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1.  Introduction

Ultracold quantum gases provide a unique opportunity for 
quantum simulations of interacting many-body systems 
[1]. Tremendous progress in experimental techniques in the 
last years has allowed to control all important ingredients 
of such simulations, giving an insight into physical mech
anisms that eluded understanding in conventional, ‘natural’ 
condensed matter setups. In particular, both the depth of the 
periodic trapping potential and the lattice geometry can be 
controlled, offering a variety of opportunities for research [2]. 
Experiments in which fermionic or bosonic gases are loaded 
into the optical lattices have been carried out [3]. There has 
been significant experimental progress in the engineering of 
artificial gauge fields, the spin–orbit (SO) couplings or simu-
lating non-Abelian fields [4–9].

Recent studies of topological matter, especially the topo-
logically non-trivial superconductivity, are motivated by 
realization of exotic quasiparticle excitations that resemble 
Majorana fermions (MFs) [10–12]. In quantum field theory, 
MFs are particles that are their own antiparticles. In condensed 
matter, MF can be understood as a zero-energy quasiparticle 
which is its own ‘hole’. Moreover, Majorana excitations have 
an exotic exchange statistics—they are non-Abelian anyons 
[13–15], which makes them even more interesting. The pre-
requisites to observe such zero-energy Majorana modes 
in condensed matter systems are: a strong SO coupling, an 
external Zeeman magnetic field (population imbalance) and 
the existence of a gap in the energy spectrum [16–29]. The 
SO coupling is very important from the point of view of real 
systems. It determines the electronic structure of atoms but 
also leads to such non-standard phenomena as the emergence 
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of topological insulators. The SO coupling has been realized 
successfully in ultracold atomic gases setups. The first exper
imental realization of the SO coupling has been performed in  
Bose–Einstein condensate (BEC) using a two-photon Raman 
process [30] and one year later it has been reported for a fer-
mionic gas [5, 31].

So far, various experimental methods for detecting 
Majorana quasiparticles have used either a semiconducting 
nanowire [17–23] or a magnetic chain [24–29] proximitized 
to superconductors, vortices in p-wave superconductors  
[32–36], or some lithographically designed nanostructures 
[37]. Finding feasible means for manipulating Majorana 
quasi-particles in such systems is still a big challenge. We 
address this issue for a nonuniform 1D system, where an addi-
tional pair of Majorana modes can be controllably created by 
designing a proper internal scattering potential.

Our present study is inspired by the proposal of Jiang et al 
[16] to investigate a trapped spin-imbalanced fermionic gas on 
a 1D optical lattice. This fermionic system is coupled to a 3D 
molecular BEC cloud (figure 1), which provides the on-site 
s-wave pairing of atoms. By applying the spin–orbit and the 
Zeeman interactions (via a synthetic magnetic field), p-wave 
pairing can be induced between same-spin atoms on neigh-
boring sites [7, 38–41] leading to a topologically non-trivial 
superconducting state, manifested by zero-energy Majorana 
bound states (MBS). Similar ideas have been considered for 
two-dimensional p-wave superfluids of fermionic atoms in 
optical lattices [42], where Majorana modes could appear as 
topological defects, such as vortices or edges of lattice dislo-
cations, which take the form of one-dimensional wires.

The main objective of the paper is to investigate how the 
energy spectrum of a 1D fermionic system (in particular con-
taining MFs) can be controllably influenced by an internal 
scattering potential, sketched by the blue lines in figure  1. 
We have checked that the curvature of the harmonic trap-
ping potential has important influence on realization of the 
topological phase and on the number of Majorana modes. The 
paper is organized as follows. In section 2, we introduce the 
theoretical model for our system and discuss its characteristic 
properties. In section 3, we present numerical results obtained 
by the Bogoliubov–de Gennes treatment, considering the 
Majorana modes gradually induced at the internal potential 

barrier. Finally, in section  4, we summarize the results and 
give a brief outlook.

2.  Model and technique

The 1D atomic Fermi chain on an optical lattice and coupled 
to a 3D molecular BEC (figure 1) can be described by the fol-
lowing Hamiltonian:

H = H0 +HSO +HBEC +Htrap +Hbar.� (1)

Here, H0 =
∑

i,jσ

(
−tδ〈i,j〉 − (µ+ σh) δij

)
c†iσcjσ describes 

free fermionic atoms on the lattice, which hop between 
the nearest-neighbor sites with the hopping amplitude t, 
σ ∈ {↑, ↓} is the spin index, μ—the chemical potential and h 
is a Zeeman field which originates from a population imbal-
ance. Experimentally, such population imbalance between two 
different fermionic mixtures is quite easy to obtain, because 
the populations in two hyperfine states of the fermionic atom 
can be freely chosen [43–45]. Usually, a degenerate Fermi 
gas of spin-polarized atoms is prepared using the standard 
techniques of laser cooling, sympathetic cooling by sodium 
atoms, and optical trapping [43]. The spin–orbit coupling can 
be expressed by HSO = −iλ

∑
iσσ′ ciσ (σ̂y)σσ′ ci+1σ′ + h.c., 

where σ̂y is the Pauli y-matrix. To create electromagnetic fields 
for neutral atoms, an artificially produced vector potential 
has to be applied to the atoms. In the presence of an artifi-
cially generated gauge field, neutral ultracold atoms act in 
the same way as a charged particle would in the presence of 
a magnetic field. By engineering spatially-dependent com-
plex tunneling amplitudes with laser-assisted tunneling and 
a potential energy gradient, two independent research groups 
have reported compelling evidence for the realization of the 
Hofstadter Hamiltonian with neutral rubidium atoms that 
are loaded into laser-induced periodic potentials [46, 47]. 
Coupling of the BEC with the fermionic chain leads to the 
proximity induced on-site pairing, which can be effectively 
modeled as HBEC =

∑
i (∆ci↓ci↑ + h.c.). Δ plays the role of 

the effective gap induced in the fermionic chain by the BEC 
background. Formally, ∆ ≈ gΞ [16], where g denotes the cou-
pling constant between the composite bosonic and fermionic 
mixtures, whereas Ξ corresponds to macroscopic occupation 
in the ground state by composite bosons in the BEC [48]. 
Htrap =

∑
iσ V(i)c†iσciσ corresponds to the trapping potential, 

whereas Hbar =
∑

iσ Λ(i, τ)c
†
iσciσ describes the potential bar-

rier inside the trap at time τ. The specific form and role of both 
these potentials is described in section 3.

2.1.  Bogoliubov–de Gennes formalism

The quasiparticle spectrum of ultracold atoms described by 
the Hamiltonian H can be obtained from a diagonalization 
procedure based on the canonical transformation

ciσ =
∑

n

(
uinσγn − σv∗inσγ

†
n

)
,� (2)

where γn and γ†
n are the quasiparticle fermionic operators. 

The coefficients uinσ and vinσ fulfill the Bogoliubov–de 

Figure 1.  An ultracold fermionic gas loaded on a 1D lattice (F) 
coupled to a molecular BEC in a trap (the red line). The Majorana 
modes (M) are created on the edges of the wire. Placing inside the 
trap an additional potential barrier (blue lines), one can effectively 
split the fermionic chain, creating additional two edges, which 
causes the induction of extra Majorana states (IM).

J. Phys.: Condens. Matter 30 (2018) 355602
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Gennes (BdG) equations  EnΨin =
∑

j HijΨjn [49], where 
Ψin = (uin↑, uin↓, vin↓, vin↑) is a four-component spinor, and 
the matrix is defined as

Hij =




Hij↑↑ Hij↑↓ ∆ij 0
Hij↓↑ Hij↓↓ 0 ∆ij

∆∗
ij 0 −H∗

ij↓↓ H∗
ij↓↑

0 ∆∗
ij H∗

ij↑↓ −H∗
ij↑↑


 ,

� (3)

where Hijσσ′ =
(
−tδ〈i,j〉 − (µ̄(i, τ) + σh)δij

)
δσσ′ + Hσσ′

SO  
and ∆ij = ∆δij. Here µ̄(i, τ) = µ− V(i)− Λ(i, τ) is an effec-
tive local chemical potential on site i and at time τ. We intro-
duce the following spin–orbit terms: H↑↓

SO = λ(δi+1,j − δi−1,j), 
H↑↑

SO = H↓↓
SO = 0 and H↓↑

SO = (H↑↓
SO)

∗.
It is important to emphasize that one of the greatest advan-

tages of the BdG method is the possibility of diagonalization 
of the Hamiltonians which describe inhomogeneous systems. 
The BdG formalism consists in solving the Bogoliubov–de 
Gennes self-consistent equations. However, the order param
eter (e.g. the superconducting order parameter ∆i) is defined 
locally, i.e. for a given site i and it depends on all possible 
states described by the Hamiltonian.

The realization of ultracold lattice systems in a trapping 
potential introduces inhomogeneity to the system, which is 
effectively expressed as an extra ‘chemical potential’ with 
parabolic dependence on the distance from the center of the 
trap Htrap [50–54]. Hence, this method is a natural choice to 
provide a qualitative analysis of the system studied in this 
work.

2.2.  Signatures of Majorana quasiparticles

MBS exist only in the topologically non-trivial supercon-
ducting phase and they represent the zero-energy modes, 
En = 0. One needs to remember that only these states exactly 
fulfill the condition: γn = γ†

n , which is the defining property 
of Majorana quasiparticles. For detecting them in the system, 
the following quantities can be considered: (i) the local den-
sity of states (LDOS) [55], (ii) the density of Majorana quasi-
particles PM [56], and (iii) the topological quantum number 
Q [57]. Below, we briefly point out their physical importance.

The LDOS of fermionic atoms in a given site i is 
defined as ρ(i,ω) = −1/π

∑
σ ImGiσ,11(ω + i0+), where 

Giσ(ω) = (ω −H)−1 is the single particle Green’s function 
with the matrix H given in equation (3). Applying the trans-
formation (2), LDOS can be expressed as [58, 59]:

ρ(i,ω) =
∑
n,σ

[
|uinσ|2δ (ω − En) + |vinσ|2δ (ω + En)

]
,� (4)

where δ(ω) is the Dirac delta function and En is determined by 
the BdG equations.

The appearance of the zero-energy MBS can be observed 
as a zero-energy peak in the scanning tunneling microscopy 
(STM) or differential conductance measurements [60–66]. 
In the condensed matter systems, MBS are created at the 
edge of a nanowire given by the gate potential. In theoretical 
calculations, this potential is modeled by e.g. the Gaussian 

profile [60] or hard-wall boundaries [66]. In turn, in ultracold 
fermionic mixtures, trapping/barrier potential can be tuned 
by the parameters of the optical lattices [67], in a relatively 
simple way. In this system, the LDOS measurements can 
be performed using the radio-frequency (rf) spectroscopy, 
which is an analog of STM measurements [17, 24, 68–73]. 
This technique has been successfully used in the in-gap state 
measurments [74, 75]. Additionally, because of the fact that 
MBS are formed in the system with non-zero magnetization 
(polarization), this bound state can be detected as a polarized 
zero-energy localized state, at the edge of the system [29]. As 
a consequence, MBS can also be detected by spin-dependent 
techniques [76].

The density of Majorana quasiparticles PM is characterized 
by the off-diagonal spectral function at zero energy [56]:

PM(i) =
∑

n

|uin↓v∗in↓ − uin↑v∗in↑|δ(En).� (5)

This quantity is helpful for investigating non-locality of the 
Majorana quasiparticles. For numerical calculations of equa-
tions  (4) and (5), we have replaced the Dirac delta function 
by a narrow Lorentzian δ(ω) = ζ/[π(ω2 + ζ2)] with a broad-
ening ζ = 0.002 for ρ(i,ω) and ζ = 10−12 for PM(i).

Another important physical quantity is the topological 
number Q = (−1)m, which is determind by the parity of the 
number m of Majorana bound states at each edge of the wire 
[10]. This quantity is helpful for identification of the topolog-
ical nature of the system. Q can be obtained from the scattering 
matrix S , which describes the relation between incoming and 
outgoing wave amplitudes at the Fermi level [57]:

(
ψ−,L

ψ−,R

)
= S

(
ψ+,L

ψ+,R

)
, S =

(
R T ′

T R′

)
,� (6)

where ψ+,i, ψ−,i denote incoming and outgoing mode 
amplitudes, respectively. The S  matrix is built from blocks 
of reflection R,R′ and transmission T,T ′ matrices at the 
two ends of the system. Here, we determine Q within 
the BdG approach from the sign of the scattering matrix, 
Q = sgn det(R) = sgn det(R′). The numerical procedure 
is discussed in [77]. Formally, Q is defined by the Pfaffian 
of R and can be treated as the spin Chern number for the Z2 
topological phase [78, 79]. Several methods for numerical 
determination of the topological quantum number have been 
proposed in the literature [80–82]. Particularly interesting is 
the odd fermion parity, Q = −1, referring to the topologically 
nontrivial superconducting phase [83, 84], which supports the 
realization of MBS.

2.3.  Symmetry class

In the case of open boundary conditions, bound states emerge 
at the end of the system. However, the information about pos-
sibility of the realization of the non-trivial topological state can 
be taken from the system with periodic boundary conditions. In 
our case, for the homogeneous system (with periodic boundary 
conditions), the Hamiltonian H′ = H0 +HSO +HBEC can be 
rewritten in the form:

J. Phys.: Condens. Matter 30 (2018) 355602
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H′ =
∑

k

Φ†
kHkΦk, Hk =

(
Hk ∆̂

∆̂∗ −H∗
−k

)
,� (7)

where Φ†
k =

(
c†k↑, c†k↓, c−k↓, c−k↑

)
 is the Nambu spinor in 

momentum space (ckσ denotes the annihilation operator of 
electron with momentum k and spin σ). Here, Hk and ∆̂ 
denote the matrix forms of the Fourier transform of H0 +HSO 
and HBEC terms, respectively:

Hk =

(
ξk↑ Lk

L∗
k ξk↓

)
, ∆̂ =

(
∆ 0
0 ∆

)
,� (8)

with ξkσ = −2t cos(k)− (µ+ σh) as a dispersion relation and 
Lk = −2iλ sin(k) spin–orbit coupling in momentum space.

Using the Hamiltonian in the form (7), we can find the 
symmetry class of the system under consideration [85]. The 
particle-hole symmetry (PHS) is always conserved in the 
BdG-type Hamiltonian [86], UPH∗

k U−1
P = −H−k, with the 

PHS operator P  =  UPK. Here, K is the complex conjugate 
operator, UP = σ̂x ⊗ σ̂0 and P2  =  1. In a similar way, we 
can define the time reversal symmetry (TRS) with the TRS 
operator T  =  UTK, where UT = σ̂0 ⊗ iσy and T2  =  −1. In this 
case, in the absence of the magnetic field, the Hamiltonian 
satisfies TRS, and UTHkU−1

T = H−k. According to the sym-
metry classification, the system belongs to the DIII class [87]. 
However, the external magnetic field leads to the breaking of 
TRS and changes the symmetry class from DIII to D. It should 
be mentioned that the 1D system with the class D is described 
by the Z2 invariant (defined in the previous paragraph) and it 
allows for the realization of the pair zero-energy mode at the 
edge of the system.

3.  Numerical results and discussion

The dispersion relation for a homogeneous 1D chain with the 
strong SO coupling and the Zeeman splitting is displayed in 
figure 2(a). For the topologically trivial phase, the degeneracy 
of the Fermi level µ1 is fourfold, whereas in a topologically 
non-trivial phase the Fermi level µ2 has only two-crossing 
points [19]. By varying the chemical potential μ, the system 
qualitatively changes from the topologically non-trivial to 
topologically trivial one (figure 2(b)). In the first case, i.e. 
in the region located to the left of point A and to the right 
of point B, there is the standard gapped spectrum. However, 
between the point A and B in figure 2(b), there exists a topo-
logically non-trivial phase, which is manifested by the zero-
energy MBS that is topologically protected inside the gap (the 
red line in figure 2(b)). Such a topological phase occurs when 
h >

√
∆2 + (2t ± µ)2  [39, 40, 88], thereby depending on the 

chemical potential (see µ2 in figure 2(b)). Due to this fact, we 
choose the following model parameters: h  =  0.3t, the SO cou-
pling λ = 0.15t and the gap ∆ = 0.2t. For our calculations, 
we considered a system consisting of N  =  600 sites.

3.1.  Role of the external trapping potential

Any trapping potential V(i) leads to inhomogeneous distribu-
tion of the particles [44, 45, 89–92]. In this case, the MBS 

appear on the boundaries of the topologically non-trivial 
superconducting phase. In our study, we considered the  
trapping potential of: (i) the parabolic V(i) = V0(ri − rN/2)

2 
and (ii) the Gaussian shape at the 1D lattice edges, 
V(i) = V0

[
exp

(
−r2

i /2σ2
)
+ exp

(
−r2

N−i/2σ2
)]

. Without much 
loss of generality, we assumed the internal barrier potential of 
the Gaussian shape Λ(i) = Λ0(τ) exp

(
−(ri − rN/2)

2/2σ2(τ)
)
.  

Here, rN/2 corresponds to the central point of the trap. The 
parameters Λ0 and σ characterize the height and the width of 
the interior potential, respectively.

Figure 2.  Numerical results for (a) the dispersion relation for 
the non-interacting system, described by the Hamiltonian Hk (8) 
and (b) the spectrum of the system, described by the Hamiltonian 
H′ (7). (a) The BEC medium induces pairing between opposite 
momenta and spin states, which creates a gap of size Δ. For the 
Fermi level µ1 (µ2), the topologically (non-)trivial phase is realized. 
(b) Spectrum of the Hamiltonian versus the chemical potential 
μ. The red line illustrates Majorana bound states, topologically 
protected inside the energy gap, occurring between A and B, 
which determine the boundary of the topologically non-trivial 
phase. Results in the absence of the trap and barrier potential, for 
λ/t = 0.15, ∆/t = 0.005 and h/t  =  0.01.

J. Phys.: Condens. Matter 30 (2018) 355602
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A possible realization of topological superfluids in 1D spin–
orbit coupled Fermi gases trapped by a harmonic potential has 
been considered quite recently [54, 93–95]. In these systems, 
both the pairing gap ∆(i) and the effective chemical potential 
µ̄(i, τ) were assumed to be spatially dependent [54, 92–95]. 
Consequently, the occurrence of the topological phase was 
predicted locally for such regions of the trap, for which the fol-
lowing condition is fulfilled: h >

√
∆2(i) + (2t + µ̄(i, τ))2 , 

at time τ. Under specific conditions, a topological superfluid 
can appear at the trap edges, whereas a conventional super-
fluid is present around the trap center [54, 92, 93]. For creating 
the Majorana quasiparticles in the central part, some addi-
tional constraints were proposed, for instance by introducing 
a magnetic impurity [93] or using dark solitons [94, 95] that 
locally change ∆(i) and/or µ̄(i, τ).

In our system, the atoms are coupled to the BEC back-
ground with a constant pairing gap Δ. The trapping and/
or barrier potentials have crucial influence on the transition 
between the topologically trivial and non-trivial phases, sig-
naled by a change of the topological number Q (defined in 
section 2). The topological region Q = −1 (supporting MBS) 
is depicted by gray color in the phase diagrams of figure 3.

Let us start the discussion with the harmonic potential 
case, V(i) = V0(ri − rN/2)

2 (figures 3(a)–(c)). As a natural 
energy scale of the fermion atomic system, we choose a value 
of the trapping potential on the first or the last site (given by 
V0(N/2)2)5. This allows us to compare the results for different 
sizes N of the system. In figures 3(a)–(c), we present the results 
obtained for N  =  600 (solid black lines) and for N  =  900 sites 
(dashed red lines). For a very flat parabolic shape (small V0) 
of the trap, we observe that the topological phase exists for 
comparable ranges of parameters (at fixed h) in both cases. 

Some deviations show up when the trapping potential is more 
steep. We explain this effect below.

In the absence of the trap (V0 = 0), our results are iden-
tical with those obtained for the homogeneous system. In this 
case, the topological phase is marked in figures 3(a)–(c) by the 
solid red line between points A and B, whereas A and B points 
indicate boundaries of the topological phase mentioned when 
discussing figure 2. This system is analogous to the nanowire 
system realized experimentally in solids and mentioned in 
section  1. In ultracold gasses, this situation formally corre-
sponds to a quantum well with an infinite barrier at its edges.

Any non-zero value of V0 affects the regime in which 
MBS can be realized. This is a consequence of the local 
modifications of the topological phase. The change of 
the effective chemical potential µ̄(i, τ) leads to the situ-
ation that not every site in the system fulfills the constraint 
h >

√
∆2 + (2t + µ̄(i, τ))2 . Therefore, the topological phase 

can vanish on some sites. This is clearly visible in figure 3(b), 
which shows the ratio of the optical lattice sites obeying the 
above condition to the total number of sites. We notice that the 
topological phase forms locally around the chemical poten-
tial µ ∼ −2t and, with increasing V0, moves towards higher 
values of μ. For very steep curvature of the harmonic trap, 
the topological phase disappears. In this case, the extreme 
decrease of the Fermi radius can be observed and the reduction 
of the distance between MBS localized around it takes place 
(around blue star). As a result, the possibility of an overlap 
increases and depends on the Fermi radius (which here is 
defined as a half-distance between the MBS). It is comparable 
with the case in which MBS are localized at the end of a long 
1D lattice. Then, the spatial extension of the Majorana wave-
function ζM (i.e. the characteristic length which describes 
the exponential decay of the MBS in space [97]) is compa-
rable with the superconducting coherence length ζc (i.e. the 
Cooper pair size) [98]. If the distance between the Majorana 
wavefunctions (i.e. the distance between the maxima of 
Majorana wavefunctions) is too small (smaller than ζc), then 

Figure 3.  The phase diagram obtained for the harmonic trap V0δr2 ((a)–(c)) and for the Gaussian-like potential Λ0 exp
(
−δr2/2σ2

)
 (d), 

where δr is the distance from the center of the system and σ is the potential width. The solid black lines and the dashed red lines show 
the boundaries of the topological phase, which supports the realization of Majorana quasiparticles Q = −1, in the case of the system with 
N  =  600 and 900 sites, respectively. The trivial phase corresponds to Q = 1. Panels (a) and (b) show the chemical potential μ or (panel (c)) 
the average number of particles n versus the potential at the edge of the trapping potential, in the case of the harmonic trap. Background 
color in panel (b) shows the ratio of the sites being in the local topological phase to the total number of sites in the lattice. The results are 
obtained at fixed h  =  0.3t. Panel (d) shows how the parameters Λ0 and σ of the Gaussian potential affect the topological phase. The results 
are obtained at fixed µ = −2.18t and h  =  0.3t. The green star shows the values of parameters used in our calculations. The blue star in the 
panels ((a)–(c)) indicates the region for which the strong influence on the size system appears, whereas the red line between A and B points 
illustrates the region of parameters in the case of the finite homogeneous system (without a boundary condition) in which the Majorana 
bound states can exist.

5 Another relevant energy scale would be a value of the trapping potential 
at the Fermi radius, understood as a distance from the center of the trap to 
the last occupied site [96]. However, its numerical determination is more 
complicated.
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the Majorana quasiparticles wave functions around the Fermi 
radius interfere with each other and, as a consequence, MBS 
is not observed. As a consequence, we observe the typical near 
zero-energy Andreev bound states with an exponentially small 
energy  ∼exp(−L/ζM) [95, 99].

In the case of a fixed total number of atoms, changes of 
the V0 parameter modify the effective chemical potential 
µ̄(i, τ), thereby affecting the spatial profile of particles per 
site, ni = ni↑ + ni↓, where the number of particles per site is 
given by

niσ = 〈c†iσciσ〉 =
∑

n

(
|uinσ|2f (En) + |vinσ|2f (−En)

)
,� (9)

where f (ω) = 1/ (1 + exp(ω/kBT)) is the Fermi–Dirac 
distribution. When systems differ in size N, the trapping 
potential curvature V0 yields a different Fermi radius. As a 
consequence, the boundaries of the topological phase can 
depend on the size of the system (compare the black solid 
line with the red dashed line in figures 3(a)–(c)). Using the 
mapping of the chemical potential μ onto the average number 
of particles, n = 1/N

∑
i ni, we can see how the shape of 

the trap influences the topological phase in real systems, in 
which the number of particles is fixed. When the average 
concentration n is fixed in the range between A and B points 
(the solid red line), then upon increasing the amplitude V0, 
the system evolves from the topological to the trivial super-
conducting phase. However, for fillings n above point B in 
the diagram, reentrant transitions are possible—from the 
trivial to the topological as well as from the topological to 
the trivial phase.

To illustrate this situation, we show numerical results for 
two cases: (i) when the whole system is in the topological 
phase and, (ii) when only a part of the system is in the topo-
logical phase (see the left and right panels in figure 4). For both 
cases, the Fermi radius is comparable to the system size. In the 
first case, when all sites are in the topological phase (marked 
by dark yellow background color in panel (a), only one pair of 
MBS is created on the edges of the system (i.e. there are only 
two eigenvalues with zero energy—see panel (f). This is also 
visible in LDOS (panel (c)) or the Majorana density (panel 
(e)). Situation changes in the case when the shape of the trap-
ping potential allows for two locally separated topological 
regions, nearby the edge of the system, while the central part 
remains in the trivial phase (panel (b)). Under such circum-
stances, there appears one pair of MBS in each topological 
region, as reported in [54, 92–95]. We then obtain four-fold 
degeneracy of the zero-energy eigenvalue (panel (h)).

We also studied the Gaussian trapping potential (figure 
3(d)), investigating for which combinations of parameters Λ0 
and σ the topological phase occurs. A trapping potential in this 
form can be regarded as a quantum well with smooth edges. As 
a consequence, for chosen range of parameters, the Gaussian 
potential allows for the topological superconductivity without 
any phase separation. For extremely small σ (i.e. very steep 
borders of the trapping potential), the system resembles a 
uniform nanowire of a finite length, which (at fixed value of 
the chemical potential and the magnetic field) is in the topo-
logical phase. Upon increasing the width σ, one observes that 
the range of the topological phase shifts to the smaller ampl
itude Λ0 of the Gaussian trapping potential (which effectively 

Figure 4.  Examples of an influence of the harmonic trapping potential on the realization of the topological phase in the 1D system with 
N  =  600 sites. The left column shows the results for V0(N/2)2/t = 0.5, µ = −1.8t and the right one for V0(N/2)2/t = 0.75, µ = −1.5t, 
respectively. Panels (a) and (b) display the spatial profiles of the trapping potential Vi (red solid line) and the distribution of particles ni 
(blue solid line). Panels (c) and (d) illustrate the local density of states, whereas panels (e) and (g)—the Majorana density PM. Insets (f) and 
(h) show the eigenvalues of (3) around the zero energy. Green circles at panels (c) and (d) show the place where the Majorana quasiparticles 
are localized.
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corresponds to changes of the average number of particles in 
the quantum well with non-homogeneous edge). In this case, 
changeover form the topological to the trivial phase depends 
on the choice of parameters. For further analysis we studied the 
trapping potential of the Gaussian form (with flat bottom and 
the Gaussian distribution boundary shape), using Λ0 = 10t  
and σ = 20 (marked by the green star in figure 3(d)).

3.2.  Majorana quasi-particles driven by internal scattering 
barrier

We discuss now the gradual emergence of additional (internal) 
Majorana quasiparticles induced by the scattering potential 
centered at a bottom of the confining potential. To visualize 
such process, we assumed time-dependent parameters Λ0 and 
σ and studied ‘non-Markovian’ evolution of the quasiparticle 
spectrum, assuming that at each time step τ the system is in 
an equilibrium configuration that is achieved adiabatically. In 
other words, the actual configuration depends solely on the 
scattering potential at a given step τ. It should be mentioned 
that more realistic Markovian evolution can be considered 
using e.g. the Floquet formalism [16, 100–104] or the Keldysh 
formalism [105, 106]. However, this issue is beyond the scope 
of our present study.

We assumed that the scattering potential evolves in the fol-
lowing way: in region A, the height Λ0 increases with a fixed 
broadening σ and in region B, the width σ increases keeping 
a constant height Λ0. For specific computations, we imposed 
Λ0(τ) = 5τ/75, σ(τ) = 5 (for τ < 75), and Λ0(τ) = 5 and 
σ(τ) = 5 + (τ − 75)/4 (for τ � 75), respectively6. In both 
cases, the system is in the topologically non-trivial super-
conducting state. We kept the fixed concentration n � 0.16 
(T  =  0) of atoms by tuning the chemical potential, which 
varied rather insignificantly in the interval τ ∈ 〈0, 100〉. 
This concentration yields µ � −2.18t  in the first step, which 
satisfies the condition for realization of the topological 

superconducting phase. Under such conditions, the MBS on 
both sides of the system appear.

For the varying scattering barrier7, we determined the spa-
tially dependent spectrum (4), starting from the situation with 
one pair of edge MBS (figure 5(a)). Such evolving scattering 
potential gradually induced the internal pair of the MBS, 
close-by to the internal barrier. The final spectrum of the 
system (at time step 100) is displayed in figure 5(b).

By investigating the low-energy eigenvalues of the system 
(figure 6), we noticed that two Andreev states tend to form the 
Majorana quasiparticles already from the 5th step onwards. 
Such peaks, however, do not correspond to the zero-energy 
of the quasiparticles. For recognizing the true Majorana 
modes and spotting their spatial localization, one can use the 
density PM(i), which distinguishes the Majorana from the 
ordinary Andreev states [107, 108]. Let us remark that the 

Figure 5.  The spatially-dependent spectrum of fermionic atoms 
in the Gaussian trap at time step 0 (a) and with the internal barrier, 
after the creation of an additional pair of Majorana bound states at 
time step 100 (b).

6 See supplemental material pot.mp4 available online at stacks.iop.org/
JPhysCM/30/355602/mmedia for an illustration of the changes in a profile 
of the trapping potential.

7 See supplemental material ldos.mp4 for an illustration of the evolution  
of a spatially-dependent spectrum of the fermionic atoms in the Gaussian 
trap.

Figure 6.  Evolution of the low-energy eigenvalues of the system 
(3) with respect to the varying potential barrier, for the parameters 
described in the main text. Region A refers to an increasing height 
of the barrier amplitude and region B to a widening of the barrier, 
respectively. The dotted blue (solid red) lines correspond to the 
quasiparticles at the external boundary (internal barrier) potential. 
The grey area denotes the region of the ordinary (finite-energy) 
Andreev bound states. The inset displays a zoom of the main 
figure for steps 〈40; 60〉, at which the internal Majorana modes are 
created.

Figure 7.  Density of the Majorana states PM for a varying barrier 
potential. The primary (PM) and induced Majorana quasiparticles 
are at the edges of the trapping potential and near the internal 
barrier, respectively.
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zero-energy quasiparticles can be induced by a disorder or 
by the Kondo effect, so it is very important to properly iden-
tify the Majorana modes [22]. Figure 7 shows the numerical 
results for PM(i), where the true Majorana8 modes gradu-
ally emerge around τ ≈ 45 (see inset in figure 6), where the 
Majorana density PM(45) = 10−9. At earlier stages, when the 
potential barrier it not high enough, these internal quasipar-
ticle states overlap with each other significantly, being hardly 
detectable in the spectral function PM(i) for τ � 45. We 
hence conclude that the profiles of both the trapping potential 
and the internal scattering barrier must be carefully designed 
in order to achieve the zero-energy Majorana quasiparticles in 
the ultracold fermionic atom systems.

4.  Summary

We investigated the possible realization of Majorana quasipar-
ticles in a one dimensional trapped fermionic system, within 
the scenario proposed in [16]. Our study indicates that the 
MBS are very sensitive to the trapping potential, preferring 
its flat shapes. We have investigated this effect, plotting the 
phase diagram of the topological phase (characterized by a 
change of the parity Q) with respect to the parameters of the 
(parabolic and Gaussian) trapping potentials. In practice, their 
profiles can be controllably designed by counter-propagating 
laser beams.

We analyzed the system in which one pair of Majorana 
quasiparticles initially exists. We also considered an internal 
quantum defect, which can create an additional pair of MBS 
in a continuous way, upon changing the height and width of 
the potential barrier, without disappearance of the initial one. 
This process should be feasible in ultracold gases by applying 
external laser beams. Similar effects might be also achieved in 
solid state realizations, with appropriate gating of individual 
sites in the proximitized superconducting nanowires [15]. 
We have shown that such additional scattering potential has 
to be large/wide enough in order to obtain the zero-energy 
Majorana quasiparticles. This could be important for future 
realizations of their braiding, using various interfaces of topo-
logical and non-topological superconducting regions.

Our study of internal MBS in ultracold gases could be inter-
esting for the perspective of quantum computing [13, 109]. Two 
pairs of MBS with opposite polarizations [56] can be written/
read without any risk of decoherence, because of their topo-
logical protection. If the saved information is copied into sep-
arate parts in the system, then information will survive in one 
of the qubits, while the second qubit can be used for additional 
quantum operations. Finally, the initial information can be con-
fronted with results of computations performed in the meantime.
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