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Statistical correlations of currents flowing through a proximized quantum dot
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Statistical properties of the electron transport flowing through nanostructures are strongly influenced by the
interactions, geometry of the system, and/or by type of the external electrodes. These factors affect not only
the average current induced in the system but also contribute to fluctuations in the flux of charges and their
correlations. Due to possible applications of the hybrid nanosystems, containing one or more superconducting
electrodes, a detailed understanding of the flow of charge and its fluctuations seems to be of primary importance.
Coulomb repulsion between electrons usually strongly affect the current-current correlation function. In this
work we study the correlations in the charge flow through such an interacting quantum dot contacted to one
superconducting and two normal electrodes. This setup allows for analysis of the Andreev scattering events
in the correlations of currents flowing between external electrodes and, in particular, gives access to cross-
correlations between currents to or from different normal electrodes. Our approach relies on the master equation
technique, which properly captures the Coulomb interactions. We study the finite-frequency correlations and find
the relaxation processes, related to the high-frequency charge and low-frequency polarization fluctuations. The
multiterminal structure of single-electron device studied here allows us to analyze a competition between the
intra- and interchannel correlations. In the appropriate limit of the interacting quantum dot embedded between
two normal electrodes our calculations quantitatively describe the recent experimental data on the frequency-
dependent correlations. This shows a promising potential of the method for description of the hybrid systems
with superconducting electrode(s).

DOI: 10.1103/PhysRevB.101.235402

I. INTRODUCTION

Studies of charge transport through the multiterminal
nanostructures with quantum dots are important from both
practical and fundamental science points of view. Such sys-
tems have been proposed as, e.g., efficient heat to electricity
converters [1] and sources of entangled electrons [2] in het-
erojunctions made of the normal and superconducting elec-
trodes. Ability to control their microscopic parameters, such
as the energy levels of quantum dots, interactions between
opposite spin electrons, and the coupling of quantum dots
to external leads makes such heterostructures very appealing.
Furthermore, the character of transport can be changed in such
nanostructures from the sequential to ballistic tunneling upon
varying the macroscopic parameters, e.g., dot size, resistance
of the tunnel junctions, gate voltage and bias, temperature,
magnetic field, etc. [3,4]. They are thus important playground
for studying many-body phenomena, such as the Kondo ef-
fect, competition between the local and nonlocal Andreev
reflections, and many others [2,5]. Some of these phenom-
ena might find potential applications in nanoelectronics and

*grzechal@ifmpan.poznan.pl

spintronics [6] or become basic building blocks of future
quantum computers [7–9].

Tunneling processes through a quantum dot embedded be-
tween one superconducting and several normal electrodes can
be contributed by a number of different events. Electrons may
tunnel between the normal electrodes; we call this process
electron transfer (ET). Another possible processes rely either
on the direct (D) and crossed (C) Andreev reflections (AR),
which are the main subject of our study here. Of special inter-
est for applications are the latter processes (CAR), in which
two electrons of the strongly entangled BCS singlet state are
scattered into different normal electrodes. Such events have
been proposed as a source of the spatially separated entangled
electrons for potential use in quantum computing [8]. High
efficiency of the Cooper pair splitting can be achieved in the
systems with strongly interacting quantum dots and detected
by measuring nonlocal differential conductance of the An-
dreev processes [2,10]. Correlations in the electrical currents
have indeed provided evidence for such entanglement [6,11–
13].

Besides valuable analysis of the conductances one can
get additional information about properties of the system,
concerning, e.g., mechanism of transport, statistics of quasi-
particles contributing to charge transport, role of the Coulomb
interactions, relaxation processes, correlations between
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currents flowing via different transport channels and/or dif-
ferent branches of the device by studying the shot noise, i.e.,
time-dependent fluctuations in electrical currents caused by
the charge quantization [14]. In the systems with noninteract-
ing electrons the Pauli exclusion principle is known to cause
the antibunching [15], which manifests itself by reduction of
the shot noise (autocorrelations) below the Poissonian value
SP = 2eJ (where J is an average current flowing through the
system) or by negative cross-correlations in the multiterminal
systems [14]. It has been found, however, that correlations
between the tunneling electrons can also lead to bunching
as evidenced by the super-Poissonian noise [16–18]. In the
multiterminal structure the dynamical channel blockade could
be responsible for enhancement of the shot noise [19,20] and
for the positive cross-correlations [20–22]. Such bunching
and antibunching features have been indeed observed exper-
imentally (in the auto- and cross-correlations) by McClure
et al. [23] and Zhang et al. [24] for a device, comprising
the double quantum dots that are coupled capacitively. Recent
measurements [25] of the correlations of currents flowing
through the interacting quantum dot contacted by two normal
electrodes have shown the ability of experiments to investigate
the fingerprints of interactions and the coherence, this being
the main theme of our work. We shall comment on this
experiment in Sec. III C. However, our system containing the
superconducting electrode allows the study of not only the
cross-correlations but also the superconducting coherence of
electrons on the frequency-dependent Fano factors and other
characteristics.

Dynamical correlations have been also studied in electri-
cal currents of superconducting systems, including chaotic
cavities [26,27], planar junctions with direct normal metal-
superconductor interfaces [28–37], topological wires [38,39],
and quantum dot systems in two- [40–47] or three-terminal
(Cooper pair splitter) [48–51] configurations, etc. In particu-
lar, it has been shown that positive cross-correlations in hybrid
systems are a signature of the high efficiency of Cooper pair
splitting [48]. Most of the calculations have so far explored the
zero-frequency limit [40,41,43,44,46,49,50] in two-terminal
setups [40–46] neglecting the Coulomb interactions [40,42].
The short-time dynamics have been recently addressed by
means of factorial cumulants in a metallic single-electron box
[52] or employing the waiting-time distribution approach to
the case of unidirectional transport, i.e., for very large biases
[51,53,54].

In this paper we investigate the noise of three-terminal
hybrid system with a quantum dot embedded in Y-shape
configuration, between one superconducting and two metallic
leads. For this nanostructure we analyze an interplay between
the tunneling of normal electrons and the Andreev reflection
processes evidenced in the auto- and cross-correlations be-
tween tunneling currents and in the corresponding Fano fac-
tors. Our considerations go beyond the zero-frequency noise,
capturing also finite-frequency contributions due to charge
fluctuations between the QD and normal tunnel junctions. We
restrict this study to the subgap regime (neglecting relaxation
processes by the quasiparticles from outside the pairing gap of
superconducting lead), and therefore it is practically valid up
to milielectronvolt (infrared frequencies) region. Furthermore,
we do not address any short-time coherent oscillations of the

electron pairs between the QD and superconducting reservoir
[55]. The zero-frequency noise explored previously in the
literature describes total fluctuations, which are rather noisy.
Our studies extended onto the finite-frequency range give
an insight into the dynamics of electron and hole tunneling
processes and their correlations. We are thus able to single
out from such a noisy spectrum the relaxation processes
contributed by the individual subgap quasiparticles.

Our study is based on the master equation method, reli-
able for the incoherent tunneling regime kBT � �L(R) (where
�L(R) denotes tunneling rate between QD and the metallic
lead). This analysis of frequency-dependent noises for a three-
terminal hybrid device with the proximized QD significantly
extends earlier studies of two-terminal systems, using the
diagrammatic real-time approach and the generalized master
equation [44,45]. To facilitate some comparison with former
studies and to emphasize the role played by second normal
electrode we show also the numerical results obtained for
two-terminal N-QD-S system.

The paper is organized as follows. In Sec. II A we introduce
the microscopic model, describing the QD strongly coupled to
superconducting reservoir and weakly coupled to two metallic
electrodes. Next, in Sec. II B, we determine the frequency-
dependent current-current correlation functions of the electron
and hole charge transport through the in-gap (Andreev) bound
states. In Sec. III we present the numerical results, considering
the case of small and large biases. We analyze in detail the
frequency-dependent Fano factors and current correlations,
monitoring contributions from the currents through various
Andreev bound states (ABS), which gives insight into in-
ternal dynamics of the system. In Sec. III C we discuss the
frequency-dependent Fano factors relevant to our model and
present their comparison to available experimental data [25]
on the quantum dot coupled between two normal terminals.
In Sec. IV we summarize the main findings and, in Sec. V,
outline some future perspectives related to our study.

II. MODEL AND METHODOLOGY

A. Microscopic model

We consider a single-level quantum dot (QD) strongly hy-
bridized with a superconducting lead (S) and weakly coupled
between the left (L) and right (R) normal metallic electrodes,
as depicted in Fig. 1(a). For simplicity we shall focus on the
superconducting atomic limit, assuming that a pairing gap �

of the superconducting reservoir is the largest energy scale
in our study. This assumption allows us to neglect any single
particle tunneling to or from the superconductor, restricting
ourselves solely to the subgap tunneling processes. Under
such circumstances, an effective Hamiltonian describing the
proximized QD takes the BCS-type form [56]

Heff = ε1

∑
σ

d†
σ dσ + Un↑n↓ − �S

2
(d†

↑d†
↓ + d↓d↑), (1)

where ε1 is the spin-degenerate energy level, d†
σ (dσ ) create

(annihilate) an electron with spin σ = {↑,↓}, nσ ≡ d†
σ dσ

stands for the number operator, and U denotes the repulsive
Coulomb interaction. The last term in Eq. (1) describes the in-
duced pairing between the opposite spin electrons originating
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(a)

(b)

FIG. 1. (a) Schematic view of the hybrid structure, comprising
the proximized quantum dot strongly coupled to the superconduct-
ing (S) electrode and weakly coupled to the metallic left (L) and
right (R) normal leads. Tunneling rates through the Andreev bound
states Ei

A (i ∈ {ABS} ≡ {++, −+,+−, −−}) related to quasiparticle
excitations between the even↔odd eigenstates are indicated by the
arrows. For energies above the chemical potential of superconductor
(μS = 0) the charge carriers are mainly electrons, while below it the
holes are dominant. (b) Dependence of ABS on the detuning δ =
2ε1 + U from the half-filled QD. The horizontal dashed lines denote
small (eV ≡ eVL − eVR = 0.7) and large (eV = 2.6) bias windows
obtained in Sec. III for �S = 0.2, treating the Coulomb potential as
the energy unit U ≡ 1.

from the Cooper pairs leaking onto the QD (superconducting
proximity effect). Efficiency of such a process is in the super-
conducting atomic limit controlled by the coupling �S [49].

The proximized QD, Eq. (1), mixes the empty |0〉 with
doubly occupied |D〉 ≡ |↑↓〉 configurations. True eigenstates
are thus represented by the coherent superpositions |−〉 =
α+|0〉 + α−|D〉 and |+〉 = α−|0〉 − α+|D〉 with the eigenen-
ergies ε± = δ/2 ± εA, where the BCS coefficients are 2α± =√

2 ± δ/εA. For convenience, we have introduced 2εA =

√
δ2 + �2

S accounting for the energy splitting between |+〉 and
|−〉 states, whereas δ = 2ε1 + U describes detuning between
|0〉 and |D〉 states [44,45,53,57]. Besides these even states
|±〉 there exists also a subspace of the odd (singly occupied)
states |↑〉 and |↓〉 with the degenerate eigenenergy ε1 (unless
a magnetic field is applied).

Charge transport between the normal electrodes via the
proximitized QD is strictly related to quasiparticle transitions
between the even and odd eigenstates. Optimal conditions for
the subgap conductance occur when the bias voltage V is
tuned to energy difference between the initial and final state.
Such quasiparticle excitation energies (depicted in Fig. 1)
define a set of the Andreev bound states [58] E++

A ≡ ε+ −
ε1 = εA + U/2, E+−

A ≡ ε− − ε1 = −εA + U/2, E−+
A ≡ ε1 −

ε− = εA − U/2, and E−−
A ≡ ε1 − ε+ = −εA − U/2. The gate

voltage or δ dependence of the Andreev states is shown in
Fig. 1(b). Depending on the source-drain voltage eV = μL −
μR, also marked in the figure, two or more Andreev bound
states participate in the transport. The chemical potential of
the left (right) normal electrode is denoted by μL (μR). We
shall consider two situations, corresponding to small (eV =
0.7) and large (eV = 2.6) bias, respectively.

The metallic leads are represented by the free fermions

Hα =
∑
k,σ

(εαk − μα )c†
αkσ

cαkσ , (2)

where c†
αkσ

(cαkσ ) creates (annihilates) an itinerant electron
with spin σ = {↑,↓} and momentum k in the lead α = {L, R}.
Hybridization of the proximized QD, Eq. (1), with both exter-
nal metallic electrodes is given by

HT =
∑
α,k,σ

(tαc†
αkσ

dσ + t∗
αd†

σ cαkσ ). (3)

Since we are interested in the low-energy physics, safely
smaller than the superconducting energy gap �, it is conve-
nient to introduce the tunneling rates �α describing electron
and hole transfer between the QD and metallic leads. In the
wide-band limit approximation these tunneling rates �α =
2π

∑
k |tα|2δ(E − εαk ) = 2π |tα|2ρα , where ρα is the density

of states in the normal metal lead α = {L, R}, can be approxi-
mated by the constant parameters.

B. Currents and noise

We are interested in dynamical fluctuations of the current
from its averaged value, �Ĵα (t ) ≡ Ĵα (t ) − 〈Jα (t )〉. Definitions
of these currents are presented in the Appendix. To describe
the current fluctuations in the contact α and β we use the time
correlation function [14]

Sαβ (t, t ′) ≡ 1
2 〈�Ĵα (t )�Ĵβ (t ′) + �Ĵβ (t ′)�Ĵα (t )〉. (4)

For the case with time-independent external fields the cor-
relation function is a function of τ = t ′ − t , and its Fourier
transform can be expressed as

Sαβ (ω) = 2
∫ ∞

−∞
dτeiωτ Sαβ (τ ), (5)

which is dubbed noise power.
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To determine the current-current correlation functions
for the considered hybrid system we use the generation-
recombination approach [59] and the method developed for
spinless electron noise in a single electron transistor [60],
extending it in our case to the multichannel and multicharge
tunneling processes. According to this procedure, the corre-
lation function between the currents flowing through αth and
βth junctions can be expressed as

Sαβ (ω) =
∑

i, j∈{ABS}
Si, j

αβ (ω). (6)

Here we specified the contributions Si, j
αβ (ω) to the correlation

function originating from the currents Ĵ i
α and Ĵ j

β through
various ABS (i, j ∈ {++,+−,−+,−−}). They are formally
defined by

Si, j
αβ (ω) = δαβδi jS

Sch,i
α + Sc,i, j

αβ (ω), (7)

where SSch,i
α = 2e(I i

α+ + I i
α−) is the high-frequency ω → ∞

limit of the shot noise, dubbed the Schottky noise. The Schot-
tky term corresponds to the classical uncorrelated Poissonian
transitions. The frequency-dependent part is given by

Sc,i, j
αβ (ω) = ±2e2

∑
m,n

⎡
⎢⎣ ∑

m′>m
m′′<m

(
Mα,i

m′m − Mα,i
m′′m

)
Gmn(ω)

∑
n′>n
n′′<n

(
Mβ, j

nn′ p0
n′ − Mβ, j

nn′′ p0
n′′

)

+
∑
m′>m
m′′<m

(
Mβ, j

m′m − Mβ, j
m′′m

)
Gmn(−ω)

∑
n′>n
n′′<n

(
Mα,i

nn′ p0
n′ − Mα,i

nn′′ p0
n′′

)
⎤
⎥⎦, (8)

where M is the matrix entering the master equation (A1)
describing the system studied here, and Gmn(ω) = (iω1 −
M)−1

mn − p0
m/iω is the matrix Green’s function of the proxi-

mized QD. The parameters p0
n are the stationary solutions of

the master equation. We refer the reader to the Appendix for
a detailed discussion of the functions Mα,i

mn , which are the off-
diagonal elements of the matrix M related to the currents con-
tributed through the αth junction via the ith Andreev bound
state. The sign (+) refers to the cross-correlation function
between the currents from different (L and R) leads, while the
opposite sign (−) corresponds to the autocorrelations between
the currents from the same lead.

We have performed numerical calculations for the diago-
nalized master equation. Such an approximation is valid for
the strongly proximized QD (�S � �L(R)), when the subgap
Andreev bound states are long lived. We have checked that
in the absence of the Coulomb interactions the effective
currents calculated from the diagonalized master equation
(DME) are quantitatively consistent with the currents of co-
herent transport determined within the nonequilibrium Green
function technique [61] in the limit �L(R) � kBT, �S . In the
next section we present the main results of our numerical
calculations obtained for the aforementioned currents and
their correlations, respectively.

III. RESULTS

Deep in the superconducting gap the charge can be trans-
mitted through our hybrid setup by one of three possible
mechanisms: (1) single electron transfer (ET) between the
metallic electrodes, (2) direct Andreev reflection (DAR) when
incoming electrons from the metallic lead are converted into
the on-dot pairs reflecting holes back to the same normal lead,
and (3) crossed Andreev reflection (CAR), when holes are re-
flected to the opposite normal lead. The last case corresponds
obviously to the nonlocal transport processes.

In what follows we analyze the current correlations ob-
tained for the symmetric case, when the applied voltage V
equally detunes the chemical potential of the left (eVL =
eV/2) and right (eVR = −eV/2) metallic leads. The supercon-
ducting reservoir is assumed to be grounded μS = 0. Under
such circumstances the contribution from the crossed Andreev
reflections to the net current vanishes. Furthermore, JR = −JL

and JS ≡ 0, therefore the superconducting electrode can be
regarded as a floating voltage probe [62]. Zero-frequency
current fluctuations in the ballistic regime of the normal mul-
titerminal hybrid structures (without floating superconductor)
are characterized by the positive correlations [28]. It has been
pointed out, however, that in the metal-superconductor-metal
junctions such behavior cannot be caused by the Cooper
pair splitting [31,33]. In contrast, we predict here the current
fluctuations in the tunneling regime, where a positive sign of
the cross-correlations originates from the CAR processes [33].

For comparison with the previous studies, we also include
the results obtained for the N-QD-S system (dashed lines in
Figs 2–4) determined by imposing �R = 0.

A. Current correlations in the small bias regime

We start by considering the charge transport driven by
a small bias V which activates only two (the most inner)
Andreev bound states. In Fig. 2 we display the total current
JL and its components. For a small bias voltage [Fig. 2(a)],
the currents appear only for eVL > E+−

A , E−+
A while in the

remaining regions (corresponding to the doubly occupied and
empty states as well as the Coulomb blockade) the currents
vanish exponentially. Furthermore, J+−

L and J−+
L are asym-

metric with respect to the electron-hole symmetry (δ = 0).
Both currents originate predominantly from the ET processes
over the entire conducting region, whereas DAR processes are
enhanced only close to the Coulomb blockade (CB) region.
For comparison, we have also plotted the currents obtained
for the two-terminal N-QD-S nanostructure, setting �R = 0
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FIG. 2. The charge current JL (black) and its components J++
L

(red), J+−
L (blue), J−+

L (green), and J−−
L (orange) versus the gate

voltage δ obtained for the three-terminal setup with symmetric cou-
plings �R = �L , assuming the symmetrical bias with (a) small eVL =
0.35 = −eVR and with (b) large eVL = 1.3 = −eVR. For comparison
we also plot JL and its components for the two-terminal N-QD-S
case, imposing �R = 0 (dashed curves). The dotted vertical lines
indicate positions of the Andreev bound states E++

A (red), E+−
A

(blue), and E−+
A (green). Numerical computations have been done

for �S = 0.2, �R = �L = 0.002, and kBT = 0.01.

(see dashed lines), where only DAR processes are present. In
this case the currents J+−

L and J−+
L are nearly identical and

reveal only a small asymmetry with respect to δ = 0 caused
by the bias asymmetry. In the Coulomb blockade region these
currents are much larger than in the three-terminal system,
because in the latter case the DAR processes are suppressed
by the ET tunneling.

In Fig. 3 we present the zero-frequency current-current
correlations. In particular, we display the zero-frequency Fano
factor FL = SLL/2eJL of L-QD junction [Fig. 3(a)], the au-
tocorrelation function SLL [Fig. 3(b)], the cross-correlation
function SLR between different metallic leads [Fig. 3(c)], and
the autocorrelation function SSS of S-QD junction [Fig. 3(d)].
We can notice that all these quantities are symmetric with
respect to δ = 0. In the doubly occupied and in the empty state
regime the zero-frequency Fano factor FL ≈ 1, indicating that
such current noise is a prevalent feature in the uncorrelated
Poissonian tunneling of electrons. In the conducting regime
the zero-frequency Fano factor diminishes FL < 1 (i.e., the
noise has sub-Poissonian character), which is a signature of
negative correlation of the tunneling events. For the half-filled
QD (δ = 0) case, the zero-frequency Fano factor FL ≈ 2 due
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FIG. 3. The zero-frequency current correlations: (a) Fano factor
FL for L-QD junction; (b) autocorrelation function SLL (black curve)
and its constituents corresponding to various bound states (color
curves); (c) cross-correlation function SLR (black curve) and its
components; and (d) autocorrelation function for superconducting
electrode versus the gate voltage δ obtained for small voltages eVL =
0.35 = −eVR assuming the symmetric couplings �R = �L . Dashed
curves display results for the two-terminal N-QD-S case (�R = 0)
and dotted vertical lines indicate positions of the Andreev bound
states E+−

A (blue) and E−+
A (green). Other parameters are the same

as those in Fig. 2.

to uncorrelated tunneling of the Cooper pairs. The system is
then in the Coulomb blockade, where single-electron tunnel-
ing is suppressed at the expense of the AR processes [61–63].

To get more insight into the dynamics and correlations
between various tunneling processes we have also calculated
the frequency-dependent noise. In the regime of unidirectional
transport (i.e., for eVL larger than E+−

A and E−+
A ) one can

derive some analytical results. Let us underline that in the case
of small bias only two (the most inner) Andreev bound states
E+−

A and E−+
A participate in the subgap charge transport. The

frequency-dependent Fano factor is then expressed by

FL(ω) = 1 − 4(α4
− + α4

+)�2
L

9�2
L + ω2

+ 10α2
−α2

+�2
L

9�2
L + ω2

. (9)

The first (frequency-dependent) term comes from the auto-
correlation tunneling processes through the Andreev bound
states, for which the correlation functions are given by

S+−,+−
LL (ω) = 4

3
e2α2

−�L

(
1 − 4α2

−�2
L

9�2
L + ω2

)
, (10)

S−+,−+
LL (ω) = 4

3
e2α2

+�L

(
1 − 4α2

+�2
L

9�2
L + ω2

)
. (11)

The second frequency-dependent term [appearing in Eq. (9)]
comes from the electron-hole correlations

S+−,−+
LL (ω) = 20

3
e2 α2

−α2
+�3

L

9�2
L + ω2

. (12)

235402-5



G. MICHAŁEK et al. PHYSICAL REVIEW B 101, 235402 (2020)

-2 -1 0 1 2

0

1

2

3

4

(a)

(b)

(c)

(d)

S
S

S
 [

S
S
 [

L
]

-0.8

-0.4

0

S
L

R
i,j

 [
L

Rj
[

R
L
]

++,--
-+,++
+-,--

TOT
++,++
+-,+-
-+,-+
--,--

-2 -1 0 1 2

0

0.5

1

1.5

2

S
L

L
i,j

 [
L

Lj
 [

L
L
]

++,--
-+,++
+-,--
+-,++

TOT
++,++
+-,+-
-+,-+
--,--

0.5

1

1.5

2

F
L

FIG. 4. The zero-frequency current correlation functions:
(a) Fano factor FL of L-QD junction; (b) autocorrelation function
SLL (black curve) and its contributions through various bound states
(color curves); (c) cross-correlation function SLR (black curve) and
its components, where note that S+−,++

LR (ω = 0) = S++,−−
LR (ω = 0);

and (d) autocorrelation function for S electrode plotted as a function
of gate voltage δ for moderate applied voltages eVL = 1.3 = −eVR

assuming the symmetric couplings �R = �L . For comparison the
results for the two-terminal case (N-QD-S) with �R = 0 are shown
by the dashed curves. Dotted red vertical lines denote positions of
the Andreev bound state E++

A . Other parameters are the same as
those in Fig. 2.

Figure 3(b) displays the zero-frequency correlation function
SLL and presents its components S+−,+−

LL and S−+,−+
LL obtained

for |δ| < 1 in the electron and hole transport through the
Andreev bound states E+−

A and E−+
A . We also present S+−,−+

LL
describing interlevel correlations between the electron and
hole tunneling events. In the conducting regime the main
contribution to SLL comes from S+−,+−

LL and S−+,−+
LL , which

reduce the zero-frequency Fano factor F → 5/9 in the ex-
treme particle-hole asymmetry case (i.e., a large |δ| limit).
Notice that such reduction of the zero-frequency Fano factor is
smaller than in the N-QD-N system [14,18], where F = 1/2.
This also follows from Eq. (39) below for ω = 0 and �R = �L.
Upon approaching the CB region we observe an enhancement
of SLL due to activation of the interlevel correlations S+−,−+

LL
(orange curve) corresponding to the DAR processes on the L-
QD interface. In the Coulomb blockade regime the current JL

is exponentially suppressed and the corresponding frequency-
dependent Fano factor

FL(ω) = 1 + 2α2
− − 32α4

−�2
L

16�2
L + ω2

+ 32α2
−α2

+�2
L

16�2
L + ω2

. (13)

The Schottky term is here enhanced by backscattering pro-
cesses. The first and the second frequency-dependent terms
refer to the autocorrelations and interlevel correlations, re-
spectively. Right in a middle of the Coulomb blockade the
frequency-dependent terms cancel each other, and FL(ω =
0) = 2 (due to backscattering).

Let us notice that in the two-terminal N-QD-S case, the
frequency-dependent Fano factor for the conducting regime is
given by

F2t (ω) = 1 − 4α2
−α2

+�2
L

(α2− + 2α2+)2�2
L + ω2

+ (α4
− + 4α4

+)�2
L

(α2− + 2α2+)2�2
L + ω2

. (14)

The second frequency-dependent term [appearing in Eq. (14)]
corresponds to the interlevel correlations which is positive
and has a dominant contribution. Thereby F2t (ω = 0) > 1 and
the noise has super-Poissonian character. It is always larger
than in the three-terminal case; compare the solid and dashed
curves in Fig. 3(a). In the Coulomb blockade regime the
current and the noise are exponentially suppressed, but the
frequency-dependent Fano factor is finite:

F2t (ω) = 1 + α2
−

α2+
− 4α2

−�2
L

α2+
(
4�2

L + ω2
) + 4�2

L

4�2
L + ω2

. (15)

One can see that interlevel correlations are responsible for the
super-Poissonian noise; compare with Eq. (13). The positive
correlations have been also found for multilevel QD coupled
to the normal leads, where the super-Poissonian noise is
driven by the interchannel Coulomb blockade [17]. In the
regime of the doubly occupied configuration, for the Coulomb
blockade and for the empty state FL = 2 due to uncorrelated
jumps of the Cooper pairs to or from the proximized QD.
In the conducting regime the dynamical fluctuations between
DAR processes induce the negative correlations, and one
hence observes a reduction of FL.

Figure 3(c) presents the zero-frequency cross-correlation
function SLR between the different metallic leads. Let us
remark that in N-QD-N structures the charge conservation
rule implies the relation SLL = −SLR fulfilled at ω = 0 [14].
The function SLR is negative for the entire range of the gate
voltage δ. Far from the Coulomb blockade SLR ≈ −SLL so the
components S+−,+−

LR and S−+,−+
LR become dominant because

of correlations originating from the ET tunneling processes
through metallic junction (see, e.g., Ref. [28]). For the unidi-
rectional transport one can obtain the analytical expression for
the frequency-dependent cross-correlation function. For the
small bias voltage the transfer rates: �+−

L+ = α2
−�L, �−+

L+ =
α2

+�L, �−+
R− = α2

+�R, �+−
R− = α2

−�R, �−+
L− = �+−

L− = �+−
R+ =

�−+
R+ = 0,

SLR = −4e2

3

(5α4
+ + 5α4

− − 8α2
−α2

+)�3
L

9�2
L + ω2

, (16)

with its components

S+−,+−
LR (ω) = −20

3
e2 α4

−�3
L

9�2
L + ω2

, (17)

S−+,−+
LR (ω) = −20

3
e2 α4

+�3
L

9�2
L + ω2

, (18)

S+−,−+
LR (ω) = 16

3
e2 α2

−α2
+�3

L

9�2
L + ω2

. (19)

In the case considered here the superconducting electrode
plays a crucial role, especially close to the Coulomb blockade
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region where the Andreev reflections become important; see
Fig. 3(c). The interlevel cross-correlation function S+−,−+

LR is
positive and then becomes dominant. This is a fingerprint of
the correlations between CAR processes [28].

Since we have determined SLL = SRR and SLR at ω = 0,
we can get the correlation function SSS = SLL + 2SLR + SRR

describing correlations in the Cooper pair flow through S-QD
interface. As could be expected, SSS is enhanced close the
Coulomb blockade region. The direct and crossed Andreev
reflection processes contribute equally to the correlation func-
tion SSS in the symmetric configuration. Notice that the net
current JS = 0 but the corresponding noise SSS is large. Its
value exceeds the ET contribution in SLL; compare with the
blue and green curves in Fig. 3(b).

B. Current correlations for large bias

Now let us consider the case of large bias voltage eVL =
1.3 = −eVR, when all the Andreev bound states participate
in the subgap transport; see Fig. 1(b). The total current
and its components are presented in Fig. 2(b) in a moderate
gate voltage range (for larger |δ| the QD is in either the double
occupied or the empty state and therefore the nanostructure
becomes insulating). In the |δ| < E++

A energy region one
finds the current JL = e�L, and it is a sum of the appropriate
electron and hole currents (see Fig. 1), obeying the conditions
J−+

L = J++
L = eα2

+�L/2 and J+−
L = J−−

L = eα2
−�L/2. Since

we consider the symmetric case with �L = �R the partial
currents on R-QD junction are J−+

R = J++
R = −eα2

+�L/2 and
J+−

R = J−−
R = −eα2

−�L/2. This means the absence of any
charge accumulation on the Andreev bound states.

The current JL shows a steplike behavior, with large plateau
for |δ| < E++

A . For large |δ| the total current is dominated by
the ET processes. For δ = 0 one finds that all electron and
hole currents Ji

L have the same amplitude, which indicates that
DAR and ET processes equally participate in JL. When |δ| >

E++
A the ET processes are seen only in J+−

L for δ < 0 or J−+
L

for δ > 0. At δ = −E++
A (δ = E++

A ) the new transport channel
opens (closes), therefore one observes an enhancement (a
suppression) of the current J−−

L (J++
L ) responsible for an

enhancement (a suppression) of JL. One can also find that
J−−

L (−δ) = J++
L (δ) as well as J+−

L (−δ) = J−+
L (δ), which is

caused by the electron-hole symmetry. For comparison, in the
two-terminal case, one observes the large peak (centered at
δ = 0) of JL due to DAR processes.

Let us analyze the results presented in Fig. 4 for the
zero-frequency Fano factor FL and the current correlation
functions SLL, SLR, and SSS at ω = 0. One can notice that
the noise has sub-Poissonian character, with FL < 1, in the
entire conducting range. The zero-frequency Fano factor is
suppressed down to 1/2 (for large |δ| > E++) due to the
negative correlation in ET tunneling processes. In the center
of the plot, for |δ| → 0, we observe enhancement of the
zero-frequency Fano factor caused by DAR processes. The
interchannel correlations become relevant, therefore FL → 1.
We also performed the frequency-dependent calculations of
the current correlations in the unidirectional transport regime.
The frequency-dependent Fano factor can be expressed as

FL(ω) = 1 − 2(α2
− − α2

+)2�2
L

4�2
L + ω2

. (20)

This result differs from that one, corresponding to the two-
terminal N-QD-S case,

F2t (ω) = 1 + (α2
− − α2

+)2�2
L

�2
L + ω2

, (21)

where the noise is super-Poisonian [compare the solid and
dashed curves in Fig. 4(a)]. The same result has been ob-
tained using the diagrammatic real-time approach by Droste
et al. [45] for the low-frequency-dependent noise. It is also
consistent with earlier studies by Braggio et al. [44] who used
the full counting statistics technique for the zero-frequency
shot noise. The derivation of the current correlations and
relaxation processes for the two-terminal case is outlined in
the Supplemental Material [68].

Figure 4(b) shows various components of the correlation
function SLL. The frequency-dependent analysis of tunneling
events shows important role of the intra- and interchannel
dynamics. Autocorrelation functions for electrons and holes
can be written as

S++,++
LL (ω) = S−+,−+

LL (ω)

= e2α2
+�L

(
1 − 4α2

+�2
L

16�2
L + ω2

)
, (22)

S−−,−−
LL (ω) = S+−,+−

LL (ω)

= e2α2
−�L

(
1 − 4α2

−�2
L

16�2
L + ω2

)
. (23)

The interlevel correlations between electron or hole tunneling
processes are expressed by

S+−,−−
LL (ω) = − 2e2α4

−�3
L

4�2
L + ω2

+ 4e2α4
−�3

L

16�2
L + ω2

, (24)

S−+,++
LL (ω) = − 2e2α4

+�3
L

4�2
L + ω2

+ 4e2α4
+�3

L

16�2
L + ω2

. (25)

Notice that in these expressions the first frequency term is
negative, and it dominates at small frequencies, leading to
sub-Poissonian noise. The electron-hole correlation functions
between different channels are given by

S++,−−
LL (ω) = S−+,+−

LL (ω)

= 2e2α2
−α2

+�3
L

4�2
L + ω2

+ 4e2α2
−α2

+�3
L

16�2
L + ω2

, (26)

S+−,++
LL (ω) = S−+,−−

LL (ω) = −4e2α2
−α2

+�3
L

16�2
L + ω2

. (27)

The sum of all these components, Eqs. (22)–(27), leads to

SLL(ω) = 2e2�L

[
1 − 2(α2

− − α2
+)2�2

L

4�2
L + ω2

]
, (28)

where only the low-frequency fluctuations play a role whereas
the contributions (negative and positive) of the high-frequency
fluctuations cancel themselves.

Denominators of the frequency-dependent terms appear-
ing in the correlation functions [Eqs. (22)–(28)] describe a
relaxation driven by the generation-recombination processes
[59]. For any local quantity described by an operator X̂ its
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dynamical fluctuation can be expressed by

SXX (ω) = 4
∑
m,n

XmGmn(ω)Xn p0
n, (29)

where Xm is an eigenvalue of X̂ . Equations (8) and (29) are
consistent with the quantum regression theorem, which pre-
dicts that the equation of motion for the statistically averaged
operator implies the same equation for the time-correlation
function of this operator [64,65]. Following Ref. [19] one can
define operators for a local charge N̂ = n̂+ + n̂− and polariza-
tion P̂ = n̂+ − n̂−, where n̂+ and n̂− are the number operators
for the state |+〉 and |−〉, respectively. In the case of large
bias (considered here) the corresponding charge (polarization)
noises are given by

SNN = 4�L

16�2
L + ω2

, (30)

SPP = 4�L

4�2
L + ω2

. (31)

Thus, one can identify the terms with the relaxation rate
1/τ ch

rel = 4�L in the current noise as corresponding to the high-
frequency charge fluctuations on the Andreev bound states,
while the terms with 1/τ

pol
rel = 2�L describe the low-frequency

polarization fluctuations [17,19,20].
Since we focus on the symmetric situation, the polarization

fluctuations occur only in the total current noise SLL(ω),
Eq. (28). When the symmetry was broken, for �L �= �R or for
an asymmetric bias voltage, the displacement currents [66,67]
as well as the accumulated charge [18] could substantially
affect the current noise, amplifying the frequency-dependent
Fano factor. In the asymmetric case �R �= �L the formulas are
more complicated, but for completeness and future reference
we present them in the Supplemental Material [68].

Figure 4(c) presents the zero-frequency cross-correlation
function SLR and its components between the metallic leads.
This quantity is negative, indicating that ET tunneling pro-
cesses and their correlations are dominant. At the electron-
hole symmetry point, δ = 0, where the Andreev scatterings
become important, SLR tends to zero. This means that inter-
electrode tunneling events are uncorrelated, i.e., Poissonian.
The frequency analysis of the current correlation gives

SLR(ω) = −4e2(α2
− − α2

+)2�3
L

4�2
L + ω2

(32)

with the following components:

S++,++
LR (ω) = S−+,−+

LR (ω)

= − 2e2α4
+�3

L

4�2
L + ω2

− 4e2α4
+�3

L

16�2
L + ω2

, (33)

S−−,−−
LR (ω) = S+−,+−

LR (ω)

= − 2e2α4
−�3

L

4�2
L + ω2

− 4e2α4
−�3

L

16�2
L + ω2

, (34)

S−+,++
LR (ω) = 4e2α4

+�3
L

16�2
L + ω2

, (35)

S+−,−−
LR (ω) = 4e2α4

−�3
L

16�2
L + ω2

, (36)

S++,−−
LR (ω) = S−+,+−

LR (ω) = 4e2α2
−α2

+�3
L

16�2
L + ω2

, (37)

S+−,++
LR (ω) = S−+,−−

LR (ω)

= 2e2α2
−α2

+�3
L

4�2
L + ω2

− 4e2α2
−α2

+�3
L

16�2
L + ω2

. (38)

Notice that S+−,++
LR (ω) = S−+,−−

LR (ω) [presented in Eq. (38)]
describes the electron-hole correlation between the different
Andreev bound states, and it is responsible for suppressing
SLR(ω = 0) → 0 in the limit δ = 0.

In analogy to the previous discussion, we observe that
autocorrelation of the JSS currents in the S-QD junction of
the three-terminal system is strongly enhanced at δ = 0, as
displayed in Fig. 4(d). This is caused by the frequency-
dependent part, which is negative and vanishes at δ = 0; see
Eq. (28). Its value is equal to the Schottky noise and is twice
as large as in two-terminal N-QD-S case; see the dashed curve
in Fig. 4(d). This is the result of the aforementioned lack of
correlation between electron tunneling through both normal
tunnel junctions, therefore the noise simplifies to SSS (0) =
2SLL(0) = 4e2�L = 4eJL.

C. Frequency dependence of the Fano factors:
Experimental consequences

Till now we have been discussing the frequency depen-
dence of the currents and their fluctuations in the three-
terminal system with one of the terminals being a super-
conductor. To our knowledge there are no experimental
data fitting our assumptions for such geometry. Instead, the
frequency-dependent current statistics have been measured
experimentally for a system consisting of two-terminal quan-
tum dot [25] with normal leads. Our formalism is flexible
enough to describe the experimentally studied system. Thus
in the following we shall compare the calculated frequency
dependence of the Fano factors with experimental data [25]
obtained in the large bias limit.

The experimentally investigated single electron transistor
[25] consisted of the interacting quantum dot tunnel coupled
to two normal electrodes. The authors [25] have studied the
frequency dependence of the second and third cumulants of
the currents. In the Coulomb blockade regime the individual
charge transport events were measured via the quantum point
contact placed near the quantum dot. The obtained current-
current correlation function clearly shows the characteristic
frequency dependence with a single correlation time.

Repeating the calculations for the quantum dot asymmetri-
cally coupled to two normal electrodes we find the frequency-
dependent Fano factor

F N
R (ω) = F N

L (ω) = 1 − 2�L�R

(�L + �R)2 + ω2
, (39)

for the large bias processes, when the electrons tunnel in
one direction only. The corresponding cross-correlation factor
reads (up to the sign, as elsewhere here we defined the cross-
correlations with a minus sign)

F N
LR(ω) ≡ SN

LR(ω)

2eJ
= �2

L + �2
R

(�L + �R)2 + ω2
. (40)
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FIG. 5. The frequency-dependent Fano factors FL (ω) [FR(ω)] of
L-QD [QD-R] junction and FLR(ω) = SLR(ω)/2e

√|JLJR| in three-
terminal setup with the proximized quantum dot for the large bias
voltage (see the Supplemental Material [68]). The Fano factors
F2t (ω) [see Eq. (21)] of N-QD-S system are compared to F N

L (ω) and
F N

LR(ω) of N-QD-N device, which has been investigated in Ref. [25].
For the proximized dot in the three-terminal setup our calculations
have been performed using �L = 3�R = 0.006, �S = 0.2, kBT =
0.01, and δ = {0, 0.5}, while for the dot hybridized with two normal
electrodes we assumed ε1 = 0 (U = 1).

In the experiment the couplings where strongly asym-
metric with �L ≈ 3�R and the data, shown in Fig. 1(d) of
the experimental paper [25], clearly feature single relaxation
rate 1/τc = �L + �R. The experimental data essentially over-
lap the theoretical curves marked as F N

L (ω) and F N
LR(ω) in

Fig. 5. This figure not only illustrates the frequency de-
pendence of the factors (39) and (40), but also shows the
corresponding frequency-dependent Fano factors of our two-
and three-terminal proximized quantum dot. For the latter
system we have defined these frequency-dependent factors as
FL(ω) = SLL(ω)/2eJL, FR(ω) = SRR(ω)/2eJR and FLR(ω) =
SLR(ω)/2e

√|JLJR| (see the Supplemental Material [68]) for
two values of δ = {0, 0.5} as indicated. In the three-terminal
hybrid system the largest effect of the superconducting elec-
trode (superconducting correlation) is seen for the electron-
hole symmetry point (δ = 0). As δ increases, the effect of
the superconducting electrode clearly diminishes, while for
the N-QD-S system the effect increases with δ. The largest
discrepancies between the two- or three-terminal hybrid and
the normal (two-terminal) system occur for the low frequen-
cies. If the hybrid system is close to the charge degeneracy
point δ ≈ 0 the contribution to SLR(ω) identically vanishes
as also does the frequency-dependent part of FL(ω) and
F2t (ω), so it attains the form of Schottky noise with FL =
F2t = 1 independently of frequency. In Fig. 5 we also show
the comparison of the frequency-dependent Fano factors for
two normal terminals contacting the quantum dot when the
Coulomb blockade is expected to play an important role with
those of the three-terminal proximized dot as well as N-QD-S
system. One can see that the Andreev scattering makes all
frequency-dependent Fano factors to attain different values
for ω → 0. This is related to charge nonconserving processes
in individual normal electrodes. For δ = 2 (not shown) the

frequency-dependent Fano factors for the three-terminal dot
with the superconducting electrode nearly coincide with those
obtained for the system without proximity effect. This is
traced back to the weak mixing of the empty and doubly
occupied states for values of δ � �S .

On the other hand for N-QD-S system the frequency-
dependent Fano factor F2t (ω) for large δ approaches 2, which
clearly indicates that the Cooper pairs tunneling is a Poisso-
nian process. One can also easily check that with increasing
asymmetry between �L and �R (i.e., with decrease of �R) one
can observe that FL(ω) grows from the sub-Poissonian to the
super-Poissonian values, and in the limit �R → 0 one finds
FL(ω) = F2t (ω).

IV. SUMMARY OF MAIN FINDINGS

We have studied the charge current fluctuations for three-
terminal hybrid system, comprising the QD sandwiched be-
tween two metallic leads and strongly coupled to supercon-
ductor. Using the generation-recombination approach [59,60]
we have considered electron and hole tunneling through avail-
able subgap channels (in-gap bound states) of such prox-
imized QD. In particular, we have addressed mutual rela-
tionship between the single electron transport (ET) and the
Andreev (electron to hole) scattering caused by the local
(DAR) and nonlocal (CAR) mechanisms. We have determined
the currents and identified their components originating from
transport through the specific bound states. We have ana-
lyzed the current-current correlation functions and performed
their spectral decompositions, getting insight into the local
and nonlocal fluctuations responsible for suppression or en-
hancement of the current noise. We have done numerical
computations, focusing on the small and large bias voltages
that activate either two or four in-gap Andreev levels in the
transport window, respectively.

Assuming the symmetric couplings �R = �L and sym-
metric bias VL = V/2 = −VR we have found that single ET
processes play important role in the local current-current
correlation SLL, leading to reduction of the shot noise to the
sub-Poissonian regime with the zero-frequency Fano factor
FL < 1. Deviation from the Poissonian noise is caused by
the dynamical (frequency-dependent) part of the current cor-
relations. Its intrachannel components (tunneling processes
through the same Andreev bound state) bring always the
negative contribution, manifesting the antibunching behavior.
On the other hand, the interchannel components can bring
positive contribution. For small bias there appear positive
correlations between the electrons and holes, indicating that
the currents to the same normal lead originate from the
direct Andreev reflection (DAR) processes. In such a situation
the intra- and interchannel components describe the charge
fluctuations with the same relaxation rate. On the other hand,
for large bias, we observe two different charge fluctuation
processes: one with the large relaxation rate 1/τ ch

rel = 4�L

and another with the small relaxation rate 1/τ
pol
rel = 2�L,

respectively. Since in the symmetric case the charge is not
accumulated on the Andreev bound states, the current corre-
lation functions reveal a clear contribution from the charge
and polarization fluctuations. The intrachannel correlations
show only the negative component, corresponding to the
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high-frequency charge relaxation, whereas the interchannel
correlations have both the frequency terms. DAR processes
are well manifested in the interchannel functions S++,−−

LL (ω)
and S−+,+−

LL (ω) [see Eq. (26)] with both positive frequency-
dependent contributions. We noticed a somewhat intriguing
behavior in charge fluctuations, where the intra- and inter-
channel correlation components compensate each other. For
this reason the correlation function SLL(ω) for the total current
has the frequency-dependent contribution, originating solely
from the polarization fluctuations.

To emphasize the role of ET processes we have contrasted
our results with those obtained for the two-terminal N-QD-S
case, where the crossed Andreev reflection (CAR) processes
are absent. Under such circumstances the bunching effect
is well seen in the electron-hole correlation functions, im-
plying the super-Poissonian noise with the zero-frequency
Fano factor F2t > 1. Our studies provide in-depth information
about the dynamics of various internal charging processes. In
particular, we can see relationship between the low-frequency
polarization fluctuations and the high-frequency charge fluc-
tuations in all components of the current correlation functions.
This substantially extends the previous studies by Droste [45]
and Braggio [44].

For the three-terminal heterostructure we have also in-
spected the nonlocal correlations between currents flowing
through the left and the right tunnel junctions to metallic
electrodes. The corresponding cross-correlation function SLR

exhibits a nontrivial interplay between the CAR and ET
processes. For various gate voltages (arbitrary detuning δ

from the half-filled QD) we have found the negative val-
ues of SLR, which indicates antibunching of the tunneling
events typical for multiterminal normal systems (see e.g.,
Ref. [20]). Although the ET processes play the dominant role,
the nonlocal CAR processes are important, especially near
the electron-hole symmetry point, |δ| → 0, where SLR → 0.
Enhancement of the shot noise originates from activation of
the interchannel fluctuations between electron and holes. In
the case of small bias this is due to the correlation function
S+−,−+

LR (ω) [Eq. (19)] contributed by electrons and holes from
different leads, which could be related to the CAR processes.
For the large bias the correlation functions S+−,++

LR (ω) and
S−+,−−

LR (ω) [Eq. (38)], where the low-frequency polarization
fluctuations are positive, become more relevant.

V. CONCLUSIONS AND OUTLOOK

Our theoretical investigation of the quantum dot embedded
into three-terminal heterostructure is quite universal, and it
yields proper expressions for the charge fluctuations and the
frequency-dependent Fano factors describing the statistical
properties of the two-terminal N-QD-S and N-QD-N systems.
Quantitative agreement of the present results with experi-
mental data obtained recently for N-QD-N setup [25] and
satisfactory agreement with the previous theoretical work on
N-QD-S system [45] gives confidence that our method would
be able to correctly describe the statistical correlations of the
currents in hybrid systems with one superconducting and one
or two normal electrodes. We thus hope that present analysis
of the statistical properties of currents could stimulate further
(experimental and theoretical) activities for this interesting

geometry. In particular, our predictions can be verified ex-
perimentally in the system similar to that used already by
Ubbelohde et al. [25].

There is plenty of room for extending our studies in
other directions as well. For instance, the auto- and cross-
correlation have been discussed for the proximized QD cou-
pled to magnetic electrodes in the Cooper pair splitter (CPS)
configuration [49,50]. Such considerations, however, have
been limited mostly to the zero-frequency case. It has to be
mentioned that we are not considering the capacitive effects,
which can be of importance in particular experiments and
affect the frequency dependence of correlation functions. Our
method, suitable for frequency-dependent current-current cor-
relations, seems to give a broader insight into the dynamical
processes of the Cooper pair formation (or splitting) in such
devices [69]. Influence of the short-time fluctuations on effi-
ciency of the Cooper pair entanglement might be crucial for
future application of the CPS e.g., to quantum computation
and/or communication. Furthermore, it has been recently
observed, that the high-frequency cutoff completely washes
out the emission noise related to the Kondo resonance [70]. It
would be hence challenging to check whether such behavior
can be overcome in the correlated quantum dots proximitized
to superconductors, where the subgap Kondo peak is expected
to be substantially broadened upon approaching the doublet-
singlet quantum phase transition [71,72].

Another interesting perspective would be possible in
nanostructures, where the superconducting lead is in a topo-
logically nontrivial phase hosting the Majorana boundary
modes. Some authors [73] have pointed out that nonlocal
nature of these zero-energy modes could by manifested by the
strong cross-correlations detectable in the shot noise measure-
ments. Leakage of these boundary modes onto side-attached
quantum dots has been also proposed as a suitable tool for
unambiguous recognition of the Majorana zero-energy quasi-
particles from their trivial (finite-energy) counterparts [74,75].

Furthermore, three-terminal junctions with the quantum
dot sandwiched between the topologically nontrivial super-
conducting nanowires could induce the giant shot noise [76].
Other setup, with the topological superconducting island
coupled to three normal-conducting leads, has been recently
proposed [77] for efficient protocol to test nonlocality of the
Majorana bound states through the current shot-noise correla-
tions, where the zero-frequency Fano factor could detect the
exotic (non-Abelian) character of the Majorana quasiparticles
[78]. These examples show a rich variety of heterostructures,
where our study can be potentially extended.
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APPENDIX: MASTER EQUATION APPROACH

In the weak coupling limit �L(R) � kBT, �S transport prop-
erties of our nanostructure are dominated by a sequential
tunneling processes through the proximized QD. The currents
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can be determined by solving the master equation

ṗ(t ) = M p(t ) (A1)

with the probabilities p(t ) = (p1(t ), p−(t ), p+(t ))T referring
to the single-electron occupancy of QD p1(t ) = p↑(t ) + p↓(t )
and probabilities of the BCS-type configurations |−〉 and |+〉
denoted by p−(t ) and p+(t ), respectively. Probability conser-
vation implies the constraint p1(t ) + p−(t ) + p+(t ) ≡ 1.

The evolution matrix M has in our problem the following
structure:

M =
⎛
⎝−M21 − M31 M12 M13

M21 −M12 0
M31 0 −M13

⎞
⎠, (A2)

where M12 = 2
∑

α=L,R(�−+
α+ + �+−

α− ), M13 =
2

∑
α=L,R(�−−

α+ + �++
α− ), M21 = ∑

α=L,R(�+−
α+ + �−+

α− ), and
M31 = ∑

α=L,R(�++
α+ + �−−

α− ). We have introduced here the
effective transition rates �i

α± describing tunneling processes
to/from the QD (+/−) through αth junction and engaging
the Andreev bound states i ∈ {ABS} ≡ {++,+−,−+,−−};
see Fig. 1. The tunneling rates describe transfer of one
electron or hole between the singly occupied states and the
singlet subspace. In particular, �++

α± = α2
+�α f (±E++

A ∓ μα ),
�+−

α± = α2
−�α f (±E+−

A ∓ μα ), �−+
α± = α2

+�α f (±E−+
A ∓ μα ),

and �−−
α± = α2

−�α f (±E−−
A ∓ μα ), where f (E ) =

[1 + exp (E/kBT )]−1 is the Fermi-Dirac distribution function.
In the case of positive Andreev bound states, Ei

A > μS , the

tunneling rate �i
α± describes an electron transfer, whereas

for Ei
A < μS the charge current is contributed by holes.

The chemical potential of the superconducting electrode
is denoted as μS and its value is assumed to be μS = 0
throughout.

The charge current flowing from αth lead can be expressed
in the stationary limit as Jα = ∑

i∈{ABS} Ji
α , where the contri-

butions from the Andreev bound states are given by

J++
α ≡ I++

α+ − I++
α− = e

(
�++

α+ p0
1 − 2�++

α− p0
+
)
, (A3)

J+−
α ≡ I+−

α+ − I+−
α− = e

(
�+−

α+ p0
1 − 2�+−

α− p0
−
)
, (A4)

J−+
α ≡ I−+

α+ − I−+
α− = −e

(
�−+

α− p0
1 − 2�−+

α+ p0
−
)
, (A5)

J−−
α ≡ I−−

α+ − I−−
α− = −e

(
�−−

α− p0
1 − 2�−−

α+ p0
+
)
. (A6)

Under stationary conditions the probability p0 =
(p0

1, p0
−, p0

+)T can be determined, solving the equation
Mp0 = 0. The currents J++

α and J+−
α are contributed by

electrons (“e”), whereas J−+
α and J−−

α by holes (“h”) via the
corresponding Andreev bound states; see Fig. 1. One can
notice that for |δ| = 1 the Andreev bound states E+−

A and
E−+

A cross each other, signifying the quantum phase transition
[58]. For large |δ| > 1 the currents J+−

α and J−+
α describe

hence transport of holes and electrons, respectively. As far
as the Copper pair current JS is concerned (flowing from the
QD to superconducting lead) it can be obtained from the
Kirchoff’s law JS = JL + JR.
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