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Artificial heterostructures consisting of the superconducting electrode(s) and the
free electron reservoir(s) interconnected through various nanoscopic objects, like:
quantum dots, nanowires or molecules enable a fully controllable confrontation
of the correlation effects with electron pairing. Discrete energy spectrum of the
nanoscopic objects (due to the quantum size effect) strongly depends on the many-
body effects. Via the proximity effect, these nanoscopic objects are converted
into the superconducting grains. Since the coupling to external electrodes can
be varied experimentally, this enables a fully controllable investigation of an
interplay between the electron correlations and superconductivity. In this work,
we explore the subgap (Shiba) states arising from the induced pairing and analyse
their influence on the Kondo-type correlations. This issue is currently widely
explored using various nanoscopic devices.

Keywords: proximity effect; Shiba states; electron correlations; Kondo effect

1. Introduction

Recent experiments using the self-assembled quantum dots [1], semiconducting nanowires
[2,3] and carbon nanotubes [4,5] embedded between one superconducting and another
conducting electrode have provided a clear evidence for the Shiba (or Andreev) states
formed in a subgap regime |E | ≤ � (where � denotes the energy gap of superconductor).
Such states originate solely from the on-dot pairing spread on the nanoscopic objects via the
proximity effect. They have been practically observed in the low-bias tunneling conductance
due to the anomalous Andreev scattering. Similar subgap states have also been reported for
the quantum objects hybridized with both superconducting electrodes [6–8], where they
effectively invert the sign of Josephson current, inducing 0 − π transition [9].

An important role of quantum impurities has been addressed earlier mainly by trying to
check how they affect the superconducting bulk materials [10]. It has been established that
non-magnetic impurities are rather inefficient for the isotropic superconductors [11] or have
a weak detrimental influence on the anisotropic superconductors [12].As far as the magnetic
impurities are concerned, they proved to be more destructive for the superconducting host
materials, because of the subgap Shiba states [13]. These in-gap states substantially reduce
the energy gap of the superconducting hosts and suppress their critical temperature.
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2 T. Domański et al.

The present day studies using the nanoscopic heterojunctions are able to investigate a
completely opposite influence, namely of the induced pairing on the electron correlations
due the Coulomb repulsion. At sufficiently low temperatures, one can explore even the
Kondo-type correlations, when the spin of quantum impurity is screened by spins of the
mobile electrons forming the many-body singlet state [14]. Since superconductivity and
antiferromagnetism represent the competing phenomena it is natural to suspect that the
induced on-dot pairing should have a detrimental influence on the Kondo effect. Such
competition can be explored in a tunable way because the hybridizations with external leads
can be varied by few orders of magnitude. Additionally, by applying an external magnetic
field B, one can change the superconductor gap �(B) [2]. Theoretical and experimental
aspects of such tunable studies of the quantum dots connected to the superconducting leads
are surveyed e.g. in the articles [3,15–17].

In this work, we comment on the origin of the subgap states both, in the uncorrelated and
in the correlated quantum dot attached between the metallic and superconducting electrodes.
Our analysis extends the previous study [18] of the quantum impurity coupled only to the
superconducting reservoir. In Sections 5 and 6, we also consider how the proximity induced
on-dot pairing affects the Kondo-type correlations.

2. Microscopic model

For description of a heterojunction in which the correlated quantum impurity is on one side
attached to the metallic (N ) and on other side to the superconducting (S) electrode we can
use the Anderson impurity Hamiltonian

Ĥ = ĤN + ĤS +
∑
σ

εd d̂†
σ d̂σ + Ud n̂d↑n̂d↓ +

∑
k,σ,β

(
Vkβ d̂†

σ ĉkσβ + V ∗
kβ ĉ†

kσβ d̂σ

)
. (1)

The external reservoirs of mobile electrons are assumed as the free fermion gas ĤN =∑
k,σ ξkN ĉ†

kσ N ĉkσ N and as the BCS-type superconductor ĤS = ∑
k,σ ξkSĉ†

kσ Sĉkσ S −∑
k �

(
ĉ†

k↑Sĉ†
−k↓S + ĉ−k↓Sĉk↑S

)
. The corresponding electron energies ξkβ =εkβ−μβ are

measured with respect to the chemical potentials μβ , which can be detuned by an external
voltage V (leading to μN =μS+eV ). As usually, the annihilation (creation) operators d̂(†)

σ

refer to the quantum impurity and ĉ(†)

kσβ to mobile electrons with spin σ =↑,↓. Energy level
of the quantum dot is denoted by εd . A combined effect of the repulsive Coulomb potential
Ud (between opposite spin electrons) and the hybridization Vkβ (between the localized and
mobile electrons) is responsible for the many-body effects.

In what follows, we focus on the low-energy regime, safely narrower than the supercon-
ductor energy gap �. Under such conditions, we can use the wide-band limit approximation
|Vkβ | � D (where −D/2 ≤ εkβ ≤ D/2). We also impose the constant couplings 	β =
2π
∑

k,β |Vkβ |2δ(ω − ξkβ).

3. Proximity effect

Since the off-diagonal order leaks onto the quantum impurity, we have to introduce the
single-particle Green’s function Gd(τ, τ ′)=〈〈
̂d(τ ); 
̂

†
d (τ ′)〉〉 in the Nambu spinor repre-

sentation 
̂
†
d = (d̂†

↑, d̂↓), 
̂d = (
̂
†
d )†. Under equilibrium conditions the Green’s function
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Philosophical Magazine 3

Gd(τ, τ ′) depends only on time difference τ−τ ′ and its Fourier transform can be expressed
as

[Gd(ω)]−1 =
(

ω−εd 0
0 ω+εd

)
− �0

d(ω) − �U
d (ω). (2)

The first component �0
d of the selfenergy describes the influence of the hybridization Vkβ in

the uncorrelated (Ud =0) quantum impurity. This part is known exactly. Roughly speaking,
it is responsible for: (a) a finite life-time of the quantum impurity states (broadening of the
energy levels) and (b) the induced on-dot pairing. As far as the second contribution �U

d
is concerned it describes the correlation effects due to the Coulomb repulsion Ud between
opposite-spin electrons.

The selfenergy �0
d(ω) can be expressed by the (exact) bubble diagram

�0
d(ω) =

∑
k,β

∣∣Vkβ

∣∣2 gβ(k, ω), (3)

where gβ(k, ω) denote the single-particle Green’s functions of the external leads. The free
fermion gas of the metallic (N ) electrode is characterized by a diagonal propagator

gN (k, ω) =
(

1
ω−ξkN

0

0 1
ω+ξkN

)
(4)

and the BCS superconductor by a full matrix structure

gS(k, ω) =
⎛
⎝ u2

k
ω−Ek

+ v2
k

ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

u2
k

ω+Ek
+ v2

k
ω−Ek

⎞
⎠ . (5)

with Ek =
√

ξ2
kS + �2 and u2

k, v2
k = 1

2

[
1 ± ξkS

Ek

]
, ukvk = �

2Ek
. Neglecting the band edge

effects (the wide-band limit approximation) one obtains the following explicit expression

�0
d(ω) = −	N

2

(
i 0
0 i

)
− 	S

2

(
1 �

ω
�
ω

1

)
×
⎧⎨
⎩

ω√
�2−ω2

for |ω| < �,

i |ω|√
ω2−�2

for |ω| > �.
(6)

To determine the second contribution �U
d (ω), one has to rely on approximations for the

correlation effects. Extensive studies of this issue have been done adopting various methods,
in particular, decoupling for the equations of motion of Green’s functions [19], slave
boson technique [20,21], the generalized non-crossing approximation [22], the iterative
perturbation method [23,24], dynamical mean field approximation [25], numerical renor-
malization group approach [26,27], modified equation of motion approach [28], functional
renormalization group [29], cotunneling approach [30], Quantum Monte Carlo simulations
[31] and other [32,33]. Some of the main correlation effects will be discussed in the
Section 6.

4. Shiba states of the uncorrelated quantum dot

We first consider spectroscopic signatures of the induced on-dot pairing which appear due
to 	S . Upon neglecting the correlation effects, the Green’s function (2) can be expressed
explicitly. In the subgap regime |ω| < �, we have
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4 T. Domański et al.

[Gd(ω)]−1 =
(

ω̃ + εd + i	N /2 	̃s/2
	̃s/2 ω̃ − εd + i	N /2

)
, (7)

where ω̃ = ω + 	S
2

ω√
�2−ω2

and 	̃s = 	S
�√

�2−ω2
. In such subgap regime, the single-

particle spectral function ρd(ω) ≡ − 1
π

Im
{

Gd,11(ω)
}

has the BCS structure

ρd(ω) = 1

2π

[
1+ εd

Ẽd

]
	N /2

(ω̃ − Ẽd)2 + (	N /2)2
+ 1

2π

[
1− εd

Ẽd

]
	N /2

(ω̃ + Ẽd)2 + (	N /2)2

(8)

with ω-dependent Ẽd =
√

ε2
d +

(
	̃s/2

)2
. Figure 1 shows the spectrum ρd(ω) of the

uncorrelated quantum impurity obtained for the energy level εd = −	S/2 in limit of weak
coupling 	N = 0.0005	S . Depending on the ratio �/	S we can notice the appearance
of the in-gap states whose position gradually evolves from the gap edge singularities

(when � � 	S) to ±
√

ε2
d + 	2

S/4 (when � � 	S). These in-gap features are known
in the literature as the Shiba [13] or Andreev states. Let us remark that these Shiba states
appear simultaneously at negative and positive energies, because of the particle-hole mixing
characteristic for the electron pairing.

For an infinitesimally small coupling 	N , the in-gap states have a resonant character
(see Figure 2). In other words, the in-gap Shiba states represent the infinite life-time
quasiparticles for 	N → 0+. In the subgap regime, the spectral function (8) has two
quasiparticle peaks at energies ω = E±, which formally represent the poles of the single-
particle Green’s function Gd(ω). For the uncorrelated quantum impurity, they simplify the
solution of the following equation [34]

E± + 	S

2

E±√
�2 − E2±

= ±
√

ε2
d +

(
	S

2

)2
�2

�2 − E2±
. (9)

 0.2
 0.4
 0.6
 0.8

 1

ω / ΓS

Δ / ΓS

ρd(ω)

εd
Shiba states

-2
-1

 0
 1

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 1. (colour online) Spectrum ρd (ω) of the uncorrelated quantum dot obtained for εd/	S =
−0.5 assuming a weak coupling to the metallic lead 	N = 0.0005	S . The subgap (Shiba or Andreev)
features gradually emerge from the gap edge singularities ±� (dashed lines) and evolve into well
developed in-gap quasiparticles for � � 	S .
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 0

 0.1

 0.2

 0.3

 0.4

-2 -1 0  1  2

ρd (ω)

ω / ΓS
+Δ-Δ

ΓN/ΓS=0.1
0.01

0.001

Figure 2. (colour online) Energy spectrum ρd (ω) of the uncorrelated quantum dot obtained for
εd/	S = −0.5, �/	S = 0.5 and several couplings to the metallic lead 	N /	S = 0.001, 0.01 and
0.1 (as indicated).

-0.5

 0

 0.5

 0  1  2  3  4 Δ / ΓS

ω / ΓS

E+

E-

+ Δ

- Δ

[ εd
2+(ΓS/2)2 ]1/2

- [ εd
2+(ΓS/2)2 ]1/2

Figure 3. (colour online) Energies E± of the Shiba quasiparticles of the uncorrelated quantum
impurity (U = 0) obtained for εd = −0.5	S assuming the infinitesimally small coupling 	N .

Notice, that for � � 	S they asymptotically tend to E± = ±
√

ε2
d + (	S/2)2.

In Figure 3, we plot the energies E± as a function of the ratio �/	S for εd = −0.5	S . In the
limit � � 	S these resonant in-gap states are located nearby the gap edge singularities ±�

[18]. For larger values of the ratio �/	S , they move away from the gap edge singularities

and asymptotically approach the values ±
√

εd + (	S/2)2 in the limit � � 	S . In the next
Sections 5 and 6, we shall consider the correlation effects for such ’superconducting atomic
limit’ � � 	S .

5. Spin-exchange interactions

In the limit of strong coupling to superconducting electrode, the selfenergy �0(ω) simplifies
to a static value and the superconducting electrode is then responsible for the induced on-dot
pairing gap �d = 	S/2. We shall now address the correlation effects using the following
auxiliary Hamiltonian
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6 T. Domański et al.

Ĥ =
∑
σ

εd d̂†
σ d̂σ + Ud n̂d↑n̂d↓ − �d

(
d̂†
↑d̂†

↓ + d̂↓d̂↑
)

+ ĤN +
∑
k,σ

(
VkN d̂†

σ ĉkσ N + h.c.
)

. (10)

In particular, we would like to determine interplay between the induced on-dot pairing gap
�d and the many body Kondo-type correlations, which arise from a combined effect of the
hybridization VkN and the Coulomb repulsion Ud .

For the case �d = 0, the effective spin-exchange interaction (between impurity and
itinerant electrons) has been inferred from the famous Schrieffer–Wolf transformation [35].
Treating the hybridization term

∑
kσ

(
Vk,N ĉ†

kσ N d̂σ + V ∗
k,N d̂†

σ ĉkσ N

)
as a small perturba-

tion the authors constructed the unitary transformation eŜ Ĥe−Ŝ . Using the antihermitean
operator

Ŝ =
∑
k,σ

Vk,N

(
ĉ†

kσ N d̂σ

ξkN − εd
+ U ĉ†

kσ N d̂σ n̂d,−σ

(εd − ξkN ) (εd + Ud − ξkN )

)
− h.c. (11)

they have derived the Kondo-type Hamiltonian with the induced exchange interaction
Ĥexch = −∑k,p Jkpŝd · Ŝkp between the impurity spin ŝd and the spins Ŝkp of itinerant
electrons. Near the Fermi surface the exchange coupling turned out to be antiferromagnetic
(negative) and its magnitude has been estimated as JkF pF = −4|VkF N |2/Ud . This anti-
ferromagnetic interaction is at low temperatures responsible for a narrow Abrikosov-Suhl
resonance appearing in the quantum dot spectrum at ω ∼ μN .

The Schrieffer–Wolf transformation has been later re-examined in a more systematic
way by Kehrein and Mielke [36] going beyond the perturbative scheme. Their study was
based on the continuous unitary transformation Û(l)Ĥ Û†(l) eliminating the hybridization
term via a sequence of the infinitesimal transformations, upon varying the flow parameter l.
In the present study, we generalize their treatment to the model Hamiltonian (10) with the
induced on-dot pairing �d .

We design the continuous unitary transformation U(l) following the original framework

introduced by Wegner [37], who proved that the generating generator η̂(l) ≡ ∂Û(l)
∂l Û−1(l)

chosen in the form η̂(l) =
[

Ĥ0(l), V̂ (l)
]

enforces V̂ (l) to vanish in the limit l → ∞.

Applying this method to the Hamiltonian (10), we find the antihermitean operator η̂(l) =
η̂0(l) − η̂

†
0(l), where

η̂0(l) =
∑
kσ

(
ηk(l) + η

(2)
k (l)n̂d,−σ

)
ĉ†

kσ N d̂σ +
∑
kpσ

ηkp(l)ĉ†
kσ N ĉpσ N

+
∑

k

η
(1)
k (l)

(
ĉ†

k↑N d̂†
↓ − ĉ†

k↓N d̂†
↑
)

(12)

with the l-dependent amplitudes ηk(l) = (ξk(l) − εd(l))Vk(l), ηkp(l) = Vk(l)Vp(l),
η

(1)
k (l) = �d(l)Vk(l) and η

(2)
k (l) = −Ud(l)Vk(l). The continuous unitary transformation

Û(l)Ĥ Û†(l) affects all parameters of the Hamiltonian (10) changing them into l-dependent
quantities εd(l), ud(l), �d(l) and VkN (l). They are renormalized through the flow equation
of the l-dependent Hamiltonian [37]
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Philosophical Magazine 7

∂ Ĥ(l)

∂l
= [η̂(l), Ĥ(l)]. (13)

During such l-dependent evolution, there appear also additional terms, e.g. the spin–spin
interaction −∑k,p Jkp(l)ŝd · Ŝkp with the boundary condition Jkp(l = 0) = 0. Neglecting
other less relevant processes (like the pair hopping, density-density interaction and pairing
between the quantum dot and metallic lead), we obtain the following set of coupled flow
equations

∂εd(l)

∂l
= −2

∑
k

ηk(l)VkN (l), (14)

∂Ud(l)

∂l
= −4

∑
k

η
(2)
k (l)VkN (l), (15)

∂�d(l)

∂l
= 2

∑
k

η
(1)
k (l)VkN (l), (16)

∂Vk(l)

∂l
= ηk(l)

[
εd(l) − ξkN + Ud(l)〈n̂d,σ 〉]+

∑
p

ηkp(l)VpN (l) (17)

−η
(1)
k (l)�d(l) + η

(2)
k (l) [εd(l) − ξkN + Ud(l)] 〈n̂d,σ 〉

∂ Jkp(l)

∂l
= η

(2)
k (l)VpN (l) + η(2)

p (l)VkN (l) − (ξkN − ξpN )2 Jkp(l). (18)

In the present study, we explore these equations, focusing on the half-filled quantum dot
ndσ = 0.5, εd = −Ud/2 (a more complete analysis shall be discussed elsewhere).

To derive the lowest order estimations, we can solve the flow Equations (14)–(18)
assuming the weak hybridization VkN . Since the unitary transformation is then expected to
affect mainly the coupling strength VkN (l) we can omit l-dependence of all other parameters
in the Equation (17). Such (approximate) treatment implies an exponential scaling

VkN (l) = VkN exp [− fkl] , (19)

where fk = (εd − ξkN )2 + �2
d − ξkN Ud . We thus see that the hybridization coupling (19)

vanishes in the asymptotic limit l → ∞.
Substituting (19) on the right hand side of the flow Equations (14)–(16) and (18) we

can in turn estimate the other l-dependent quantities. In particular, the exchange coupling
is renormalized according to

Jkp(l) = −2U VkN VpN

fk+ fp−(ξkN −ξpN
)2
[
1 − e−( fk+ fp)l

]
. (20)

It approaches asymptotically the following effective value

Jkp(∞) = −2U VkN VpN

(εd −ξkN )2 + (
εd −ξpN

)2 + �2
d −(ξkN +ξpN

)
Ud −(ξkN −ξpN

)2
and (for εd = −Ud/2) near the Fermi surface has an antiferromagnetic character

JkF pF (l → ∞) = −4Ud |VkF N |2
U 2

d + (2�d)2
. (21)
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-0.015

-0.01

-0.005

 0

 0  0.02  0.04  0.06  0.08  0.1

J k
F 

p F
  /

 D
spin exchange coupling

Δd / D
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

T
K

  /
  T

K
(Δ

d=
0)

Kondo temperature

Δd / D

Figure 4. (colour online) Variation of the effective antiferromagnetic exchange coupling JkF pF (left
h.s. panel) and the Kondo temperature (right h.s. panel) with respect to the induced on-dot energy gap
�d . The results are obtained for the symmetric quantum impurity model (εd = −U/2) assuming the
weak coupling Vk/D = 0.02 and the Coulomb potential U/D = 0.1.

Comparing (21) to the Schrieffer–Wolf formula JkF pF = −4|VkF N |2/Ud [35] we notice
that the induced on-dot gap �d substantially weakens the antiferromagnetic coupling. From
a physical point of view, this detrimental influence originates from the competition between
magnetism and superconductivity. We illustrate this influence in Figure 4. Since �d is
controlled by the hybridization 	S (which can be varied experimentally) such interplay
between the pairing and the spin correlations can be explored in a tunable way. To estimate
the Kondo temperature TK , we make use of the Bethe-ansatz relationship [38]

TK = 2D

πkB
exp

{−φ
[
2ρ(εF)JkF pF (∞)

]}
, (22)

where kB is the Boltzmann’s constant, ρ(εF ) denotes the density of states at the Fermi level
and φ(y) � |y|−1 − 0.5 ln |y|. The right-hand side panel in Figure 4 shows the Kondo
temperature obtained from (22) as a function of the induced pairing gap �d . This result
(21) qualitatively agrees with the recent experimental data [2].

6. Spectroscopic signatures of the subgap Kondo effect

To support the results obtained in the previous section concerning detrimental influence
of the proximity induced pairing on the Kondo-type correlations, we analyse here the
subgap spectrum using another (complementary) method. In order to determine the matrix
selfenergy

�0
d(ω) + �U

d (ω) ≡
(

�11(ω) �12(ω)

[�12(−ω)]∗ − [�11(−ω)]∗
)

(23)

we adopt some approximations for treating the Coulomb repulsion Udn̂d↑n̂d↓. In what
follows, we analyse their influence by a decoupling scheme imposed onto the lowest order
Green’s functions.

As a first step, we express the diagonal part of Gd by the BCS-type formula [39]

[G11(ω)]−1 = ω − εd − �11(ω) − �2
d

ω + εd + [�11(−ω)]∗
, (24)
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Figure 5. (colour online) Low-energy spectrum of the correlated quantum dot obtained for εd/D =
−0.075, Vk/D = 0.1 in the strong interaction limit Ud � 	S and assuming � � 	S . We can notice
that the Kondo peak (at ω = 0) is suppressed upon increasing the induced on-dot pairing �d and

simultaneously the subgap states E± = ±
√

ε2
d + �2

d are pushed away.

where �11(ω) is taken from the popular Meir and Wingreen estimation [40]

�11(ω) � Ud
[
nd,σ̄ −�1(ω)

]+ Ud
[
nd,σ −�1(ω)

] [
�3(ω) + Ud(1−nd,σ )

]
ω − εd − �0(ω) − [

�3(ω) + Ud(1 − nd,σ̄ )
] . (25)

In expression (25), we recognize the usual non-interacting contribution �0(ω) = −i	N /2
and two additional terms

�ν(ω) =
∑

k

|VkN |2
[

1

ω−ξkN
+ 1

ω−Ud − 2εd +ξkN

]
×
{

f (ξkN ) for ν = 1
1 for ν = 3

(26)

which are responsible for the Coulomb blockade (ν =3) and the Kondo effect (ν =1). The
off-diagonal Green’s function G12(ω) indirectly depends on G11(ω) via the (exact) relation

(ω − εd) G11(ω) = 1 + Ud〈〈d̂↑n̂d↓; d̂†
↑〉〉(ω) − �d G12(ω). (27)

Since the proximity induced pairing �d should have a rather marginal influence on the
two-particle propagator 〈〈d̂↑n̂d↓; d̂†

↑〉〉(ω) we follow [40] using the approximation

〈〈d̂↑n̂d↓; d̂†
↑〉〉(ω) � nd↓ − �1(ω) G11(ω)

ω − εd − �0(ω) − Ud − �3(ω)
. (28)

In this way, we complete the first guess for the matrix Green’s function Gd(ω). Next, we
update iteratively the initial Ansatz (24) using the following identity

[G11(ω)]−1 = ω − εd − �11(ω) − �12(ω) [�12(−ω)]∗

ω + εd + [�11(−ω)]∗
. (29)

Within this scheme, we have numerically calculated the Green’s function Gd(ω) for
the energy band D discretized into 103 equidistant points. We obtained a fairly satisfactory
convergence already after 10 iterations. Figure 5 shows an evolution of the spectral function
ρd(ω) for varying �d . For clarity, we focus on the low-energy regime, where both the pairing
and Kondo effects are strongly manifested. In the high-energy regime, we could additionally
observe the Coulomb satellite peak near ω ∼ εd +Ud and a continuous background outside
the superconductor gap |ω| ≥ �.
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10 T. Domański et al.

For �d = 0, the diverging real part of �1(ω) induces the narrow Kondo peak at μN

[40] (we use here μN as the reference level for energies). The increasing �d leads to the
following qualitative changes: (i) splitting of the initial Lorentzian at εd into the lower E−
and upper E+ quasiparticle peaks, and (ii) gradual suppression of the Kondo resonance.
The particle-hole splitting originates solely from the induced on-dot pairing (as has been
discussed in Section 4), whereas the zero-energy resonance is due to the spin singlet driven
by the exchange interactions.We thus interpret the behaviour shown in Figure 5 as a signature
of a destructive influence of the on-dot pairing on the Kondo-type correlations in analogy
to what has been predicted for the Josephson junctions [41]. In the present context (for the
metal-quantum-dot–superconductor junctions), the experimental measurements do indeed
indicate such tendency [1,2].

7. Conclusions

We have studied the spectroscopic signatures of the proximity induced electron pairing in
the metal-quantum-dot–superconductor heterojunction. Excitation spectrum of the quantum
dot is characterized by the particle and hole peaks (so called, the Andreev or Shiba states)
formed in a subgap region |ω| < �. Their broadening (i.e. inverse life-time) is controlled
by a hybridization 	N to the metallic electrode, whereas the induced pairing gap �d

predominantly depends on a hybridization 	S with the superconducting electrode.
We have addressed an interplay between such induced on-dot paring and the electron

correlations due to strong Coulomb repulsion. Using two complementary methods of: (a)
the continuous unitary transformation and (b) the self-consistent iterative scheme for the
decoupled Green’s functions we have analysed the influence of the induced on-dot pairing
on the Kondo-type correlations. Both methods clearly show that the on-dot pairing has
a detrimental influence on the Kondo effect. As a consequence of their competition, the
quantum dot spectrum does either reveal the narrow Kondo resonance (when 	N < 	S) or
the separated particle and hole Shiba peaks (when 	S � 	N ). In a coexistence region 	N ∼
	S , the Kondo resonance does eventually show up in the subgap (Andreev) conductance as
has been evidenced experimentally [1,2,42].

Nanoscopic heterostructures comprising the correlated quantum dots coupled to the
external metallic, superconducting and/or ferromagnetic electron reservoirs can be thus a
valuable testing ground for exploring the many-body effects in a tunable way. In particular,
one can investigate relationship between the induced electron pairing and the Coulomb
repulsion accessing even the Kondo regime [17,27,43–45]. Such possibility is much more
difficult to realize in the solid-state physics [10].
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