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Quasiparticles of a periodically driven quantum dot coupled between
superconducting and normal leads
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We investigate subgap quasiparticles of a quantum dot coupled to the superconducting and normal leads,
whose energy level is periodically driven by an external potential. Using the Floquet formalism we determine
the quasienergies and analyze redistribution of their spectral weights between individual harmonics upon varying
the frequency and amplitude of the driving potential. We propose feasible spectroscopic methods for probing the
in-gap quasiparticles observable in the differential conductance of the charge current averaged over a period of
oscillations.
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I. MOTIVATION

Response of a quantum system on abrupt quench [1] or
periodically driven perturbation [2] can provide valuable in-
sight into dynamics of its effective quasiparticles or may even
lead to appearance of novel phases [3,4]. Among numerous
examples one can mention, e.g., quantum time crystals [5],
transient engineering of superconductivity [6], light-induced
coherence in atomic superfluids [7], insulating [8] or super-
conducting topological phases [9–11], zero and π modes in
planar Josephson junctions [12], and many other effects in
the solid state [13–16], quantum optics [17,18], nanostruc-
tures [19,20], or ultracold gases [21–23].

In nanoscopic heterostructures such phenomena affect the
charge and spin transport, therefore it could be promising for
future applications. In particular, very interesting effects can
be observed at impurities hybridized with superconductors,
where the bound Andreev (or Yu-Siba-Rusinov) states appear
in the subgap regime. Upon perturbing such impurities by
external periodic field they absorb or emit the field quanta, in-
ducing the higher-order harmonics. These features have been
indeed reported experimentally [24,25], but their detailed
knowledge is not well established yet. Subgap quasiparticles
involve the particle and hole degrees of freedom, one may
hence ask whether the Andreev (Yu-Shiba-Rusinov) states shall
split into a series of equidistant harmonics, or rather the
quasienergies of the normal (unpaired) quantum impurity
would undergo internal splittings. We try to answer this ques-
tion, considering the setup (Fig. 1) of the single quantum dot
strongly coupled to the superconductor and weakly hybridized
with the normal lead. Energy level of this quantum dot can
be periodically driven either by electromagnetic field or by
alternating gate potential.

The charge and heat transport through similar heterostruc-
ture has been recently discussed by Arrachea and López [26],
but specific quasienergies of this setup have not been
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investigated. Multiple in-gap features originating from AC
field [27] or the coupling to monochromatic boson field have
been also explored by several other groups [28–31], however
the role of frequency and amplitude of external perturbations
have not been treated on equal footing. For this reason we
address such an issue here, investigating the quasienergies
and their spectral weights driven in the proximitized dot by
external perturbation.

The paper is organized as follows. We define the micro-
scopic model in Sec. II and discuss methodological details
to treat the periodic driving in Sec. III. Our main results
are presented in Sec. IV. Section V summarizes the major
conclusions and gives a brief outlook of open questions. In
Appendix A we illustrate the Floquet formalism applied to the
normal (unpaired) quantum dot and in Appendix B we present
the effective model obtained for the high-frequency limit.

II. MICROSCOPIC MODEL

The setup comprising the quantum dot (QD) coupled to
the normal (N) and superconducting (SC) reservoirs can be
described by the Anderson impurity Hamiltonian

H (t ) = HQD(t ) + HN + HSC + HT,N + HT,SC. (1)

Time dependence enters our setup through

HQD(t ) =
∑

σ

εd (t )d†
σ dσ , (2)

where we assume periodic oscillations of the QD energy level
εd (t ) = εd + A cos (ωt ). As usual, d (†)

σ stands for the creation
(annihilation) operator of the QD electrons with spin σ =
{↑,↓}. Oscillations of the energy level εd (t ) are characterized
by frequency ω and amplitude A. We assume that they have
no direct influence on electronic states of both external leads
which are described by

HN =
∑
kσ

ξNk c†
Nkσ

cNkσ , (3)

HSC =
∑
kσ

ξSCk c†
SCkσ

cSCkσ

−
∑

k

(� c†
SCk↑ c†

SC−k↓ + H.c.). (4)
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FIG. 1. Schematics of the externally driven quantum dot (QD)
hybridized with superconducting (SC) and normal (N) electrodes by
couplings tSC and tN, respectively.

Here c†
βkσ

(cβkσ ) are the creation (annihilation) operators of
itinerant electrons with spin σ and momentum k in β = N and
SC electrodes. The energy gap of isotropic superconducting
reservoir is denoted by �. The energies ξβk = εβk − μβ are
measured with respect to the chemical potentials μβ , which
can be detuned μn − μs = eV by applying the bias V . The
last terms of Hamiltonian (1) stand for hybridization of the
QD with external leads

HT,β =
∑
kσ

(tβc†
βkσ

dσ + t∗
βd†

σ cβkσ ). (5)

In what follows, we study the quasiparticle states appearing
inside the energy regime |E | � �, assuming both hybridiza-
tions tβ to be constant (momentum independent). Signatures
of periodic driving appearing outside the gap are briefly
addressed in Sec. IV D.

III. METHODOLOGY

Quantum systems described by the time-periodic Hamil-
tonians H (t ) = H (t + T ), where T = 2π/ω can be treated
within the Floquet formalism. An outline of this procedure
is presented in Appendix A for the nonsuperconducting case.
Here we apply this treatment to the setup, where the proximity
induced on-dot pairing mixes the particle with hole degrees
of freedom. Let us discuss how to treat such effects in the
presence of the periodic driving.

Quasiparticle spectrum and transport properties of the
N-QD-S setup can be obtained using the Green’s function
approach [32] combined with the Floquet technique [33,34]
to account for the periodically oscillating QD level. Since a
proximity effect induces the on-dot pairing we introduce the
matrix (Nambu) representation

Gν
d,d (t, t ′) =

(〈〈d↑(t ); d†
↑(t ′)〉〉 〈〈d↑(t ); d↓(t ′)〉〉

〈〈d†
↓(t ); d†

↑(t ′)〉〉 〈〈d†
↓(t ); d↓(t ′)〉〉

)
, (6)

where the upper index ν stands either for the retarded (ν = r),
advanced (ν = a), or Keldysh (ν = c) Green’s functions. The

Heisenberg equation of motion yields

Gν
d,d (t, t ′) = gν

d,d (t, t ′) +
∫

dt1
∑
k,β

gν
d,d (t, t1)t∗

βGν
βk,d (t1, t ′),

(7)

where gν
d,d (t, t ′) is the (bare) Green’s function of isolated QD,

whereas Gν
βk,d (t1, t ′) denotes the mixed function originating

from hybridization of the QD with itinerant electrons of
external (β = N, SC) leads. Equation of motion for this mixed
Green’s function Gν

βk,d (t1, t ′) yields

Gν
d,d (t, t ′) = gν

d,d (t, t ′) +
∫

dt1

∫
dt2

∑
β

gν
d,d (t, t1)�ν

β

× (t1, t2)Gν
d,d (t2, t ′), (8)

with the self-energy matrix

�ν
β (t1, t2) =

∑
k

|tβ |2gν
βk,βk (t1, t2). (9)

All Green’s functions and the self-energies depend on two-
time arguments t and t ′, but such dependence can be substan-
tially simplified owing to the discrete translational invariance
f (t, t ′) = f (t + nT, t ′ + mT ) where n and m are integer num-
bers. In what follows, we restrict our considerations to the
steady limit.

Time periodicity can be conveniently treated, by trans-
forming t, t ′ to the relative t − t ′ and average time (t + t ′)/2
arguments and introducing the Wigner transformation [33].
We follow a slightly different convention [35], introducing the
transformation

fnm(ε) =
∫ ∞

−∞
dt ′ 1

T

∫ T

0
dtei(ε+nω)t−i(ε+mω)t ′

f (t, t ′), (10)

with the quasienergy ε. This allows us to recast time con-
volutions appearing in Eqs. (7) and (8) by summations over
the discrete harmonics m, n and integral over the first Floquet
zone ε ∈ 〈−ω/2; ω/2〉.

We can next diagonalize the bare Green’s function
(gν

d,d (ε))−1
nm with respect to the Floquet coordinates n, m by

the appropriate unitary matrix �nl (ε) = (�nl (ε))†,∑
nm

�ln(ε)
(
gν

d,d (ε)
)−1

nm�
†
ml (ε) = (

Qν
d,d (ε)

)−1
ll . (11)

In this basis the retarded and advanced Green’s function are
simply expressed by(

Qr,a
d,d (ε)

)−1
ll

= (ε + lω ± iη+)I − ε0
d τz, (12)

where I stands for the identity matrix, τz denotes z component
of the Pauli matrix, and iη+ is an infinitesimal positive imag-
inary value. Since we have chosen the time-dependent QD
level εd (t ) of a cosine form, the diagonalizing basis defined
through (11) is expressed by the Bessel functions of a first
kind [36]

�nl (ε) = 1

T

∫ T

0
dtei(n−m)εt e−i

∫ t
0 dt ′[εd (t ′ )−εd (0)] = Jn−m

(
A

ω

)
.

(13)
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Due to completeness of the Bessel functions, we can express
the bare Green’s function in the following form:

(
gr/a

d,d (ε)
)

nm =
∑

l

( Jn−l (A/ω)Jm−l (A/ω)
ε±iη++lω−ε0

d
0

0 Jn−l (A/ω)Jm−l (A/ω)
ε±iη++lω+ε0

d

)
.

(14)

Detailed derivation of such transformation has been discussed,
e.g., in Refs. [33,35].

In the same way we express the self-energies (9) originat-
ing from hybridization of the QD with external leads(

�
r/a
β (ε)

)
nm =

∑
k

|tβ |2(gr/a
βk,βk (ε)

)
nm. (15)

We are mainly interested in the subgap quasiparticles, there-
fore we make use of the wide-band limit approximation [37],
introducing the constant couplings �β 
 2π |tβ |2ρ(μβ ) which
relies on the assumption that the densities of states ρ(εβk ) of
both electrodes are nearly constant within the energy regime
εβk smaller or comparable to � around the chemical potentials
μβ . In the Floquet’s space the self-energies become diagonal.
The normal term is simply given as

(
�

r/a
N (ε)

)
nm = ∓

(
i�N

2 0

0 i�N
2

)
δnm, (16)

whereas the superconducting contribution is nondiagonal in
the Nambu representation [26,38]

(
�

r/a
SC (ε)

)
nm = − α(ε̃) �SC/2√

|(ε̃ ± iη+)2 − �2|

(
ε̃ −�

−� ε̃

)
δnm,

(17)
where α(ε̃) = �(� − |ε̃|) ± i sgn(ε̃)�(|ε̃| − �) and ε̃ =
ε + nω. The self-energy (17) is responsible for the pairing
effects manifested in the effective quasiparticle spectrum.

IV. EFFECTIVE SPECTRUM

In what follows we present representative numerical results
obtained for the periodically oscillating quantum dot, assum-
ing εd = 0, �N = 0.1�SC, and focusing on the zero tempera-
ture limit. Our main interests are the subgap quasiparticles and
efficiency of the induced on-dot electron pairing, we therefore
consider first the superconducting atomic limit � → ∞ when
the self-energy (17) simplifies to its static value [39]. Role of
the finite energy gap � is discussed in Sec. IV D.

A. In-gap quasiparticles

The effective QD spectrum driven by oscillations of the
energy level εd (t ) can be characterized by the diagonal (in
Nambu representation) spectral function

〈ρd (ε)〉 =
∑

n

(
− 1

π
Im

[
Gr

d,d (ε + i0+)
]

1,1

)
nn

(18)

of the electron propagator 〈〈d↑(t ); d†
↑(t ′)〉〉 whose Fourier

transform is defined in Eq. (10). Influence of the normal
and superconducting reservoirs affect this propagator via the
Dyson equation (8). Trace over the Floquet indices is here
equivalent to averaging over a single period T . Such a spectral

FIG. 2. The diagonal spectral function (18) of the quantum dot
driven by periodic oscillations of its initial level εd = 0, assuming
�SC/ω = 1 and �N/ω = 0.1.

function for an arbitrary physical problem has been recently
shown to always take the positive values [40]. For convenience
we normalize this function (18), multiplying it by c = π

2 �N. In
the time-independent case (A = 0 or ω = 0) this would imply
c〈ρd (ε)〉 → 1 for ε coinciding with the Andreev bound states
energy.

The normal QD (see Appendix A) is characterized by a
series of equidistant harmonics εd + nω (where n stands for
positive and negative integer numbers) whose spectral weights
vary with the amplitude A. This structure changes qualitatively
when the proximity induced on-dot pairing is taken into
account. Figure 2 shows the averaged spectral function (18)
as a function of the quasienergy ε and amplitude A obtained
for �SC/ω = 1. We can notice that the normal quantum dot
quasienergies εd + nω split into the lower and upper branches.

Let us analyze this spectrum in more detail. In the sta-
tionary case the subgap spectrum consists of a pair of the
Andreev bound states at ±

√
ε2

d + (�SC/2)2 [39]. For our
present configuration they acquire some finite line broaden-
ing (inverse lifetime) originating from the coupling �N to
a continuum of the normal lead electrons. Upon increasing
the amplitude A the quasiparticle branches (corresponding to
n = 0) gradually approach each other, and simultaneously the
higher-order harmonics |n| � 1 are developed. Each of such
higher-order quasiparticle branches reveal also the splitting
but its magnitude gets smaller and smaller with increasing
n. The averaged spectrum (Fig. 2) clearly displays that such
harmonics do not mix between themselves. They rather show
an “avoided crossing” behavior.

Such variation of the quasiparticle energies with respect to
A is accompanied by considerable redistribution of their spec-
tral weights. We observe that each of the harmonics gain and
lose their weights upon varying the amplitude in roughly the
same fashion as for the normal quantum dot (see Appendix A).
Figure 3 illustrates the averaged spectral function versus the
frequency ω of oscillations obtained for A = 2.2�SC. Here
we notice that quasiparticle energies and ongoing transfer of
their spectral weights between different harmonics at larger
frequencies produce the spectrum comprising the higher order
states near εd + nω (like in the normal case) and one pair (of
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FIG. 3. Variation of the the averaged quasiparticle spectrum with
respect to the frequency ω obtained for the constant amplitude A =
2.2�SC, assuming εd = 0 and �N = 0.1�SC.

zeroth order) Andreev quasiparticles. Numerical data obtained
in the high frequency limit are consistent with the analytical
results derived from the Magnus expansion (discussed in
Appendix B).

B. Induced on-dot pairing

To characterize efficiency of the proximity induced on-
dot pairing we introduce the off-diagonal (in Nambu space)
spectral function

〈ρoff(ε)〉 =
∑

n

(
− 1

π
Im

[
Gr

d,d (ε + i0+)
]

1,2

)
nn

(19)

related to the anomalous propagator 〈〈d†
↑(t ); d†

↓(t ′)〉〉 describ-
ing probability of creating the pair of opposite spin electrons.
This anomalous propagator has a number of properties typ-
ical for bosonic objects. In bulk and nanoscopic supercon-
ductors under the static conditions (A = 0) one of them is
manifested by the symmetry relation [Gr

d,d (−ε + i0+)]
1,2

=
[Gr

d,d (ε + i0+)]∗
1,2

that implies the odd spectral function
ρoff(−ε) = −ρoff(ε). More detailed discussion of the super-
conducting features of the proximitized/correlated QDs has
been presented, e.g., in Refs. [39,41]. For the periodically
driven system (A �= 0), we notice here similar relationship
valid also for the higher harmonics |n| > 0. Figure 4 shows the
off-diagonal spectral function (19) with respect to the varying
amplitude A. The anomalous spectral function is indeed rem-
iniscent of the behavior displayed in Fig. 2, except that now
the upper and lower branches of individual harmonics have
opposite signs.

We can also determine expectation value of the on-dot
pairing potential 〈d↓d↑〉T averaged over a period T . Its de-
pendence on the amplitude A is presented in Fig. 5. This
induced order parameter seems to be predominately sensitive
to the amount of spectral weight of the zeroth order harmonic
states (it vanishes for such amplitude where the zero-level
harmonic states lose their spectral weights). In the next section
we shall check whether the quasiparticle spectrum and/or the
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FIG. 4. The averaged off-diagonal spectral function (19) ob-
tained for the same set of model parameters as in Fig. 2.

induced on-dot pairing could be observable experimentally by
the tunneling current measurements.

C. Subgap charge current

Quasiparticle spectrum of the quantum dot could be probed
only indirectly through the transport properties. Let us briefly
discuss how to determine the time-dependent charge current
and its differential conductance. We focus on an adiabatic
limit and use the Landauer’s technique to describe the cur-
rent induced in our setup by a small bias V , which detunes
the chemical potentials μN = μSC + eV . To be specific, we
assume the superconducting lead to be grounded μSC = 0.

The charge current flowing from βth electrode Iβ (t ) =
e〈Ṅβ (t )〉 can be expressed by [27]

Iβ (t ) = 2e

h̄

∫
dt1Re

[
Gr

d,d (t, t1)�<
β (t1, t )

+G<
d,d (t, t1)�a

β (t1, t )
]

11−22, (20)

where factor 2 accounts for contributions from both spins,
whereas the diagonal elements {11} and {22} correspond to
the particle and hole terms, respectively. In the Floquet’s space
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FIG. 5. Expectation value of the proximity induced order param-
eter 〈d↓d↑〉 versus the amplitude A obtained for εd = 0, �N/ω = 0.1
and several values of �SC, as indicated.
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FIG. 6. Time-dependent current IN(t ) obtained for V = 1ω, as-
suming εd = 0 and the couplings �SC = 1ω, �N = 0.1ω.

we can recast Eq. (20) to the form

Iβ (t ) = 2e

h̄

∫ ω/2

−ω/2
dε

∑
n,m,p

Re
{
e−i(n−p)ωt

[(
Gr

d,d (ε)
)

nm

×(�<
β (ε))mp + (G<

d,d (ε))nm(�a
β (ε))mp

]
11−22

}
.

(21)

We have computed numerically the time-dependent cur-
rent (21) for several amplitudes A marked by the dashed lines
in Fig. 2. The current IN obtained for the bias voltage V =
1ω/e (where e denotes elementary charge) within a single
period T is displayed in Fig. 6. For an opposite bias the
symmetry relation IN(−V, t ) = −IN(V, t + T

2 ) can be used. In
general, we hardly find any relevance of such time-dependent
charge currents to effective quasiparticle spectrum of the
driven quantum dot.

In order to get some correspondence with the effective
QD spectrum let us analyze the transport properties averaged
over the single period T . The averaged charge current can be
obtained from (21):

〈Iβ〉 = 2e

h̄

∫ ω/2

−ω/2
dε

∑
n,m

Re
{[(

Gr
d,d (ε)

)
nm(�<

β (ε))mn

+ (G<
d,d (ε))nm

(
�a

β (ε)
)

mn

]
11−22

}
. (22)

We can express the lesser Green’s function (G<
d,d (ε))nm by

convolutions of the retarded and advanced Green’s functions,
which in the mixed Nambu/Floquet notations take the follow-
ing structure [27]:

[(G<
d,d (ε))nm]μν

=
∑

kl

{[(
Gr

d,d (ε)
)

nk

]
μ1[(�<(ε))kl ]11

[(
Ga

d,d (ε)
)

lm

]
1ν

+ [(
Gr

d,d (ε)
)

nk

]
μ1[(�<(ε))kl ]12

[(
Ga

d,d (ε)
)

lm

]
2ν

+ [(
Gr

d,d (ε)
)

nk

]
μ2[(�<(ε))kl ]21

[(
Ga

d,d (ε)
)

lm

]
1ν

+ [(
Gr

d,d (ε)
)

nk

]
μ2[(�<(ε))kl ]22

[(
Ga

d,d (ε)
)

lm

]
2ν

}
,

(23)

where μ, ν∈{1, 2}. The lesser self-energy matrix

�<(ε) = �<
N (ε) + �<

SC(ε) (24)

can be given by

(�<
β (ε))nm = [(

�a
β (ε)

)
nm − (

�r
β (ε)

)
nm

]
fβ (ε + nω), (25)

FIG. 7. The averaged current 〈IN〉 and differential conductance
〈GN〉 versus the applied bias voltage V determined from the Floquet’s
treatment for �SC = 1ω, �N = 0.1ω, and εd = 0.

where fβ (x) = 1/[e(x−μβ )/kBT + 1] is the Fermi-Dirac distri-
bution function for electrons in βth lead.

We have computed the averaged current given by Eq. (22)
for the same set of parameters as discussed in Figs. 2 and 4.
Under equilibrium conduction the net current 〈Iβ〉 vanishes,
because incoming and outgoing charge transfers cancel each
other. Figure 7 shows the averaged charge current (top panel)
and its differential conductance (bottom panel) as functions
of the applied voltage V for three amplitudes of the oscilla-
tions, as indicated. Enhancements of the differential conduc-
tance perfectly coincide with the energy dependent subgap
quasiparticles (presented in Fig. 8) with the correspondence
ε ↔ eV .

Differential conductance of the charge current averaged
over a period of the oscillations would thus experimentally
probe the effective quasiparticle spectrum, revealing the split-
tings of all harmonic levels.

D. Finite � effects

In realistic situations the energy gap � is finite, usually
on the order of a few or fractions of meV. Let us inspect
influence of such threshold on the effective quasiparticle
spectrum. For specific computations we use � = 0.5ω, when

FIG. 8. Profiles of the diagonal spectral function (18) obtained
for three amplitudes of oscillations, as indicated.
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FIG. 9. Effective quasiparticle states obtained for � = 0.5ω,
assuming εd = 0, �SC = 1ω, and �N = 0.1ω.

the higher-order harmonics |n| �= 0 are pushed outside the
superconducting energy gap window.

Figure 9 presents the quasiparticle spectrum with respect to
the varying amplitude A. In comparison to the limit � → ∞,
we notice that outside the superconducting gap the splitting of
each harmonics substantially diminishes. This is rather well
expected behavior, but in addition we also observe further
qualitative changes. When the amplitude A exceeds the su-
perconducting gap a partial leakage of the spectral weight
occurs towards the in-gap regime. It appears in the form of
continuous background, corresponding to incoherent subgap
states.

Figure 10 illustrates distribution of the spectral weight
between the multiple harmonics, revealing their splittings and
the presence of the incoherent in-gap states. Let us notice
that for sufficiently fast oscillations we practically obtain the
ordinary (zero-level) Andreev quasiparticle states, whereas
all the rest of the spectrum is far outside the energy gap,
arranged into the higher order modes εd ± nω. Vicinity of the
higher order harmonics is partly depleted from its continuous
states—this is exactly an opposite tendency to the leakage of
incoherent background displayed in Fig. 9. This finite value of
the superconducting energy gap is here manifested in a unique
manner, without analogy to the static situations.

FIG. 10. Quasiparticle spectrum of the driven quantum dot ob-
tained for the finite superconducting energy gap � = 0.5�SC, assum-
ing εd = 0, �N = 0.1�SC, and A = 2.2�SC.

V. SUMMARY AND OUTLOOK

We have studied an effective spectrum of the single level
quantum dot sandwiched between the superconducting and
metallic electrodes and periodically driven by an external
potential. We have analyzed variations of its quasienergies
and spectral weights with respect to the frequency ω and
the amplitude A of oscillations. In contrast to the normal
case (characterized by equidistant quasienergies εd + nω) we
find that the proximity induced electron pairing leads to the
splitting of each harmonic level. Such splitting is mostly
pronounced in the zeroth harmonic state and gradually ceases
in the higher harmonics. Distribution of the spectral weight
between these harmonic quasienergies is controlled by the
amplitude to frequency ratio.

We have inspected the charge transport properties, es-
tablishing that the effective quasiparticle spectrum would
be accessible via measurements of the Andreev current av-
eraged over a period of driven oscillations. Its differential
conductance can detect both the multiharmonic quasiparticle
energies, their internal splittings, and probe distribution of the
spectral weights in each harmonic.

Furthermore, our study has revealed quite unusual sig-
natures of the superconducting gap threshold �. For a suf-
ficiently large amplitude of the oscillations (exceeding the
energy gap �) there appear incoherent states in the sub-
gap regime, corresponding to short-time living quasiparticles.
They emerge predominantly near such values of the amplitude
to frequency ratio, where the spectral weight of the zeroth
harmonic vanishes. This behavior goes hand in hand with
suppression of the on-dot pairing, therefore it should be
empirically well detectable in the Josephson-type tunneling
configurations. Verification of these predictions should be
feasible with the presently available spectroscopic techniques.

Among important unresolved issues one can point out
the correlation effects. Mutual interplay between the elec-
tron pairing and the Coulomb repulsion might induce a
changeover/transition of the ground state between the BCS-
like singlet to the spinful doublet configuration, promoting the
Kondo effect. Other interesting phenomena could be related to
the quasienergies showing up in more complex (for instance
three-terminal) junctions [42,43]. These issues, however, are
beyond the scope of the present study.
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APPENDIX A: FLOQUET APPROACH TO NORMAL QD

Let us consider time-dependent Hamiltonian H (t ) =
H (t + T ), where T = 2π/ω is a period of external driving po-
tential with the characteristic frequency ω = 2π/T . Solution
of the Schrödinger equation can be formally represented by
the Floquet’s state |�α (t )〉 = e−iεαt |�α (t )〉, where |�α (t )〉 has
the same periodicity T as a perturbation. The wave-function
|�α (t )〉 obeys the constraint [H (t ) − i∂t ]|�α (t )〉 = εα|�α (t )〉
with an eigenvalue εα [44,45]. In the specialist literature
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FIG. 11. Quasienergies of the normal quantum dot (coupled to
metallic lead by �N/ω = 0.1) appearing at εd ± lω and variation of
their spectral weights versus the amplitude A of oscillations.

[H (t ) − i∂t ] is dubbed quasioperator and εα quasienergy, re-
spectively. In analogy to the Bloch treatment of translationally
invariant spacial systems we can restrict to the interval εα ∈
[−ω/2, ω/2], in analogy to the first Brillouin zone. Perform-
ing the Fourier expansion of the eigenequation and we get

∞∑
m=−∞

(Hnm − nωδnm)|�α,m〉 = εα|�α,n〉, (A1)

where the Hamiltonian matrix elements are defined by Hnm =
1
T

∫ T
0 dtei(n−m)ωt H (t ) and the wave function is |�α,m〉 =

1
T

∫ T
0 dteinωt |�α (t )〉. In the extended Hilbert space with a

time-independent Hamiltonian this can be written as |�α〉〉 =∑∞
n=−∞ |�α,n〉 ⊗ |n〉. Off-diagonal elements of the Hamilto-

nian matrix Hnm correspond to transition amplitudes between
the nth and mth Floquet’s modes.

Figure 11 displays typical quasiparticle spectrum of the
normal quantum impurity (in the absence of any pairing)
driven by the periodic external potential of frequency ω and
amplitude A. With increasing amplitude the initial level (here
assumed to be εd = 0) is replicated at higher harmonics εd ±
lω. All these quasienergies are characterized by the spectral
weights governed by the Bessel functions Jl (A/ω). They
hence reveal a kind of oscillatory variation with respect to
A. With an increasing amplitude the spectral weight is shared
between more and more harmonic states.

APPENDIX B: MAGNUS EXPANSION

In the high frequency limit one can derive an effective
model using the Floquet-Magnus expansion [14,46]. For an
illustration of its physical consequences we consider here the
deep subgap regime of the QD proximitized to the supercon-
ducting lead Hprox

QD (t ) = HQD(t ) + HSC + HT,SC which can be
approximated by the Hamiltonian

Hprox
QD (t ) = H0 + V (t ), (B1)

where the constant (time-independent) part

H0 = εd

∑
σ

d†
σ dσ − (�d†

↑d†
↓ + H.c.) (B2)

accounts for the induced on-dot pairing � = �S/2 [39,41] and
the periodic perturbation is given by

V (t ) = A sin (ωt )
∑

σ

d†
σ dσ . (B3)

Within the Floquet’s approach the evolution operator over a
single driving period

U (t0+T, t0) = Tt e
−i

∫ t0+T
t0

Hprox
QD (t ) = e−iHeff[t0] (B4)

(where we set h̄ ≡ 1 and Tt is the chronological ordering
operator) can be recast in terms of the effective stroboscopic
Hamiltonian Heff[t0], which formally may depend on choice
of the initial time t0. Restricting to the lowest order expansion
terms one obtains [14,46]

Heff[t0] ≈ H0 +
∑
l �=0

1

l ω
(VlV−l + eilωt0 [H0,Vl ]),

where Vl stands for lth harmonic of the periodic driving
potential. This procedure applied to our Hamiltonian (B1)–
(B3) yields

Heff[t0] ≈ εd

∑
σ

d†
σ dσ − (�̃d†

↑d†
↓ + �̃∗d↓d↑), (B5)

with the effective pairing potential

�̃ = �

[
1 − 2A

ω
sin (ωt0)

]
. (B6)

We notice that periodic oscillations of the QD energy level
are thus equivalent in the high-frequency regime to rescaling
of the induced on-dot pairing potential � → �̃. The effective
quasiparticles of such bilinear Hamiltonian (B5) would hence
appear at the energies ±

√
ε2

d + |�̃|2 . As a matter of fact, we
clearly observe emergence of these two branches accumulat-
ing the entire spectral weight in the high frequency limit (see
Fig. 3, where we have chosen the Floquet gauge t0 = 0).
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