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Transient effects in a double quantum dot sandwiched laterally between superconducting
and metallic leads
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We study the transient phenomena appearing in a subgap region of the double quantum dot coupled in series
between the superconducting and normal metallic leads, focusing on the development of the superconducting
proximity effect. For the uncorrelated nanostructure we derive explicit expressions of the time-dependent
occupancies in both quantum dots, charge currents, and electron pairing induced on individual dots and between
them. We show that the initial configurations substantially affect the dynamical processes, in which the in-gap
bound states emerge upon coupling the double quantum dot to the superconducting reservoir. In particular, the
superconducting proximity effect would be temporarily blocked whenever the quantum dots are initially singly
occupied. Such triplet/Andreev blockade has been recently reported experimentally for double quantum dots
embedded in the Josephson [Bouman et al., Phys. Rev. B 102, 220505 (2020)] and Andreev [Zhang et al.,
arXiv:2102.03283 (2021)] junctions. We also address the role of correlation effects within the lowest-order
decoupling scheme and by the time-dependent numerical renormalization group calculations. Competition of the
repulsive Coulomb interactions with the superconducting proximity effect leads to renormalization of the in-gap
quasiparticles, speeding up the quantum oscillations and narrowing a region of transient phenomena, whereas
the dynamical Andreev blockade is well pronounced in the weak interdot coupling limit. We propose feasible
methods for detecting the characteristic timescales that could be observable by the Andreev spectroscopy.
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I. INTRODUCTION

The transport of charge [1] and energy [2] through
heterostructures, where nanoscopic objects are attached to
superconductor(s), is nowadays of great interest not only from
the point of view of basic science but, most importantly, due
to promising future applications. For instance, the quantum
dots confined in a Y-shape junction between two conducting
and one superconducting electrode can be a source of spatially
entangled electrons from the dissociated Cooper pairs [3].
Another intensively studied field encompasses semiconduct-
ing nanowires and/or magnetic nanochains hybridized with
bulk superconductors, where the emerging topological phase
hosts Majorana quasiparticles, which are ideal candidates for
stable qubits and could enable quantum computations owing
to their non-Abelian character [4]. These and many similar
phenomena stem from the presence of bound states that are
induced at quantum dots/impurities [5], dimers [6], nanowires
[7,8], and magnetic nanoislands [9] proximitized to bulk
superconductors.

Since double quantum dot (DQD) configurations provide
a versatile platform for the implementation of quantum in-
formation processing [10,11], such systems have also been
considered in hybrid setups involving superconducting ele-
ments. Experimentally, their bound states have been probed
by the tunneling spectroscopy, using InAs [12–17], InSb
[18], Ge/Si [19] quantum dots or carbon nanotubes [20,21]
contacted with superconducting lead(s), as well as by the

scanning tunneling microscopy (STM) applied to the mag-
netic dimers deposited on superconducting substrates [6,22–
24]. The single V, Cr, Mn, Fe, and Co atoms deposited on alu-
minum have revealed that Cr and Mn atoms have contributions
from different orbitals to subgap quasiparticles, whereas the
other elements merely consist of one pair of the in-gap bound
states [25]. The properties of superconductor-proximitized
double quantum dots (dimers) have been studied theoreti-
cally by a number of groups [18,26–47]. So far, however,
hybrid DQD systems have been investigated mainly under
the stationary conditions [5,31], while their transient behavior
remains to a large extent unexplored.

In this paper we extend these studies by analyzing the
dynamical phenomena after an abrupt attachment of a DQD
to the normal (N) and superconducting (S) electrodes (Fig. 1).
We examine the development of the electron pairings on in-
dividual quantum dots as well as between them and analyze
a gradual buildup of the subgap bound states. Our analytical
expressions (obtained for uncorrelated setups) and numerical
results (in the presence of Coulomb interactions) show that
the initial configurations substantially affect the dynamical
superconducting proximity effect. In particular, we reveal that
the leakage of Cooper pairs onto both quantum dots would
be blocked whenever the dots are initially singly occupied by
the same spin electrons. This triplet/Andreev blockade has
been recently observed experimentally under the stationary
conditions, using DQD in the Josephson (S-DQD-S) [16]
and Andreev (N-DQD-S) junctions [17]. To get a deeper
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FIG. 1. Schematic view of the quantum dots (QD1,2) embedded
in series between the normal (N) and superconducting (S) leads with
the couplings �N and �S , respectively.

insight into the dynamical behavior in the considered N-
DQD-S setup, we analyze in detail various time-dependent
quantities taking into account several initial configurations. To
determine all relevant timescales and examine the role of ini-
tial conditions, we first derive the analytical results, neglecting
the two-body interactions. We then take into account the ef-
fects of the Coulomb repulsion using two different techniques.
To capture correlation effects, we make use of the mean-
field approximation to the Coulomb interaction; however, in
a further step we also employ the time-dependent numerical
renormalization group (tNRG) method [48–50], which allows
for obtaining very accurate predictions for the transient behav-
ior of an unbiased junction. We demonstrate that the relevant
timescales are revealed in the transient currents and could
show up in other quench protocols, e.g., upon varying the
quantum dot levels.

We believe that our study provides a valuable insight into
the dynamical superconducting proximity effect and the evo-
lution of in-gap quasiparticles toward their stationary state
values in the case of double quantum dots. Our findings could
be tested using the state of the art experimental techniques, in
particular, the subgap (Andreev) spectroscopy, and we hope
that this work will foster further efforts in studying dynamics
of hybrid quantum dot structures. Finally, we would like to
note that our analytical formalism can be extended to other
quantum quench protocols, for example, due to abrupt change
of the quantum dot energy levels or periodic driving. More-
over, it is also important to note that the presented analysis
focuses on relatively weak coupling to the normal contact
and as such it does not encompass the subgap Kondo physics
[28,39]. This transport regime is definitely interesting and
would require further analysis; however, it goes beyond the
scope of the present work.

The paper is organized as follows. In Sec. II we introduce
the microscopic model and describe the formalism for deter-
mination of time-dependent quantities. Section III presents
the dynamics of the uncorrelated N-DQD-S setup, whereas
Sec. IV is devoted to the studies of the role of the Coulomb
interaction. In Sec. V we summarize the main results and
give a brief outlook. The technical details concerning the
equations of motion of the uncorrelated setup are presented
in Appendix A. In Appendix B we provide the expressions for
the charge currents, and Appendix C presents the analytical
results for the uncorrelated DQD-S case.

II. FORMULATION OF THE PROBLEM

A. Microscopic model

The system under consideration (Fig. 1) consists of two
quantum dots (QD1,2) placed in linear configuration between
the superconducting (S) and normal (N) leads. The Hamilto-
nian of this setup can be expressed as

Ĥ = ĤN + ĤS + Ĥhybr +
∑
j=1,2

ĤQD j
, (1)

where ĤN = ∑
k εNkσ ĉ†

Nkσ ĉNkσ describes the normal lead
electrons and the bulk superconductor is treated in the BCS
scenario:

ĤS =
∑
qσ

εSqĉ†
Sqσ ĉSqσ −

∑
q

(
�ĉ†

Sq↑ĉ†
S−q↓ + H.c.

)
. (2)

As usual, ĉβk(q)σ denote the second quantization operators of
the normal (β = N) and superconducting (β = S) lead elec-
trons, respectively. They are characterized by momenta k(q),
energies εNk(Sq), and spin σ = ↑,↓. We assume the pairing
potential � of superconducting lead to be real and restrict our
considerations to the electronic states inside this pairing gap
window.

The external leads are interconnected via the quantum dots
ĤQD j

= ∑
σ ε jσ ĉ†

jσ ĉ jσ whose energies are denoted by ε jσ . In
our considerations we assume that the level spacing in the dots
is much larger than other energy scales, such that only a single
orbital level in each quantum dot is relevant for transport. The
constituents of the considered setup are hybridized through

Ĥhybr =
∑

σ

(
V12ĉ†

1σ ĉ2σ +
∑

q

VSqĉ†
Sqσ ĉ1σ

+
∑

k

VNkĉ†
Nkσ ĉ2σ + H.c.

)
, (3)

where V12 denotes the interdot coupling, whereas VSq(Nk) de-
scribes the coupling of QD1(2) to the external S (N) electrode.
For convenience, we introduce the auxiliary couplings �β =
2π

∑
k |Vβk|2δ(ω − εβk ), assuming them to be constant. Such

constraint is realistic in the subgap region, |ω| < �, that is of
our interest here.

For analytical determination of the time-dependent quan-
tities we shall treat the pairing gap � as the largest energy
scale in this problem. Formally, we thus focus on the super-
conducting atomic limit � → ∞. To simplify our notation we
set h̄ = e = kB = �S = 1 when energies, currents, and time
are expressed in units of �S , e�S/h̄, and h̄/�S , respectively. In
realistic situations �S ∼ 200 μeV; therefore the typical time
unit would be 3.3 psec and the current unit ∼48 nA.

B. Transient evolution

For t < 0 we assume all parts of the considered system
to be disconnected. The evolution of the charge occupan-
cies of quantum dots, n jσ (t ), the transient currents flowing
from the leads, jN (S)σ (t ), and the pairing correlation func-
tions, 〈ĉ j↓(t )ĉ j↑(t )〉 and 〈ĉ1↓(t )ĉ2↑(t )〉, driven by an abrupt
hybridization (3) at t = 0 will bring the information about
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the superconducting proximity effect, giving rise to the emer-
gence of subgap quasiparticles.

The expectation value 〈Ô〉 of any observable Ô can be
determined by solving the Heisenberg equation of motion
i d

dt Ô = [Ô, Ĥ ]. For this purpose it is convenient to apply the
Laplace transform

Ô(s) =
∫ ∞

0
dte−st Ô(t ) (4)

to incorporate the initial (t = 0) conditions [51,52]. For ex-
ample, the time-dependent occupancy of the jth QD would be
formally given by

n jσ (t ) = 〈L−1{ĉ†
jσ (s)}(t ) · L−1{ĉ jσ (s)}(t )〉, (5)

where L−1{ĉ†
jσ (s)}(t ) stands for the inverse Laplace transform

of ĉ†
jσ (s) and 〈· · · 〉 denotes the statistical averaging.

When neglecting the Coulomb interactions on both quan-
tum dots, one can derive the explicit expressions for ĉ(†)

jσ (s)
and analytically determine the time-dependent expectation
values of various observables (the influence of the correlation
effects will be examined in Sec. IV). Let us now discuss
the Laplace transforms of ĉ jσ (s), as they are crucial for
the physical quantities of interest. Appendix A presents the
Laplace-transformed Heisenberg equations (A1)–(A8) for ar-
bitrary value of the pairing gap �. In the superconducting

atomic limit (� → ∞) these equations simplify to

(s+iε1↑)ĉ1↑(s) = −i
�S

2
ĉ†

1↓(s) − iV12ĉ2↑(s)+â1, (6)

(s−iε1↓)ĉ†
1↓(s) = −i

�S

2
ĉ1↑(s) + iV12ĉ†

2↓(s)+â2, (7)(
s + iε2↑ + �N

2

)
ĉ2↑(s) = −iV12ĉ1↑(s) + â3, (8)(

s − iε2↓ + �N

2

)
ĉ†

2↓(s) = iV12ĉ†
1↓(s) + â4, (9)

with â j defined in (A13)–(A16). Here, we have used

∑
k

|VNk|2
s ± iεNk

= �N

2π

∫ D

−D

dω

s ± iω
= �N

π
arctan

(
D

|s|
)

,

which in the wide-bandwidth limit (D → ∞) implies∑
k V 2

Nk/(s ± iεNk ) ≈ �N/2. In a similar way one finds∑
q

|VSq|2 s ± iεSq

s2 + ε2
Sq + �2

≈ �S

2

s√
s2 + �2

,

∑
q

|VSq|2 �

s2 + ε2
Sq + �2

≈ �S

2

�√
s2 + �2

.

Thus, in the superconducting atomic limit we
have lim�→∞

∑
q |VSq|2(s ± iεSq)/(s2 + ε2

Sq + �2) ≈ 0 and
lim�→∞

∑
q |VSq|2�/(s2 + ε2

Sq + �2) ≈ �S/2, respectively.
For the specific case of ε jσ = 0, the Laplace transforms of

QD operators can be expressed as

ĉ1↑/↓(s) = ĉ1↑/↓(0)
u(s)(s + �N/2)

W (s)
− ĉ2↑/↓(0)

iV12u(s)

W (s)
∓ ĉ†

1↓/↑(0)
�S (s + �N/2)2

2W (s)
± ĉ†

2↓/↑(0)
�S (s + �N/2)V12

2W (s)

−
∑

k

[
ĉNk↑/↓(0)

VNk

s + iεNk

V12u(s)

W (s)
∓ ĉ†

Nk↓/↑(0)
VNk

s − iεNk

i�SV12(s + �N/2)

2W (s)

]

− i�S

2W (s)

∑
q

[
VSq�u(s)

s2 + ε2
Sq + �2

ĉS−q↑/↓(0) ± i
VSqu(s)(s + iεSq)

s2 + ε2
Sq + �2

ĉ†
Sq↓/↑(0)

]

+ u(s)(s + �N/2)

W (s)

[
∓

∑
q

VSq�

s2 + ε2
Sq + �2

ĉ†
S−q↓/↑(0) − i

∑
q

VSq(s − iεSq)

s2 + ε2
Sq + �2

ĉSq↑/↓(0)

]
, (10)

ĉ2↑/↓(s) = −ĉ1↑/↓(0)
iV12u(s)

W (s)
+ ĉ2↑/↓(0)

1 − V 2
12u(s)/W (s)

s + �N/2
∓ ĉ†

1↓/↑(0)
V12�S (s + �N/2)

2W (s)
∓ ĉ†

2↓/↑(0)
iV 2

12�S

2W (s)

+
∑

k

[
ĉNk↑/↓(0)

VNk

s + iεNk

V 2
12u(s)/W (s) − 1

s + �N/2
± ĉ†

Nk↓/↑(0)
VNk

s − iεNk

V 2
12�S

2W (s)

]

− V12�S (s + �N/2)

2W (s)

[∑
q

VSq�

s2 + ε2
Sq + �2

ĉS−q↑/↓(0) ± i
∑

q

VSq(s + iεSq)

s2 + ε2
Sq + �2

ĉ†
Sq↓/↑(0)

]

− iV12u(s)

W (s)

[
∓

∑
q

VSq�

s2 + ε2
Sq + �2

ĉ†
S−q↓/↑(0) − i

∑
q

VSq(s − iεSq)

s2 + ε2
Sq + �2

ĉSq↑/↓(0)

]
, (11)
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where

u(s) = s(s + �N/2) + V 2
12, (12)

W (s) = u2(s) +
(

�S

2

)2(
s + �N

2

)2

. (13)

In Eqs. (10) and (11) there appears the pairing gap �, originating from the auxiliary operators â j . We impose the superconducting
atomic limit values later on, when computing the statistically averaged observables [51].

The 4th-order polynomial (13) can be rewritten as W (s) = s4 + b3s3 + b2s2 + b1s + b0, with the real coefficients, b0 = V 4
12 +

�2
S�

2
N/16, b1 = �NV 2

12 + �N�2
S/4, b2 = 2V 2

12 + (�2
S + �2

N )/4, and b3 = �N . It can be recast into a product W (s) = (s − s1)(s −
s2)(s − s3)(s − s4), whose roots obey s2 = s∗

1 and s3 = s∗
4. Their knowledge enables us to obtain the inverse Laplace transforms

of ĉ jσ (s) operators, expressing the time-dependent charge occupancies njσ (t ), pairing correlation functions, 〈ĉ j−σ (t )ĉ jσ (t )〉,
〈ĉ1↓(t )ĉ2↑(t )〉, and transient currents induced between various sectors of the N-DQD-S setup.

III. DYNAMICS OF UNCORRELATED SETUP

In this section we analyze the time-dependent observables obtained analytically for N-DQD-S nanostructure by the equation
of motion procedure in the absence of the Coulomb repulsion. We begin by discussing the electron occupancies of each QD
derived by inserting the inverse Laplace transforms [Eqs. (10) and (11)] to Eq. (5). For t < 0, all parts of the setup are
disconnected; therefore the occupancy n jσ (t > 0) consists of the contributions from the initial expectation values of njσ (0),
〈ĉ†

Nkσ (0)ĉNkσ (0)〉, 〈ĉ†
Sqσ (0)ĉSqσ (0)〉, and 〈ĉ(†)

Sqσ (0)ĉ(†)
S−qσ̄ (0)〉, where σ̄ is opposite spin to σ . In the superconducting atomic limit,

for t > 0, we obtain

n1↑/↓(t ) = n1↑/↓(0)

(
L−1

{
u(s)(s + �N/2)

W (s)

}
(t )

)2

+ n2↑/↓(0)V 2
12

(
L−1

{
u(s)

W (s)

}
(t )

)2

+ [1 − n1↓/↑(0)]�2
S/4

(
L−1

{
(s + �N/2)2

W (s)

}
(t )

)2

+ [1 − n2↓/↑(0)]V 2
12�

2
S/4

(
L−1

{
s + �N/2

W (s)

}
(t )

)2

+V 2
12

�N

2π

∫ ∞

−∞
dε fN (ε)L−1

{
u(s)

(s + iε)W (s)

}
(t ) · L−1

{
u(s)

(s − iε)W (s)

}
(t )

+�N�2
SV 2

12/8π

∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
s + �N/2

(s + iε)W (s)

}
(t ) · L−1

{
s + �N/2

(s − iε)W (s)

}
(t ), (14)

n2↑/↓(t ) = n1↑/↓(0)V 2
12

(
L−1

{
u(s)

W (s)

}
(t )

)2

+ n2↑/↓(0)

(
L−1

{
1

s + �N/2
− u(s)V 2

12

W (s)(s + �N/2)

}
(t )

)2

+ [1 − n1↓/↑(0)]V 2
12�

2
S/4

(
L−1

{
s + �N/2

W (s)

}
(t )

)2

+ [1 − n2↓/↑(0)]V 4
12�

2
S/4

(
L−1

{
1

W (s)

}
(t )

)2

+ �N

2π

∫ ∞

−∞
dε fN (ε)L−1

{(
V 2

12u(s)

W (s)
− 1

)
1

(s − iε)(s + �N/2)

}
(t ) · L−1

{(
V 2

12u(s)

W (s)
− 1

)(
1

(s + iε)(s + �N/2)

)}
(t )

+�N�2
SV 4

12/8π

∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
1

(s + iε)W (s)

}
(t ) · L−1

{
1

(s − iε)W (s)

}
(t ), (15)

where fN (ε) = [1 + exp(ε/kBT )]−1. The time-dependent oc-
cupancies depend on the initial DQD configurations nj (0)
[through the first four terms appearing in Eqs. (14) and
(15)] and on the couplings to external leads (via the last
two terms). Let us notice that for the initial triplet con-
figuration [n j↑(0) = 0, n j↓(0) = 1] the evolution of n jσ (t )
would be solely controlled by the coupling �N to the metallic
lead.

As an example, in Fig. 2 we show the time-dependent
occupancy of the second dot n2↑(t ) obtained for a strong
interdot coupling V12 = 4�S in the unbiased heterostructure
(μN = 0 = μS), assuming that initially only a spin-↑ electron
occupies the first QD, (QD1, QD2) = (↑, 0). For comparison,

in the bottom panel we display the results in the absence of
the metallic lead. We also present the contributions described
by the first four terms of the general formula Eq. (15), which
are dependent on the initial occupancies. We can notice the
oscillating character of n2↑(t ) with a damping imposed by �N .
The stationary limit value n2↑(t → ∞) = 0.5 is approached
through a sequence of quantum oscillations whose ampli-
tude is exponentially suppressed with an envelope function
exp(−�Nt/2). Such behavior is a consequence of the superpo-
sition of damped transient oscillations and another part which
is independent of the initial occupancies [expressed by the last
two terms in Eq. (15)] arising from the direct coupling of QD2
to the normal lead. In the case of an unbiased junction, the

165430-4



TRANSIENT EFFECTS IN A DOUBLE QUANTUM DOT … PHYSICAL REVIEW B 103, 165430 (2021)

0.00

0.25

0.50

0.75

1.00
A B C

0 20 40 60 80 100
t

0.00

0.25

0.50

0.75

1.00

D

FIG. 2. Comparison of n2↑(t ) obtained for �N = 0.1�S (curve B)
with the case �N = 0 (curve D). The curve C shows the contribution
to n2↑(t ) due to the coupling �N and the curve A refers to the
contribution strictly dependent on the initial occupancies. Calcula-
tions have been done for V12 = 4�S , assuming the initial conditions
(QD1, QD2) = (↑, 0), �S = 1.0, �N = 0.1, ε jσ = 0.

latter part simplifies to 1
2 [1 − exp(�Nt/2)], as displayed by

the C curve in Fig. 2.
We now consider the subgap (Andreev) current jNσ (t ),

flowing from the normal lead to QD2:

jNσ (t ) = 2Im
∑

k

VNk〈ĉ†
2σ (t )ĉNkσ (t )〉. (16)

In the wide-bandwidth limit it can be expressed as [51]

jNσ (t ) = 2Im
∑

k

VNke−iεNkt 〈ĉ†
2σ (t )ĉNkσ (0)〉 − �N n2σ (t ).

(17)
Using the Hermitian conjugate of the operator ĉ2σ (t ) pre-
sented in Eq. (11), we explicitly obtain

jNσ (t ) = −�N n2σ (t ) + �N

π
Re

{∫ ∞

−∞
dε fN (ε)e−iεt

×
[
L−1

{
1

(s − iε)(s + gn)

}
(t )

− L−1

{
u(s)V 2

12

(s − iε)(s + gn)W (s)

}
(t )

]}
, (18)

where the time-dependent occupation n2σ (t ) is given by
Eq. (15).

Figure 3 displays the Andreev current jN↑(t ) computed
for representative initial configurations, namely, A = (0, 0),
B = (0,↑), C = (↑↓, 0), and D = (↑,↓). The quantum
oscillations appearing in jN↑(t ) are identical with the time-
dependent variation of the occupancies nj↑(t ) of the simpler
DQD-S case (see Fig. 8 in Appendix C) and the supercurrent

FIG. 3. The time-dependent current jN↑(t ) obtained for sev-
eral initial configurations A = (0, 0), B = (0, ↑), C = (↑↓, 0), and
D = (↑,↓). The thick solid line shows the envelope function
�N
2 exp (−�Nt/2), which refers to the damped currents obtained for

all initial configurations. The bottom curve shows the current ob-
tained for a finite interval of the switching time (see the text) of
couplings between various constituents of the system, which can
be compared with the curve B. Numerical results are obtained for
V12 = 4�S , �N = 0.1�S , and ε jσ = 0.

jSσ (t ) (Fig. 10). Here the main difference refers to the relax-
ation processes, which impose a damping on such quantum
oscillations. This effect can be described by the envelope
function �N

2 exp(−�Nt/2) (see Fig. 3). Apart from this damp-
ing, all other features appearing in njσ (t ) and jSσ (t ) (e.g.,
oscillations with the periods of π/V12 and 4π/�S) are present
in the time-dependent Andreev current jNσ (t ), too.

Let us now comment on the large value of the transient cur-
rent jNσ (0+) right after forming the N-DQD-S setup (Fig. 3).
Such rapid increase of the current from zero to �N

2 is un-
physical and in realistic experimental situations would not
occur [53]. We have checked numerically that this artifact is
absent for the smooth in time coupling protocol, VNk/Sq(t ) =
VNk/Sq

2 {sin [π ( t
t∗ − 1

2 )] + 1} for 0 < t � t∗, and next imposing
the constant value VNk/Sq(t > t∗) = VNk/Sq. The bottom (E)
panel of Fig. 3 presents the transient current obtained for
t∗ = 5. Indeed, the absolute value of | jN↑(t )| continuously
increases from zero. Its variation in time in the region of
t � t∗ is roughly the same as for the abrupt switching of
coupling. A similar tendency holds for other quantities as
well.

Using the expression (18) for jNσ (t ) we define its time-
dependent differential conductance Gσ (μ, t ) = d

dμ
jNσ (t ) as a
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FIG. 4. The differential conductance G (in units of 2e2/h) as a function of time t and the bias voltage μ obtained for V12 = 1, 0.3, 0.2, and
0.1 [panels (a)–(d), respectively], assuming �S = 1, �N = 0.1, and ε jσ = 0.

function of the bias voltage μ ≡ μN − μS . At zero temperature it takes the following form (in units of 2e2/h):

Gσ (μ, t ) = �N Re

{
exp(−iμt )

[
L−1

{
1

(s − iμ)(s + gn)

}
(t ) − V 2

12L−1

{
u(s)

(s − iμ)(s + gn)W (s)

}
(t )

]

− �2
N

2

∣∣∣∣L−1

{
1

(s + iμ)(s + gn)

}
(t ) − V 2

12L−1

{
u(s)

(s + iμ)(s + gn)W (s)

}
(t )

∣∣∣∣
2

+ �2
N�2

SV 4
12

8

∣∣∣∣L−1

{
1

(s + iμ)W (s)

}∣∣∣∣
2}

.

(19)

Note that for the specific case of ε jσ = 0, the differential conductance is spin-independent, Gσ (μ, t ) = G(μ, t ).
The peaks appearing in the conductance G(μ, t ) as a function of μ can be identified as the quasiparticle excitation energies

between eigenstates comprising the even and odd numbers of electrons. For the uncorrelated DQD these bound states occur

at EA = ± 1
2 (

√
4V 2

12 + �2
S/4 ± �S

2 ). We have calculated numerically the conductance (19) and observed the emergence of such
bound states at EA upon approaching the steady limit t → ∞. In our N-DQD-S heterostructure they acquire a broadening (i.e.,
finite lifetime) due to scattering on a continuous spectrum of the normal lead. Electronic states from outside the pairing gap of
superconducting lead could additionally broaden these bound states, supporting the relaxation mechanism [54].

In Fig. 4 we plot the differential conductance vs time and bias voltage for several interdot couplings, V12, ranging from the
large [panel (a)] to small [panel (d)] values. For V12 � �S , we observe the emergence of two broad structures at early times
around the quasiparticle energies ±V12. In a short time period �t right after the quench (here �t ∼ 10), these features evolve
into distinct peaks, separated by ∼�S/2. By decreasing V12, we observe that the low-energy excitations are merged until a certain
time after quench, whereas the higher-energy excitations are well separated from each other. With further decrease of V12 the
energy difference between the low-energy excitations disappears. For very small V12 = 0.1�S [see Fig. 4(d)], the low-energy
excitations form a single broad peak at zero energy, coexisting with the side-attached excitations at energies ±�S/2 of low
intensity. This structure emerges at late times (∼60) after the quench.
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Finally, we examine the relationship between the excitation energies obtained from the differential conductance and the
time-dependent electron pairings induced on individual quantum dots, 〈ĉ j↓(t )ĉ j↑(t )〉, and between them, 〈ĉ1↓(t )ĉ2↑(t )〉. Using
the inverse Laplace transforms of the operators ĉ jσ (s) we get

〈ĉ1↓(t )ĉ1↑(t )〉 = i�S/2

[
[n1↑(0) + n1↓(0) − 1]L−1

{
(s + �N/2)2

W (s)

}
(t ) · L−1

{
u(s)(s + �N/2)

W (s)

}
(t )

+V 2
12[n2↑(0) + n2↓(0) − 1]L−1

{
s + �N/2

W (s)

}
(t ) · L−1

{
u(s)

W (s)

}
(t )

− �NV 2
12

2π

∫ ∞

−∞
dε[1 − 2 fN (ε)]L−1

{
u(s)

(s + iε)W (s)

}
(t ) · L−1

{
s + �N/2

(s − iε)W (s)

}
(t )

]
, (20)

〈ĉ2↓(t )ĉ2↑(t )〉 = iV 2
12

�S

2

[
[1 − n1↑(0) − n2↑(0)]L−1

{
u(s)

W (s)

}
(t ) · L−1

{
s + �N/2

W (s)

}
(t )

+
[

1 −
∑

σ

n2σ (0)

]
L−1

{
1

W (s)

}
(t ) · L−1

{
u(s)V 2

12

W (s)(s + �N/2)
− 1

s + �N/2

}
(t ) + �N

2π

∫ ∞

−∞
dε[1 − 2 fN (ε)]

·L−1

{
V 2

12u(s)

(s + iε)(s + �N/2)W (s)
− 1

(s + iε)(s + �N/2)

}
(t ) · L−1

{
1

(s − iε)W (s)

}
(t )

]
, (21)

〈ĉ1↓(t )ĉ2↑(t )〉 = V12
�S

2

[
n1↑(0)L−1

{
(s + �N/2)2

W (s)

}
(t ) · L−1

{
u(s)

W (s)

}
(t ) + n2↑(0)L−1

{
s + �N/2

W (s)

}
(t )

·L−1

{
V 2

12u(s)

(s + �N/2)W (s)
− 1

(s + �N/2)

}
(t ) − [1 − n1↓(0)]L−1

{
(s + �N/2)u(s)

W (s)

}
(t ) · L−1

{
s + �N/2

W (s)

}
(t )

−V 2
12[1 − n2↓(0)]L−1

{
u(s)

W (s)

}
(t ) · L−1

{
1

W (s)

}
(t ) − �NV 2

12

2π

∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
u(s)

(s + iε)W (s)

}
(t )

·L−1

{
1

(s − iε)W (s)

}
(t ) + �N

2π

∫ ∞

−∞
dε fN (ε)L−1

{
s + �N

(s − iε)W (s)

}
(t )

·L−1

{
V 2

12u(s)

(s + iε)(s + �N/2)W (s)
− 1

(s + iε)(s + �N/2)

}
(t )

]
, (22)

with the auxiliary function u(s) and W (s) defined in Eqs. (12)
and (13). For the DQD-S case, �N = 0 (Appendix C), the
nonvanishing values refer only to the imaginary (real) part
of the on-dot i = j (interdot i �= j) pairings. The additional
coupling of QD2 to the normal lead allows the system to
relax, evolving to its asymptotic (stationary) limit through
a series of damped quantum oscillations. In consequence,
the oscillating imaginary parts of 〈ĉ j↓(t )ĉ j↑(t )〉 and the real
part of 〈ĉ1↓(t )ĉ2↑(t )〉 are now bounded between the curves
±�S

2 exp(−�Nt/2) and ±�S
4 exp(−�Nt/2). In contrast to the

case of �N = 0, the real parts of both on-dot pairing functions
are finite and they smoothly evolve from zero to their steady
limit values. A similar tendency can be observed for the imag-
inary part of the interdot pairing function, whose asymptotic
value is rather residual.

Figure 5 shows the real part of 〈ĉ1↓(t )ĉ1↑(t )〉 with re-
spect to time and bias voltage (top panel), compared with the
asymptotics of the real parts of limt→∞〈ĉ1/2↓(t )ĉ1/2↑(t )〉, the
imaginary part of limt→∞〈ĉ1↓(t )ĉ2↑(t )〉 (middle panel), and
the differential conductance (bottom panel). We can notice a
coincidence between the positions of the excitation energies
appearing in the differential conductance (bottom panel) with
the characteristic features manifested in the pairing functions.
Namely, the real parts of the on-dot pairing functions (which
are strongly energy-dependent) have the inflexion points

exactly at quasiparticle energies of the in-gap bound states
(top and middle panels). On the other hand, the imaginary part
of the interdot pairing function exhibits a jump of its deriva-
tive ∂

∂μ
〈ĉ1↓(t )ĉ2↑(t )〉 from the positive (negative) to negative

(positive) values. It occurs exactly at bias voltages equal to the
bound state energies. Formally, these characteristic features
originate from common poles of the diagonal and off-diagonal
parts of the Green’s function in the particle-hole (Nambu)
representation.

IV. COULOMB REPULSION EFFECTS

In realistic systems the repulsive on-dot interactions
Ujn̂ j↑n̂ j↓ would compete with the proximity-induced electron
pairing, affecting the subgap bound states. Under station-
ary conditions this issue has been investigated by various
methods (see, e.g., Ref. [31] for a survey). In particular, the
considerations of the DQD horizontally embedded between
either normal and superconducting leads [28] or two super-
conductors [15] have indeed shown a remarkable influence
of the correlation effects. To our knowledge, however, the
transient dynamics of the correlated quantum dots in these
nanostructures has not been studied yet. In this section we
briefly address such problem.
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FIG. 5. (a) The real part of 〈ĉ1↓(t )ĉ1↑(t )〉 as function of the
bias voltage μ and time. (b) The asymptotic (t → ∞) values of
Re〈ĉ1↓(t )ĉ1↑(t )〉, Re〈ĉ2↓(t )ĉ2↑(t )〉, and Im〈ĉ1↓(t )ĉ2↑(t )〉. (c) The sta-
tionary limit value of the differential conductance as a function of μ.
Results are obtained for �N = 0.1, �S = 1, V12 = 1, ε jσ = 0.

The essential features due to the quench dynamics of a
correlated single quantum dot placed in the superconducting
nanojunctions have been previously explored in a perturbative
framework [54]. The perturbative approach, formulated in an
appropriate way, could qualitatively reproduce the results of
such sophisticated methods as NRG-type calculations [55].
This fact encouraged us to perform the lowest-order perturba-
tive analysis for the same set of model parameters as used in
Ref. [28], focusing on the symmetric case, ε jσ = −U/2 (U ≡

U1 = U2), where the Coulomb repulsion is most efficient. For
U < 2�S , �N = �S , and V12/�N = 0.5–2, we have computed
the linear conductance as a function of V12, qualitatively repro-
ducing the NRG results [28]. Obviously our mean-field study
(23) is reliable only in the weak-interaction case, U < �β .
In particular, for U < �S , the system is dominated by the
Andreev scattering, whereas for U > 2�S the Kondo physics
plays a major role [15,28].

To treat the correlation effects, we first make use of the
Hartree-Fock-Bogoliubov (HFB) decoupling scheme

n̂ j↑n̂ j↓ � n̂ j↑ n j↓(t ) + n̂ j↓ n j↑(t )

+ ĉ†
j↑ĉ†

j↓〈ĉ j↓ĉ j↑〉 + ĉ j↓ĉ j↑〈ĉ†
j↑ĉ†

j↓〉, (23)

which yields the renormalized energy levels ε̃ jσ (t ) =
ε jσ + Ujn jσ̄ (t ), where σ̄ stands for the opposite spin to
σ , and important corrections to the time-dependent pair-
ing potentials �1(t ) = �S/2 − U1〈ĉ1↓(t )ĉ1↑(t )〉 and �2(t ) =
−U2〈ĉ2↓(t )ĉ2↑(t )〉. Combining the interactions with the super-
conducting proximity effect can be effectively described by
the following Hamiltonian,

ĤHFB ≈
∑
j,σ

ε̃ jσ (t )ĉ†
jσ ĉ jσ −

∑
j

(
� j (t )ĉ†

j↑ĉ†
j↓ + H.c.

)

+
∑

σ

[(
V12ĉ†

1σ +
∑

k

VNkĉ†
Nkσ

)
ĉ2σ + H.c.

]
+ ĤN ,

(24)

where the time-dependent energy levels ε̃ jσ (t ) and on-
dot pairings � j (t ) must be determined numerically. We
have self-consistently computed the time-dependent njσ (t ),
〈ĉ j↓(t )ĉ j↑(t )〉, the current jNσ (t ), and its differential con-
ductance Gσ (μ, t ), using the procedure outlined by us in
Ref. [51] (see Appendix B). For this purpose we have solved
the differential equations of motion for n jσ (t ), 〈ĉ j↓(t )ĉ j↑(t )〉,
and 〈ĉ†

1σ (t )ĉ2σ (t )〉 at intermediate steps computing also
the correlation functions 〈ĉ†

1σ (t )ĉNkσ (0)〉, 〈ĉ1σ (t )ĉNkσ̄ (0)〉,
〈ĉ†

2σ (t )ĉNkσ (0)〉, and 〈ĉ2σ (t )ĉNkσ̄ (0)〉. We have calculated
these quantities iteratively within the Runge-Kutta algorithm,
starting from their initial (t = 0) values.

Figure 6 displays the typical evolution of the differential
conductance obtained for several values of the Coulomb po-
tential, assuming small, V12 = 0.5, and large, V12 = 2, interdot
couplings. As the Andreev conductance is symmetric with
respect to the bias voltage, G(μ, t ) = G(−μ, t ), we show its
variation only for the positive bias μ where all dynamical fea-
tures can be well recognized. Upon increasing the Coulomb
repulsion U (U1 = U2 ≡ U ), the two-peak structure (charac-
teristic for the noninteracting system) undergoes a gradual
reconstruction into a single broad peak. This tendency indi-
cates that the Coulomb repulsion suppresses the effects caused
by both the interdot hybridization and the superconducting
proximity effect. The time needed for the development of
such final structure (observable in the differential conductance
with respect to the bias voltage μ) turns out to be ∼100h̄/�S .
For the experimentally realistic coupling �S ∼ 200 μeV, this
characteristic timescale would be 0.3–0.4 μsec.

For more credible determination of the correlation effects
beyond the perturbative framework, we have additionally
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FIG. 6. The time-dependent differential conductance G(μ, t ) (in units of 2e2/h) as a function the bias voltage μ obtained in the weak
V12 = 0.5 (upper panels) and strong interdot coupling limit V12 = 2 (bottom panels) for several values of the Coulomb potential (as indicated),
assuming ε jσ = −U/2, �N = 0.1, and �S ≡ 1.

used the time-dependent numerical renormalization group
technique [48–50,56–59]. This approach allows for treating
correlations in a very accurate manner; however, it is restricted
to unbiased junctions. The tNRG employs the Wilson’s nu-
merical renormalization group (NRG) method to solve the
initial (Ĥ0) and final (Ĥ) Hamiltonians essential to evaluate
the quench dynamics according to the general form of time-
dependent Hamiltonian

Ĥ (t ) = θ (−t )Ĥ0 + θ (t )Ĥ . (25)

The diagonalization of both Hamiltonians is performed in
N iterations with NK energetically lowest-lying eigenstates
retained at each iteration. These kept eigenstates, tagged with
superscript K , are used in consecutive iterations to build new
product states corresponding to the addition of another site
of the Wilson chain. The remaining states are referred to as
discarded, as well as all states from the last iteration of the
procedure, and are tagged with superscript D. All discarded
states of the corresponding Hamiltonians are used to span the
full many-body initial and final eigenbases [49],

∑
nse

|nse〉D0 D
0〈nse|= 1̂ and

∑
nse

|nse〉D D〈nse|= 1̂. (26)

Here, the index s refers to the eigenstates obtained at the nth
iteration and the index e expresses the environmental part of
the Wilson chain. Due to the energy-scale separation, these
eigenstates are good approximations of the eigenstates of the
full NRG Hamiltonians.

We have computed the dynamical quantities of the unbi-
ased N-DQD-S heterostructure, determining the expectation
values of the observables in frequency domain O(ω) ≡
〈Ô(ω)〉. The formula for O(ω) in terms of the designated

eigenstates can be written as

O(ω) =
XX ′ �=KK∑

n

∑
n′

∑
ss′e

X〈nse|wn′ ρ̂0n′ |ns′e〉X ′

× X ′〈ns′e|Ô|nse〉X δ
(
ω + EX

ns − EX ′
ns′

)
. (27)

Here, ρ̂0n′ denotes the contribution to the initial density matrix
from the n′th iteration and wn′ is the corresponding weight
after tracing out the environmental states, while the initial full
density matrix ρ̂0 built from Ĥ0 at thermal equilibrium reads
[60]

ρ̂0 =
∑
nse

e−βED
0ns

Z
|nse〉D0 D

0〈nse|, (28)

where β ≡ (kBT )−1 is the inverse temperature and Z ≡∑
nse e−βED

0ns is the partition function.
In the following steps, the obtained collection of Dirac

delta peaks with corresponding weights is weakly smoothed
with a log-Gaussian function and broadening parameter b �
0.1. Finally, a Fourier transformation back into the time do-
main is applied [61],

O(t ) =
∫ ∞

−∞
O(ω)e−iωt dω. (29)

In performed tNRG calculations we have assumed the dis-
cretization parameter  = 2, the length of the Wilson chain
to consist of N = 100 sites, and we have kept NK = 2000
eigenstates at each iteration. More detailed description of the
tNRG implementation and technicalities has been discussed
in Ref. [62].

Figure 7 presents the real/imaginary parts of the electron
pairing induced on individual quantum dots (the upper and
middle panels) and between them (the bottom panels) for
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FIG. 7. The real part of the on-dot pairings 〈ĉ j↓(t )ĉ j↑(t )〉 (top and middle panels) and imaginary part of the interdot pairing 〈ĉ1↓(t )ĉ2↑(t )〉
(bottom panel) with respect to time (horizontal axis) and the coupling V12 (vertical axis). Results are obtained by tNRG calculations for several
values of the Coulomb potential (as indicated), assuming the half-filled quantum dots ε j = −U/2 and �N/�S = 0.1.

three different values of Coulomb potential: U/�S = 0.2, 0.4,
and 0.8. Here, we annotate that for tNRG results we have
evaluated the quench exclusively in the coupling to the su-
perconducting lead �S . Other couplings are assumed to be
time-independent and have values as specified in Fig. 7. This
modification of the quench protocol allowed us to remove
weak and nonrelevant dynamics associated with switching on
other couplings, while the role of the superconducting corre-
lations is now more evident. We checked numerically that in
both scenarios the results and conclusions are in agreement.

We clearly notice that repulsive interactions suppress the
pairings of all these channels. Comparison of these quantities
against time at some fixed interdot coupling (for instance
V12 = 0.5) indicates that the quantum oscillations become
faster upon increasing the Coulomb potential U . This speedup
of quantum oscillations stems from renormalization of the
in-gap state energies observable also in the mean-field cal-
culations (Fig. 6). Additionally, we notice that the region
of transient effects gradually shrinks with increasing the
Coulomb potential. The latter effect can be indirectly assigned
to suppression of the superconducting proximity effect (recall
that the quantum oscillations are here driven by Rabi-type
transitions between pairs of in-gap bound states).

The interdot coupling V12 plays an important role in the dis-
tribution of the on-dot pairing potential between the coupled
quantum dots. For relatively weak values, V12/�S < 0.25, the
strong on-dot pairing potential is present on the quantum dot
directly coupled to the superconductor, while the second dot
is almost unaffected by the proximity effect. However, as the
interdot coupling is amplified, it mediates the superconducting
correlations onto the second dot. For values V12/�S > 0.5, the
on-dot pairing potential is more evenly distributed between

both dots. This observation reveals the crucial role of interdot
coupling in transferring the superconducting correlations. An-
other very important feature can be seen for the weak interdot
coupling. For all pairing channels we clearly notice blockade
of the superconducting proximity effect, strictly due to the
initial single occupancy of both quantum dots. This brings
us to the important conclusion that dynamical signatures of
the triplet/Andreev blockade should be well observable in the
correlated N-DQD-S nanostructures, whenever the coupling
between the quantum dots is weak.

Summarizing this section, we emphasize that a competition
of the repulsive on-dot interactions with the superconduct-
ing proximity effect is evident, both in the stationary and
dynamical properties. The magnitude of electron pairing in-
duced on each quantum dot and between them is considerably
suppressed by the interactions. Furthermore, the quantum
oscillations become faster and transient phenomena survive
over some narrower time region upon increasing the Coulomb
potential.

V. SUMMARY AND OUTLOOK

We have investigated the dynamical effects observable in
the double quantum dot (DQD) abruptly embedded between
the superconducting and metallic leads. Transient phenomena
of the uncorrelated setup have been explored by solving the
coupled equations of motion, treating the initial constraints
within the Laplace transform approach. Focusing on the sub-
gap regime, we have derived analytical expressions for the
charge occupancy of both quantum dots, the induced on-dot
and interdot electron pairings, and the currents flowing be-
tween neighboring constituents of N-DQD-S heterostructure.
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The time-dependent quantities (except the differential conduc-
tance) have been represented by contributions, dependent on
the initial DQD fillings and on their couplings to the external
leads. These expressions guided us to identify the character-
istic timescales of transient phenomena, manifested by (i) the
Rabi-type quantum oscillations due to transitions between the
pairs of in-gap bound states and (ii) the relaxation processes
involving a continuous spectrum of the metallic lead.

To single out the quantum oscillations, we have analyzed
them for a DQD coupled only to the superconducting reser-
voir (Appendix C). Under such circumstances all physical
quantities would be periodic in time, unless the higher-energy
electronic states from outside the pairing gap were taken into
consideration [54]. Our analytical expressions (C28)–(C30)
indicate that the on-dot pairing functions are purely imagi-
nary whereas the interdot pairing function is purely real. We
have investigated the components of quantum oscillations in
the strong V12 > �S and weak V12 < �S interdot couplings,
respectively. Furthermore, we have also inspected under what
circumstances the superconducting proximity effect is going
to be blocked, preventing the Cooper pairs from leaking onto
the quantum dots. We have found that for the initial triplet
configuration of the DQD-S system, the charge flow jSσ (t )
between the superconducting lead and neighboring quantum
dot is completely forbidden.

In the N-DQD-S junctions a similar blockade is still
present, although in a less severe version because electrons
can flow back and forth to/from the normal lead. Under the
stationary conditions such triplet blockade has been reported
experimentally in the Josephson (S-DQD-S) junction [16] and
its analog, the so called Andreev blockade, has been recently
evidenced for N-DQD-S heterostructure [17]. Suppression
of the superconducting proximity effect occurs also in the
presence of the correlations, especially in the weak inter-
dot coupling regime. Additionally, we have shown that the
time-resolved Andreev conductance can probe a buildup of
the in-gap bound states and indirectly detect the dynamical
superconducting proximity effect.

In future it would be worthwhile to study transient phe-
nomena of the interacting quantum dots, focusing on the
parity crossings and realization of the subgap Kondo effect.
We hope that our analytical results obtained for the non-
interacting system could serve as a useful benchmark for
such project. Another challenging issue can be related to the
Majorana-type versions of the in-gap bound states [63] with
appealing perspectives to use them in semiconductor-based
superconducting qubits and quantum computing [64].
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APPENDIX A: LAPLACE TRANSFORMS

We derive here the Laplace transforms for ĉ jσ (s)
and ĉSq/Nkσ (s) required for the determination of the

time-dependent physical quantities discussed in this paper.
Upon transforming the Heisenberg equations we obtain

(s + iε1↑)ĉ1↑(s) = −i
∑

q

VSqĉSq↑(s) − iV12ĉ2↑(s) + ĉ1↑(0),

(A1)

(s − iε1↓)ĉ†
1↓(s) = i

∑
q

VSqĉ†
Sq↓(s) + iV12ĉ†

2↓(s) + ĉ†
1↓(0),

(A2)

(s + iεSq)ĉSq↑(s) = −iVSqĉ1↑(s) − i�ĉ†
S−q↓(s) + ĉSq↑(0),

(A3)

(s − iεSq)ĉ†
S−q↓(s) = iVSqĉ†

1↓(s) − i�ĉSq↑(s) + c†
S−q↓(0),

(A4)

and

(s + iε2↑)ĉ2↑(s) = −i
∑

k

VNkĉNk↑(s) − iV12ĉ1↑(s) + ĉ2↑(0),

(A5)

(s − iε2↓)ĉ†
2↓(s) = i

∑
k

VNkĉ†
Nk↓(s) + iV12ĉ†

1↓(s) + ĉ†
2↓(0),

(A6)

(s + iεNk )ĉNk↑(s) = −iVNkĉ2↑(s) + ĉNk↑(0), (A7)

(s − iεNk )ĉ†
Nk↓(s) = iVNkĉ†

2↓(s) + ĉ†
Nk↓(0). (A8)

Equations (A1)–(A4) are coupled to (A5)–(A8) through the
interdot coupling V12. After some lengthy but straightforward
algebra, we can simplify them to the following compact form:(

s + iεSq↑ +
∑

q

V 2
Sq(s − iεSq)

s2 + ε2
Sq + �2

)
ĉ1↑(s)

= −
∑

q

V 2
Sq�

s2 + ε2
Sq + �2

ĉ†
1↓(s) − iV12ĉ2↑(s) + â1, (A9)

(
s − iε1↓ +

∑
q

V 2
Sq(s + iεSq)

s2 + ε2
Sq + �2

)
ĉ†

1↓(s)

= −i
∑

q

V 2
Sq�

s2 + ε2
Sq + �2

ĉ1↑(s) + iV12ĉ†
2↓(0) + â2,

(A10)(
s + iε2↑ +

∑
k

V 2
Nk

s + iεNk

)
ĉ2↑(s) = −iV12ĉ1↑(s) + â3,

(A11)(
s − iε2↑ +

∑
k

V 2
Nk

s − iεNk

)
ĉ†

2↓(s) = iV12ĉ1↓(s) + â4,

(A12)
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where the last components are defined as

â1 = ĉ1↑(0) −
∑

q

VSq�

s2 + ε2
Sq + �2

ĉ†
S−q↓(0)

− i
∑

q

VSq(s − iεSq)

s2 + ε2
Sq + �2

ĉSq↑(0), (A13)

â2 = ĉ†
1↓(0) +

∑
q

VSq�

s2 + ε2
Sq + �2

ĉS−q↑(0)

+ i
∑

q

VSq(s + iεSq)

s2 + ε2
Sq + �2

ĉ†
Sq↓(0), (A14)

â3 = −i
∑

k

VNk

s + iεNk
ĉNk↑(0) + ĉ2↑(0), (A15)

â4 = i
∑

k

VNk

s − iεNk
ĉ†

Nk↓(0) + ĉ†
2↓(0). (A16)

In the wide-bandwidth limit we can perform summations over
momenta k and q of the itinerant electrons. In this way we
obtain the set of coupled equations (6)–(9) presented in the
main part of this paper.

APPENDIX B: INTERDOT CHARGE FLOW
AND SUPERCURRENT

Here we provide detailed expressions for the interdot
current j12σ (t ) and the current jSσ (t ) between QD1 and su-
perconductor. The charge flow j12σ (t ) between the quantum
dots can be calculated from

j12σ (t ) = −2V12Im〈ĉ†
1σ (t )ĉ2σ (t )〉. (B1)

Using the inverse Laplace transforms of ĉ jσ (s) operators
[Eqs. (10) and (11)] we obtain

j12↑/↓(t ) = −2V 2
12Re

[
n1↑/↓(0)L−1

{
u(s)(s + �N/2)

W (s)

}
(t ) · L−1

{
u(s)

W (s)

}
(t ) − n2↑/↓(0)L−1

{
u(s)

W (s)

}
(t )

×L−1

{
1

s + �N/2

(
1 − u(s)V 2

12

W (s)

)}
(t ) + [1 − n1↓/↑(0)]�2

S/4L−1

{
(s + �N/2)2

W (s)

}
(t ) · L−1

{
s + �N/2

W (s)

}
(t )

+V 2
12�

2
S/4[1 − n2↓/↑(0)]L−1

{
s + �N/2

W (s)

}
(t ) · L−1

{
1

W (s)

}
(t )

+�N�2
SV 2

12/8π

∫ ∞

−∞
dε[1 − fN (ε)]L−1

{
s + �N/2

(s + iε)W (s)

}
(t ) · L−1

{
1

(s − iε)W (s)

}
(t )

+ �N

π

∫ ∞

−∞
dε fN (ε)L−1

{
u(s)

W (s)(s − iε)

}
(t ) · L−1

{(
V 2

12u(s)

W (s)
− 1

)(
1

(s + iε)(s + �N/2)

)}
(t )

]
. (B2)

In a similar way, the current flowing from the superconducting lead to the first quantum dot is given by

jSσ (t ) = 2Im

[∑
q

VSq〈ĉ†
1σ (t )ĉSqσ (t )〉

]
, (B3)

where ĉ†
1σ (t ) should be taken from the inverse Laplace transform of the Hermitian conjugation of (10). The inverse Laplace

transform of ĉSqσ (s), calculated from Eqs. (A1)–(A8), takes the following form:

ĉSq↑(s) = 1

s2 + ε2
Sq + �2

[−iVSq(s − iεSq)ĉ1↑ + VSq�ĉ†
1↓(s) − i�ĉ†

S−q↓(0) + (s − iεSq)ĉSq↑(0)
]
. (B4)

In the limit � → ∞ we obtain

jSσ (t ) = �2
S

2
Re

[
[1 − n1σ (0) − n1−σ (0)]L−1

{
(s + �N/2)2

W (s)

}
(t ) · L−1

{
(s + �N/2)u(s)

W (s)

}
(t )

+V 2
12[1 − n2σ (0) − n2−σ (0)]L−1

{
s + �N/2

W (s)

}
(t ) · L−1

{
u(s)

W (s)

}
(t )

+ �NV 2
12

2π

∫ ∞

−∞
dε[1 − 2 fN (ε)]L−1

{
s + �N/2

(s + iε)W (s)

}
(t ) · L−1

{
u(s)

(s − iε)W (s)

}
(t )

]
. (B5)

Since the supercurrent jSσ (t ) originates from tunneling of electron pairs, therefore jS↑(t ) = jS↓(t ).

APPENDIX C: DQD COUPLED TO SUPERCONDUCTOR

Let us consider the case of �N = 0. Under such circumstances, one can derive the analytical expressions for observables,
which well illustrate the dynamics induced by an abrupt coupling to the superconducting lead.
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For �N = 0, Eqs. (12) and (13) simplify to

u(s) = s2 + V 2
12, (C1)

W (s) = (
s2 + V 2

12

)2 + �2
Ss2/4. (C2)

The complex roots of (11) are given by s1,2 = ±is̄1 and s3,4 = ±is̄3, where

s̄1,3 = 1

2

(√
4V 2

12 + �2
S/4 ∓ �S

2

)
; (C3)

thus the inverse Laplace transforms L−1{ĉ(†)
jσ (s)}(t ) can be obtained explicitly. In what follows, we analyze the expectation

values of various quantities, showing that they periodically oscillate in time with the characteristic frequencies. In the absence
of a metallic lead (�N = 0), the last two terms of Eqs. (14) and (15) vanish; therefore n jσ (t ) simplifies to

n1↑/↓(t ) = 1

g2
s

(
4V 2

12 + g2
s

){
n1↑/↓(0)[α1 cos(s̄1t ) − α3 cos(s3t )]2 + n2↑/↓(0)V 2

12g2
s[sin(s̄1t ) + sin(s̄3t )]2

+ [1 − n1↓/↑(0)]g2
s[s̄1 sin(s̄1t ) − s̄3 sin(s3t )]2 + [1 − n2↓/↑(0)]g2

sV
2

12[cos(s̄1t ) − cos(s̄3t )]2
}
, (C4)

n2↑/↓(t ) = 1(
4V 2

12 + g2
s

){
n1↑/↓(0)V 2

12[sin(s̄1t ) + sin(s̄3t )]2 + n2↑/↓(0)[s̄3 cos(s̄1t ) + s̄1 cos(s̄3t )]2

+ [1 − n1↓/↑(0)]V 2
12[cos(s̄1t ) − cos(s̄3t )]2 + [1 − n2↓/↑(0)][s̄1 sin(s̄3t ) − s̄3 sin(s̄1t )]2

}
, (C5)

where gs = �S
2 and α1/3 = g2

s
2 ∓ gs

2

√
g2

s + 4V 2
12. These expres-

sions explicitly show an important role of the initial fillings.
One can notice that for some cases, e.g., when both quan-
tum dots are initially singly occupied by the same spin,
their occupancy is completely frozen, njσ (t ) = n jσ (0). This
is physically obvious, because the electron occupying QD1 is
neither allowed to hop to QD2 nor to the superconducting lead.

We now consider two different initial configurations,
namely (i) n jσ (0) = 0 or n jσ (0) = 1, and (ii) n1↑ = 1, n1↓ =
0 = n2σ . Note that in the first case the electron transfer be-
tween QD1 and superconducting lead is allowed right from the
very beginning. Contrary to such scenario, in the second case
any transfer of electron between the superconducting lead and
QD1 would be allowed only after the spin-↑ electron jumps
from QD1 to QD2. These initial conditions are effectively
responsible for qualitatively different evolutions of njσ (t ).

For the initially empty dots Eqs. (C4) and (C5) imply

n1/2σ (t ) = 1

4V 2
12 + g2

s

{
4V 2

12 sin2 [(s̄1 − s̄3)t/2]

+α1/3 sin2(s̄1t ) + α3/1 sin2(s̄3t )}, (C6)

whereas for n jσ (0) = 1 we obtain

n1/2σ (t ) = 1

4V 2
12 + g2

s

{
4V 2

12 cos2 [(s̄1 − s̄3)t/2]

+α1/3 cos2(s̄1t ) + α3/1 cos2(s̄3t )
}
. (C7)

We recognize here a superposition of three oscillations char-
acterized by the periods 2π/|s̄1 − s̄3|, π/|s̄1|, and π/|s̄3| with
different amplitudes. In order to clarify such time dependence
let us analyze the extreme cases when V12 is much greater or
smaller than �S , respectively.

Expanding the contribution appearing in Eqs. (C6) and
(C7) in powers of x ≡ �S

V12
� 1 up to the first nonvanishing

terms, one obtains, for the initially empty QDs,

n1/2σ (t ) � sin2

(
�S

4
t

)
± x

8
sin

(
�S

2
t

)
sin

(√
4V 2

12 + g2
st

)
,

(C8)
and, for the initially singly occupied dots njσ (0) = 1,

n1/2σ (t ) � cos2

(
�S

4
t

)
∓ x

8
sin

(
�S

2
t

)
sin

(√
4V 2

12 + g2
st

)
.

(C9)
We notice that n jσ (t ) are governed mainly by the functions
sin2 ( �S

4 t ) or cos2 ( �S
4 t ) with the period T = 4π/�S . One may

argue, however, that for V12 � �S these occupancies should
oscillate vs time in a way typical for a two-level system, char-
acterized by the period T = π/V12. In fact such component
is present here in the form of small correction, proportional
to ± 1

8
�S
V12

sin( �S
2 t ) with the period ∼ π

V12
. Some difference be-

tween the results obtained for the isolated two-level system
in comparison to the present case manifests itself through
influence of the initial occupancies of QDs.

A similar analysis for the opposite limit, 1
x � 1, yields

n1/2σ (t ) � sin2 (s̄3/1t ) + x−2

[
16 sin2

(
�S

4
t

)

− 4 sin2 (s̄1/3t ) − 12 sin2 (s̄3/1t )

]
, (C10)

for the initially empty dots, and

n1/2σ (t ) � cos2 (s̄3/1t ) + x−2

[
16 cos2

(
�S

4
t

)

− 4 cos2 (s̄1/3t ) − 12 cos2 (s̄3/1t )

]
, (C11)

for the initially filled dots. Time-dependent occupancy of QD1
reveals the dominant quantum oscillations with period T =
2π/(

√
4V 2

12 + g2
s + gs). This result can be compared with the
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FIG. 8. Time-dependent occupancies n1↑(t )/n1↓(t ) (shown by
the solid/dashed lines) induced by the sudden switching of �S and
interdot coupling V12. Results are obtained for ε jσ = 0, �N = 0,
�S = 1, V12 = 4 assuming the initial configuration n1↑(0) = 1 and
n1↓(0) = 0 = n2σ (0).

oscillations of a single quantum dot proximitized to the super-
conducting lead, whose period is 2π/�S [51]. For the weak
interdot coupling, the evolution of n1σ (t ) is mainly affected
by exchanging its electrons with the superconducting lead,
whereas in the opposite case (for large V12) both quantum
dot occupancies can be partially exchanged. For this reason,
n2σ (t ) remarkably differs from n1σ (t ) in the limit V12

�S
� 1.

The term sin2 (s̄1t ) appearing in (C10) represents oscillations

with the period of 2π/(
√

4V 2
12 + g2

S + gS ) and the second term
introduces corrections with the period of 4π/�S .

The aforementioned initial configuration with only a single
electron occupying QD1 would imply quite different evolution
of the considered system in comparison to both quantum dots
being initially empty or filled. To illustrate this, we consider
here the case when at t = 0 the single electron, for instance ↑,
occupies QD1 (a neighbor of the superconducting lead). The
time-dependent occupancies inferred from Eqs. (C4) and (C5)
can be rewritten as follows:

n1↑(t ) = {
4V 2

12 sin2 (�St/4) + �2
S/4

+V 2
12[cos (s̄1t ) + cos (s̄3t )]2

}
/a2, (C12)

n1↓(t ) = V 2
12[cos (s̄1t ) − cos (s̄3t )]2/a2, (C13)

n2↑(t ) = {
4V 2

12 sin2 (�St/4) + α1 sin2 (s̄3t )

+ α3 sin2 (s̄1t ) + V 2
12[sin (s̄1t ) + sin (s̄3t )]2

}
/a2,

(C14)

n2↓(t ) = {
α1 sin2 (s̄3t ) + α3 sin2 (s̄1t )

+ V 2
12[sin (s̄1t ) − sin (s̄3t )]2

}
/a2, (C15)

with a =
√

4V 2
12 + g2

s .

0 25 50 75 100 125 150
t

0.0
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0.4

0.6

0.8

1.0

n1↑(t)

n1↓(t)

n2↑(t)

n2↓(t)

FIG. 9. Time-dependent occupancies njσ (t ) (see the legend) ob-
tained for the weak interdot coupling V12 = 0.1�S using the same set
of model parameters as in Fig. 8.

Let us consider the case of V12 much larger than �S .
Performing similar calculations to those done for both QDs
initially empty or filled and ignoring the contributions propor-
tional to and smaller than (�S/V12)2 one obtains

n1↑(t ) � 1 − cos2 (�St/4) sin2 (at/2), (C16)

n1↓(t ) � sin2 (�St/4) sin2 (at/2), (C17)

n2↑(t ) � 1 − cos2 (�St/4) cos2 (at/2)

− x

8
sin (�St/2) sin (at/2), (C18)

n2↓(t ) � sin2 (�St/4) cos2 (at/2)

− x

8
sin (�St/2) sin (at/2). (C19)

Figure 8 shows n1σ (t ) obtained for V12 = 4�S , where
we can clearly identify the quantum oscillations with
the period equal to π/V12 typical for a two-level sys-
tem. Their amplitude is modulated with other oscillations,
whose period equal to 4π/�S is controlled by the func-
tions sin2 (�St/4) or cos2(�St/4). Let us remark that in
the case of a single QD coupled to a superconductor the
time-dependent occupancy oscillates with the period twice
shorter. Due to electron tunneling between the quantum dots
and through the interface between QD1 and superconduct-
ing lead this period of quantum oscillations is present for
all types of the initial configurations. Evolution of the sec-
ond dot occupancy is similar to n1σ (t ); therefore we skip its
presentation.

We now expand the amplitudes of oscillating terms appear-
ing in (C12)–(C15) to the second order in powers of 1

x :

n1↑(t ) � 1 − 16x−2 cos2 (�St/4) sin2 (at/2), (C20)

n1↓(t ) � 16x−2 sin2 (�St/4) sin2 (at/2), (C21)
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FIG. 10. Time-dependent occupancy n1↑(t ) (solid lines) and
charge current jSσ (t ) (dashed curves) obtained for the strong interdot
coupling V12 = 4�S and several initial configurations (QD2, QD1):
A = (0, 0), B = (0,↑), C = (↑↓, 0), and D = (↑,↓), assuming
�S = 1, �N = 0, and ε jσ = 0.

n2↑(t ) � sin2 (s̄1t ) + 8y2[2 sin2 (�St/4)

− sin2 (s̄1t ) + sin (s̄1t ) sin (s̄3t )], (C22)

n2↓(t ) � sin2 (s̄1t ) − 8x−2[sin2 (s̄1t )

+ sin (s̄1t ) sin(s̄3t )]. (C23)

Note that if one neglects all terms proportional to x−2 then
n1σ (t ) would not change in time at all, irrespective of its
coupling to the second QD. QD1 is initially singly occupied by
the spin-↑ electron which, at a later time, might be transferred
to QD2. Such emptying would enable one of the Cooper
pairs to leak from the superconducting reservoir onto QD1
and, in the next step, the spin-↓ electron could eventually be
transferred onto QD2. This reasoning explains why n2↓(t ) is
slowly increasing right after the quench, owing to the terms
proportional to x−2 in Eq. (C23).

Figure 9 presents n jσ (t ) obtained for the weak interdot
coupling V12 = 0.1�S . Differences between the occupancies
of QD1 and QD2 are quite evident. QD1 is nearly completely
occupied/empty by ↑/↓ electrons and such occupancy ex-
hibits oscillations with the period 4π/�S and small amplitude

0.0

0.5

1.0
n1σ n2σ

0.0

0.5

1.0
n1↑ n1↓ n2↑ n2↓

0.0

0.5

1.0
n1σ n2σ

0 25 50 75 100 125 150
t

0.0

0.5

1.0
n1σ n2σ

FIG. 11. Time-dependent occupancy njσ (t ) (see the legend) ob-
tained for the weak interdot coupling V12 = 0.1�S and the same
initial configuration as in Fig. 10. Other parameters are �S = 1.0,
�N = 0, ε jσ = 0.

oscillating with another (larger) period 2π/(
√

4V 2
12 + g2

s −
gs). Time-dependent n2σ (t ) is different, because the main
contribution in Eqs. (C22) and (C23) simply oscillates with

the period equal to π/s̄1 = 2π/(
√

4V 2
12 + g2

S − gS ) and its

amplitude is 1. Further corrections, proportional to x−2, in-
troduce small variations of this amplitude, with the period
4π/�S .

We have seen that the response of DQD to an abrupt
coupling to the superconducting lead strongly depends on the
initial fillings n jσ (0). It is sufficient to consider four represen-
tative types of the initial configurations in order to describe all
possible scenarios of the resulting n jσ (t ) evolution. Figure 10
shows n1↑(t ) obtained for the strong interdot coupling V12 =
4�S for these initial conditions, namely (QD2, QD1) = (0, 0),
(0,↑), (↑↓, 0), and (↓,↑). Oscillations with the period π/V12

are well visible in all curves, whenever at t = 0 electrons
occupy the QDs. Only for the case of the initially empty dots
the oscillations have the period 4π/�S with a small ampli-
tude correction, exhibiting the period π/V12. Specifically for
n1↓(0) = 1 = n2↑(0), n1↑(0) = 0 = n2↓(0) [Fig. 10(d)], we
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obtain

n1↑(t ) = 4V 2
12

4V 2
12 + g2

s

sin2

⎛
⎝

√
4V 2

12 + g2
s

2
t

⎞
⎠. (C24)

For the large interdot coupling (C24) resembles the Rabi-type
oscillations typical for a two-level quantum system.

In the opposite (small V12) case for the initial D configura-
tion we obtain

n1↑(t ) = 16
V12

�S
sin2

(
�S

4
t

)
(C25)

with the period 4π/�S (bottom panel in Fig. 11). For the
initial A and B configurations evolution considerably differs

from the strong-coupling limit. Notice that the time-dependent
occupancies of both QDs are now completely different. The
period 2π/�S shows up in n1σ (t ) for the initial A and C
configurations. This period of oscillations can be assigned to
the transfer of Cooper pairs back and forth from the super-
conducting lead onto QD1. For the other (B and D) cases we
observe the oscillations with period 4π/�S in the occupancies
of both quantum dots.

For a deeper insight into the transient dynamics of the
proximitized DQD we now consider the charge current jSσ (t )
flowing from the superconducting lead to QD1 and the interdot
current j12σ (t ), respectively. General expressions for jSσ (t )

and j12σ (t ) are presented in Appendix B. Here we focus on
their values in the limit �N = 0:

jSσ (t ) = 1

4V 2
12 + g2

s

{2[1 − n1σ (0) − n1−σ (0)][s̄1 sin(s̄1t ) − s̄3 sin(s̄3t )][α1 cos(s̄1t ) − α3 cos(s̄3t )]

+�SV 2
12[1 − n2σ (0) − n2−σ (0)][cos(s̄1t ) − cos(s̄3t )][sin(s̄1t ) + sin(s̄3t )]}, (C26)

j12↑/↓(t ) = 2V 2
12

gs
(
4V 2

12 + g2
s

) {n1↑/↓(0)[α3 cos(s̄3t ) − α1 cos(s̄1t )][sin(s̄1t ) + sin(s̄3t )]

− n2↑/↓(0)[α3 cos(s̄1t ) − α1 cos(s̄3t )][sin(s̄1t ) + sin(s̄3t )]

+ gs[1 − n1↓/↑(0)][s̄1 sin(s̄1t ) − s̄3 sin(s̄3t )][cos(s̄3t ) − cos(s̄1t )]

+ gs[1 − n2↓/↑(0)][s̄1 sin(s̄3t ) − s̄3 sin(s̄1t )][cos(s̄3t ) − cos(s̄1t )]}. (C27)

Broken lines in Fig. 10 display the currents jSσ (t ) obtained for several initial conditions and the strong interdot coupling,
V12 = 4�S . We observe that the time dependence of the current jSσ (t ) resembles the evolution of n j↑(t ), because they are
linked through the charge conservation law. In particular, for the initial B and C configurations we recognize the oscillations
with period T � π/V12, which are modulated by the envelope function oscillating with another period T = 4π/�S . Contrary to
such behavior, for the initially empty dots the time-dependent current jSσ (t ) is strictly governed by sin2( �s

4 t ) with the period
T = 4π/�S .

Equations (C26) and (C27) imply under what initial configuration (QD2, QD1) the charge current jSσ (t ) can eventually vanish.
For the case (σ, σ ) the charge tunneling is neither allowed to flow from QD1 to the neighboring QD2 nor to the superconducting
lead, so in consequence the occupancies of DQDs would be frozen. For the other configuration (σ, σ̄ ) this behavior would not
be observed, because the spin-↓ (spin-↑) electron can tunnel from the first to the second quantum dot simultaneously with the
Cooper pair transmittance from the superconducting lead onto QD1. In the latter case the finite j12σ (t ) and vanishing jSσ (t )
currents could be observed.

The initial (↑,↓) or (↓,↑) configurations evolve in time through the intermediate states (↑↓, 0), (0,↑↓), (↑↓,↑↓), (0, 0),
(↑,↓), and (↓,↑), respectively. It can be shown, by solving the time-dependent Schrödinger equation, that at arbitrary time the
double quantum dot can be found with equal probabilities in the configurations (0,↑↓), (↑↓, 0) or with equal probabilities in
the configurations (0,0), (↑↓,↑↓). This means that in both cases the electron pairs can tunnel with the same probability from
QD1 either to the superconducting lead or in the opposite direction. In consequence, the current jSσ (t ) vanishes. This conclusion
can be also formally inferred from Eq. (C26).

For the weak interdot coupling V12 and assuming the initial conditions (0,0) or (↑↓, 0), the current jSσ (t ) evolves with
respect to time in a way similar to the occupancy n1σ (t ) being characterized by the quantum oscillations with period 2π/�S

and approximately constant amplitude. For the initial conditions (0,↑) the current jSσ (t ) oscillates with the period 4π/�S , in
analogy to time-dependent n1σ (t ) displayed in Figs. 9 and 11.

We now briefly consider the on-dot 〈ĉ j↓(t )ĉ j↑(t )〉 and interdot 〈ĉ1↓(t )ĉ2↑(t )〉 pairings, whose general expressions are
presented in Appendix B. In the limit of �N = 0 their simplified analytical expressions are given by

〈ĉ1↓(t )ĉ1↑(t )〉 = i

gs
(
4V 2

12 + g2
s

) {[1 − n1↑(0) − n1↓(0)][s̄3 sin(s̄3t ) − s̄1 sin(s̄1t )][α1 cos(s̄1t ) − α3 cos(s̄3t )]

+ gsV
2

12[1 − n2↑(0) − n2↓(0)][cos(s̄3t ) − cos(s̄1t )][sin(s̄1t ) + sin(s̄3t )]}, (C28)

〈ĉ2↓(t )ĉ2↑(t )〉 = iV 2
12

4V 2
12 + g2

s

{[1 − n1↑(0) − n1↓(0)][cos(s̄1t ) − cos(s̄3t )][sin(s̄1t ) + sin(s̄3t )]

+ [1 − n2↑(0) − n2↓(0)][s̄1 sin(s̄3t ) − s̄3 sin(s̄1t )][s̄3 cos(s̄1t ) + s̄1 cos(s̄3t )]}/V 2
12, (C29)
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〈ĉ1↓(t )ĉ2↑(t )〉 = V12

4V 2
12 + g2

s

{n1↑(0)[s̄3 sin(s̄3t ) − s̄1 sin(s̄1t )][sin(s̄1t ) + sin(s̄3t )]

+ 1

gs
n2↑(0)[cos(s1t ) − cos(s3t )][α1 cos(s̄3t ) − α3 cos(s̄1t )]

+ 1

gs
[1 − n1↓(0)][cos(s1t ) − cos(s3t )][α1 cos(s̄1t ) − α3 cos(s̄3t )]

+ [1 − n2↓(0)][s̄1 sin(s̄3t ) − s̄3 sin(s̄1t )][sin(s̄1t ) + sin(s̄3t )]}. (C30)

We notice that the on-dot pairing functions (C28) and (C29) are purely imaginary whereas the interdot pairing function (C30)
is real. They eventually vanish when each QD is initially singly occupied by the same spin electron. Let us recall that under
such circumstances the current jSσ (t ) vanishes as well. In contrast to this situation, when QDs are initially singly occupied
by electrons of opposite spins, then the on-dot pairing functions (C28) and (C29) vanish, whereas the interdot pairing (C30)
survives. We have checked that for arbitrary situations the following relationship jSσ (t ) = −�SIm〈ĉ1↓(t )ĉ1↑(t )〉 is obeyed. This
identity has been widely used in studies of the Josephson current under the stationary conditions [65,66].
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[66] T. Domański, M. Žonda, V. Pokorný, G. Górski, V.
Janiš, and T. Novotný, Josephson-phase-controlled inter-
play between correlation effects and electron pairing in
a three-terminal nanostructure, Phys. Rev. B 95, 045104
(2017).

165430-19

https://doi.org/10.1103/PhysRevB.86.245124
https://doi.org/10.1103/PhysRevB.100.035404
https://doi.org/10.1038/s42254-020-0228-y
https://doi.org/10.1063/5.0024124
https://doi.org/10.1038/srep08821
https://doi.org/10.1103/PhysRevB.95.045104

