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The boson–fermion model was proposed to describe superconductiv-

ity in short coherence length superconductors. In this work we use it to

study impurity induced inhomogeneities in high temperature superconduc-

tors as found in numerous scanning tunnelling measurements. The model

was formulated in real space and solved with help of Bogoliubov–de Gennes

approach. Disorder in the boson or fermion subsystem is directly coupled to

the superconducting order parameter and leads to severe changes of super-

conducting properties like local order parameter and density of states. We

present the results for many impurities randomly distributed over otherwise

clean and periodic two-dimensional square lattice.

PACS numbers: 71.10.Fd, 74.20.−z, 74.81.−g

1. Introduction

The boson–fermion (BF) model assumes the existence in the system of two
kinds of interacting quantum objects [1] consisting of (usually) local and immo-
bile bosonic particles (doubly charged preformed pairs) interacting with mobile
fermions (electrons). It is the boson–fermion scattering which induces the con-
densation transition in bosonic and superconducting transition in fermionic sub-
system [2]. In real materials, as e.g. doped high-temperature superconductors
(HTS), one expects both bosonic and fermionic parameters to depend on the local
environment and thus to be random variables.

Here we present results of calculations of such important parameters as lo-
cal value of the gap parameter ∆i and local density of states Ni(E) at lattice
site i. ∆i and Ni(E) are subject to measurements with help of scanning tun-
nelling microscope (STM). The STM spectra of many high temperature supercon-
ductors [3], e.g. Bi2Sr2CaCu2O8+δ, indeed show the intrinsic inhomogeneities of
∆i and Ni(E) extending over the scales of few nanometres.
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Even though the microscopic origin of these inhomogeneities remains un-
clear, some experiments show positive correlation between location of the oxygen
dopant and the value of local order parameters. Based on this scenario theoreti-
cal approaches have been proposed in which authors calculate local properties of
the system by means of real space Bogoliubov–de Gennes approach, using Hub-
bard [4], t–J [5] or similar models with disorder in normal (density) or anomalous
(Cooper) channel [6]. To account for possible sources of inhomogeneities we use
the boson–fermion model [1] in the form

ĤBF =
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tij ĉ
†
iσ ĉjσ +

∑

iσ

(
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†
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†
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)
, (1)

where i and j denote lattice sites of the square lattice, ĉ†i,σ (ĉi,σ) stand for cre-

ation (annihilation) operator of fermion at the site i with spin σ and b̂†i and b̂i are
creation and annihilation operators of hard-core bosons at the site i. µ denotes
chemical potential of the system and tij are hopping integrals. For numerical
calculations we assume hopping integrals to nearest and next nearest neighbours
t1, t2 to be different from zero. As noted earlier, the presence of oxygen impurities
in Bi family of HTS on one hand is the source of free carriers (holes) and at the
same time introduces disorder into the materials. Undoped system is insulating.
We assume that this disorder can be modelled by random on-site energies V imp

i in
fermion subsystem and random hard-core boson energies δEB

i [7, 8]. To account
for the short coherence length and d-wave symmetry of the superconducting or-
der parameter we assume that the boson–fermion coupling gij takes on non-zero
value for nearest neighbour sites 〈i, j〉 only and is equal +g if j = i± x and −g if
j = i± y.

Application of standard Hartree–Fock–Bogoliubov decoupling leads to
ĤBF = ĤB + ĤF, where ĤB is single site bosonic Hamiltonian with parameters
depending on the fermionic order parameter. ĤF is the Hamiltonian describing
fermionic subsystem [8]. Standard statistical approach allows the exact solution
of the boson Hamiltonian ĤB. One finds

〈b̂†i b̂i〉 =
1
2
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i − 2µ

4γi
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(
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)
, (2)
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2γi
tanh
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Here

γi =

√(
EB + δEB

i − 2µ

2

)2

+ |χi|2, χi =
∑

〈j〉

gij

2
〈ĉi,↓ĉj,↑〉

and ∆ij = gji

2 〈b̂j〉. It is ∆ij which couples two subsystems as is evident from
Eq. (4) below.
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The fermion part has the standard BCS-structure and we diagonalise it by
the Bogoliubov–Valatin transformation, which yields the following Bogoliubov–de
Gennes equations [8]
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We solve numerically the above Bogoliubov–de Gennes equations in real
space iteratively to get self-consistent values for all ∆ij with high accuracy. Even
though our model and calculations are motivated by the experimental results ob-
tained mainly for Bi family high temperature superconductors we do not try to
model the actual experimental situation here. Instead we shall present the results
on local properties of disordered boson–fermion model. In this respect the paper
is an extension of the previous coherent potential approximation (CPA) calcula-
tions [8] of the same model.

2. Results and discussion

Before we start the discussion of the results let us remind that it is the po-
sition of the boson level with respect to the Fermi level EB which tells us if the
system is superconducting at all. Due to phase space restrictions at low temper-
atures the scattering of preformed bosons is allowed only, if the bosonic level is
close enough to the Fermi level.

To account for disorder in the system the boson energies EB
i = EB + δEB

i

were randomly and uniformly distributed around level EB over the interval ∆EB.
Physically this corresponds to fluctuating pairing potential [6], which in BF model
arises in a very natural way.

Due to the above mentioned property of the model the magnitude of the local
order parameter 〈bi〉 (not shown) obtained as a solution of Eq. (4) is correlated
with the position of the impurity provided we identify the dopant oxygens as e.g.
those in Bi2Sr2CaCu2O8+δ with the pairing centres. From the same calculations
it can also be seen that both order parameters 〈bi〉 and χi take on large values in
the same regions of space. The direct proportionality of both order parameters is
a general property of the model [2], which can also be inferred from the mean-field
Eq. (3).

In Fig. 1 we show the effect of disorder in bosonic (random EB
i levels —

left part) and fermionic (random V imp
i — right part) subsystems on the average

values of the order parameters |〈bi〉| and |χi|. In this figure the clean system
(characterised by EB = −0.2t) would correspond to the experimental situation
with all sites contributing to boson–fermion scattering. With increase in ∆EB

the number of sites at which this scattering takes place diminishes and the order
parameter is strongly reduced.

It is interesting to note that despite the d-wave character of superconductiv-
ity the disorder acting on the fermionic subsystem relatively weakly affects both
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Fig. 1. Average values of |〈bi〉| and |χi| as a function of disorder in the boson (left part)

and fermion (right part) subsystem. Inset to left part: The temperature dependence of

an average |〈bi〉| compared with similar dependence at the sites at which the value of

the gap is larger/smaller than the average. The results were obtained for t1 = t = 1.0,

t2 = −0.3t, µ = 0.0t, g = 0.8t, EB = −0.2t.

Fig. 2. Maps of amplitude of bosonic order parameter |〈bi〉| for different values of

temperature: T = 0.0t (left part), T = 0.1t ≈ 0.9Tc (right part). Other parameters are

the same as in Fig. 1.

order parameters (Fig. 1, right part). More severe changes of both |〈bi〉| and |χi|
are observed for very large disorder. The results presented in inset to Fig. 1 (left)
show that the whole system is characterised by the unique transition temperature.
This result is correct from thermodynamical point of view. At the same time it
indicates that for the system studied here there exists a coupling between regions
of large and small pairing potential, preventing the appearance of isolated regions
with different values of the transition temperatures, even though the gaps near Tc

do vary a lot as is also visible from Fig. 2 — right part. Indeed, rough estimation
of the coherence length leads to values of order 1/3 to 1/2 of the system size. This
shows that all domains are coupled. In Fig. 2 we plot the maps of bosonic order
parameter |〈bi〉| of our 23×23 large system at different temperatures. They are
shown in grey scale for two values of temperature — T ¿ Tc (left part) and for
T ≈ 0.9Tc (right part). At temperatures close to Tc the regions of large gap seem
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to be surrounded by the non-superconducting material. Close inspection shows
that the whole system is superconducting but most of it is characterised by very
low value of the gap, while large gap persists in few regions of the sample. We
do not address the pseudogap problem here, as our mean-field approach is not
suitable in that region of parameter space.

In conclusion, we studied the properties of disordered boson–fermion model
allowing for two different disorder sources. The randomness in boson energies
strongly degrades superconductivity, while disorder acting on electron subsys-
tem V imp

i has much weaker effect on superconducting state. The local values
of fermionic order parameter positively correlate with positions of “pairing im-
purities” characterised by small values of EB. Even strongly disordered system
possesses single superconducting transition temperature despite large fluctuations
of the gap magnitude.
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J. Ranninger, K.I. Wysokiński, Acta Phys. Pol. B 34, 493 (2003).


