasiparticles (left panels) and their polarizations (right panels) obtained
in the proximitized metallic strip, consisting of Nw = 5 rows of atoms, in presence of a pointlike electrostatic defect with V0 = 10t at site
(a) i0 = 40a, (b) i0 = 8a, and (c) i0 = 4a, with Nx = 120 and Ny = 30. The magnitude of the arrows in the right-hand-side plots show |Piσ |
and their directions show ArgPiσ . We note that the phase is only well defined up to a global shift.

intact. Such a tendency toward localization of the Majorana
modes has been recently predicted by Haim and Stern [35],
when investigating the different role of weak extended
disorder.

Our present study provides more detailed information con-
cerning such disorder-induced localization, indicating that (i)
disorder present in the internal segments of the metallic strip
would naturally be rather ineffective for the Majorana quasi-
particles, whereas (ii) disorder introduced to the regions of
already existing Majorana quasiparticles substantially reduces
their spatial extent. The considerations discussed in Sec. IV
suggest that empirical detection of this subtle phenomenon
could be feasible. A tendency toward the localization of
the Majorana quasiparticles could be observed in the maps
of differential conductance for the spin-polarized Andreev
current induced via the metallic region in the presence of
the intentionally deposited local defects. Such an electrostatic
scattering potential could be created by applying gate poten-
tials, whereas a magnetic potential, leading to similar effects,
can be obtained by locally perturbing the Zeeman field.

VI. SUMMARY

We have theoretically studied the properties of the
Majorana quasiparticles emerging in a narrow metallic
strip sandwiched between two s-wave superconductors in a
Josephson-junction geometry. The topological superconduct-
ing phase has been recently reported for such metallic strips
by the groups in Copenhagen [27] and Harvard [28] with a
length-to-width ratio ranging from 20 to 100, respectively.
Using the Bogoliubov–de Gennes treatment we have inves-

tigated the role of the finite metallic strip width, exploring
its influence on (a) spatial profiles of the zero-energy quasi-
particles and (b) topography of the Majorana polarization
that probes the particle-hole overlap of the zero-energy quasi-
particles. Furthermore, we have proposed a feasible method
for detecting the magnitude of such a Majorana polarization
by measuring the differential conductance in spin-polarized
Andreev reflection spectroscopy.

We have also analyzed the influence of strong (pointlike)
electrostatic defects on the Majorana modes. We have re-
vealed that such a local scattering potential can affect the
localization length of the Majorana quasiparticles if deposited
near the ends of the metallic strip. Under such circumstances,
the neighboring Majorana mode substantially reduces its
spatial extent, which can be compared with what has been
predicted in Ref. [35], whereas the opposite-end Majorana
mode remains practically intact. Similar coexistences of the
localized and delocalized Majorana quasiparticles have been
previously observed by scanning tunneling spectroscopy us-
ing a disordered monolayer of superconducting Pb coupled to
underlying Co-Si magnetic islands [22]. We hope that proxim-
itized metallic strips would be a convenient platform not only
for the realization of topological superconductivity, tunable by
the magnetic field and Josephson phase, but could also allow
for manipulating the Majorana quasiparticle length scale.
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and the same model parameters as in Fig. 2.
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APPENDIX A: INFLUENCE OF THE JOSEPSHON PHASE

In the main part of this paper we have analyzed the spectro-
scopic properties of the Majorana quasiparticles, focusing on
the particular case φ = π , that is optimal for occurrence of the
topological superconducting state. Similar qualitative features
would be also observable for other values of the Josephson
phase φ �= π , provided that model parameters (such as, e.g.,
the magnetic field) are appropriately tuned [25,26]. A possible

criterion (proposed by one of us [21,36]) for determination
of the topological phase diagram relies on the Majorana
polarization for MBS to be nonvanishing when summed over
a portion of the investigated system where the bound states
should reside, in fact it should be equal to the total density of
the state in the same region. Therefore,

P =
∑
i∈R

|Pin0 |
ρi(En0 )

= 1 (A1)

for a MBS. This serves as a proxy for being in the topologi-
cally nontrivial phase. In the present scenario one can choose
for this purpose either the leftmost or rightmost quarter of the
metallic strip as the region R. More details can be found in
Ref. [21].

Figure 9 displays the topological phase diagram, with
the dark area being the nontrivial phase, obtained using this
criterion for our heterostructure. We show the phase diagram
with respect to the magnetic field B0 and the Josephson
phase φ. Let us remark that such a criterion yields a smooth
changeover between the topologically trivial and nontrivial
superconducting states instead of a sharp transition. It can be
hence useful for exploring the robustness of the topological
state against perturbations such as inhomogeneity or thermal
fluctuations.

APPENDIX B: LOCALIZATION BY DISORDER

Numerous studies [48–55] have shown that the topological
superconductivity of one-dimensional systems is pretty stable
against a weak disorder. In the phase-controlled Josephson
junctions, however, Haim and Stern [35] have predicted that a
weak disorder could affect topography of the Majorana modes
by reducing their spatial extent. We address here briefly this
intriguing effect within the Bogoliubov–de Gennes formal-
ism. For the purpose of comparison with the results discussed
in Sec. V we assume that the random scattering potential Vi is

FIG. 10. The zero-energy spectral function ρi(0) and Majorana polarization with the random scattering potential in the left half of the
proximitized strip Vi ∈ (−δV ; δV ) with δV = 0.5t (top) and δV = 0.75t (bottom). Results are obtained for the same model parameters as in
Fig. 2.
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present only in the left-hand side of the metallic strip, whereas
the remaining (right-hand side) part is homogeneous.

Figure 10 displays topographic features of the zero-energy
quasiparticles obtained for representative amplitudes δV of
the random scattering potential Vi ∈ (−δV ; δV ). The upper
panel corresponds to δV = 0.5t and the bottom one to δV =
0.75t , respectively. We can clearly recognize shrinking of the

Majorana quasiparticle extent in a disordered fragment of the
metallic strip while in the other (homogeneous) piece the
Majorana quasiparticle remains practically untouched. Such
localization driven by the strong local scattering potential
(Sec. V) and the weak disorder [35] seems to be unique to the
topological superconducting phase in quasi-two-dimensional
systems.
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