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G Górski1,3 , K Kucab1 and T Domański2
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Abstract
We investigate the properties of a quantum dot embedded between the normal and
superconducting leads which is additionally side-attached to the topological superconducting
nanowire, hosting the Majorana modes. This setup enables formation of the trivial
(finite-energy) bound states induced in the quantum dot through the superconducting
proximity effect, coexisting/competing with the topological (zero-energy) mode transmitted
from the topological superconductor. We analyze their interplay, focusing on a role played by
the external magnetic field. To distinguish between these bound states we analyze the
qualitative and quantitative features manifested in the subgap charge tunneling originating
under nonequilibrium conditions from the Andreev (particle to hole) scattering processes.

Keywords: Andreev scattering, bound states, superconducting proximity effect, Majorana
quasiparticles

(Some figures may appear in colour only in the online journal)

1. Introduction

Due to the recent fast development of information techniques
there is a growing need for novel devices, which could be
alternative to the conventional semiconductor technology. One
of promising routes in this pursuit is related to the quan-
tum bits and quantum computations based on the quasipar-
ticles, obeying non-abelian statistics [1–4]. Good candidates
for such exotic quasiparticles are the Majorana zero-energy
modes appearing at boundaries and/or defects in the topologi-
cal superconductors [5, 6]. They can be regarded as mutations
of the in-gap bound states [7] formed at the chemical potential
which consist of the equal particle and hole ingredients, being
thus identical to their own antiparticles [8–10]. Various imple-
mentations for realization of such Majorana quasiparticles
have used the one-dimensional semiconducting (InSb or InAs)
nanowires (NWs) characterized by the strong spin–orbit inter-

3 Author to whom any correspondence should be addressed.

action [11–16] or nanochains of the selforganized magnetic
atoms [17–21] proximitized to conventional s-wave supercon-
ductors. The superconducting (SC) proximity effect along with
the spin–orbit interaction and the Zeeman field induce the
intersite p-wave pairing of electrons. At some critical magnetic
field (B ∼ 1 T) it evolves to the topological phase, hosting the
Majorana boundary modes.

Experimental tools for detecting these Majorana quasipar-
ticles have predominantly relied on the charge transport mea-
surements [11, 13, 15–19, 21, 22] looking for appearance of
the zero-bias conductance peak (ZBCP) [23–25]. Similar zero-
bias peak, however, can originate from other phenomena, such
as disorder, critical field anisotropy, finite temperatures or the
Kondo physics [26]. The latter effect has been thoroughly
investigated, considering the correlated quantum dots (QDs)
coupled either to the metallic contacts [27, 28] or embed-
ded in the hybrid superconductor–semiconductor nanostruc-
tures [29–33]. In order to distinguish such ZBCP originating
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Figure 1. Scheme of a QD coupled to the normal (N) metallic tip
and SC substrate which is additionally hybridized with the
topological NW, hosting the Majorana modes η1 and η2.

from the Majorana bound states (MBS) from other effects
(unrelated to the topological superconductivity) one hence
needs the additionally supporting evidence.

In this regard, Liu and Baranger [34] have proposed to use
the QD side-attached to the topological superconductor as a
spectrometer of the Majorana features. In their setup the tun-
neling current flowing through the QD coupled to both metal-
lic leads was predicted to exhibit the zero-bias conductance
e2/2h, originating from a fractional quantum interference with
the Majorana mode. This characteristic value can be contrasted
with the situations, when conventional fermion mode (trans-
mitted e.g. from another QD whose energy level is near the
chemical potential) would completely suppress the linear con-
ductance down to zero [35–39]. Various hybrid configura-
tions with the QDs attached to the topological NW have been
investigated by a number of groups, considering the metallic
[40–47] or ferromagnetic leads [48, 49].

We consider here a different geometry (figure 1), in which
the QD is embedded into the Andreev-type tunneling setup
and is side-coupled to the topological SC NW. The SC prox-
imity effect induces the on-dot pairing whose consequences
can be probed by the tunneling current driven by the bias V
applied between the conducting and SC leads (we assume the
superconductor to be grounded). For |V| lower than the pairing
energy gapΔ, the charge transport would be contributed solely
by the Andreev (particle-to-hole) scattering processes [50]. In
absence of the Majorana wire the optimal differential conduc-
tance of this setup would be 4e2/h, when the bias voltage is
tuned to the energy of the bound state. Similar configurations
with the Majorana wires have been previously addressed by
several groups [51–54]. In particular, it has been predicted
[52, 53] that a quantum interference caused by the MBS would
reduce the differential conductance to e2/h.

In this paper we study in detail the spectroscopic prop-
erties, inspecting their evolution against the magnetic field.
Charge tunneling through the correlated QD coupled between
the normal leads is usually characterized by the optimal differ-
ential conductance at zero magnetic field. In presence of the
magnetic field the Kondo peak would split (through the Zee-
man effect), suppressing the zero-bias conductance [55–57].
In contrast to such behavior, the magnetic field applied either
to N–QD–SC or S–QD–S junctions affects the quasiparticle
energies of the bound states [58]. Under specific conditions
they can cross each other, giving rise to enhancement of the

zero-bias conductance. By inspecting ZBCP as a function of
magnetic field one can hence observe non-monotonous behav-
ior [12, 29, 59, 60]. Experimental measurements for the hybrid
system (shown in figure 1) revealed, that the optimal value
of the ZBCP is stabilized over a broad range of the magnetic
field [11, 13, 15, 61]. We analyze here such dependence of
the Andreev current vs the magnetic field and show, that its
differential conductance can be helpful for distinguishing the
Majorana from the trivial quasiparticles.

The paper is organized as follows. In section 2 we for-
mulate the microscopic model and present the formalism for
determination of the subgap current. Next, we study the differ-
ential conductance of N–QD–S setup in absence of the MBS
(section 3.1) and compare these results with the setup, in which
the QD is coupled to the topological superconductor. In partic-
ular, we consider the limits of the long (section 3.2) and short
(section 3.3) wire. In section 4 we summarize our results and
in appendix A briefly discuss influence of the spin-polarized
coupling between QD and NW.

2. The model and technique

We consider N–QD–SC junction with the topological SC
wire attached to QD (figure 1). Our main objective is to
study influence of the magnetic field on transport properties
of this heterostructure. The effective low-energy scenario of
the topological NW can be described by

HMQD = iεmη1η2 +
∑
α=1,2

λα

(
ηαd†

↑ + d↑ηα

)
, (1)

where ηα = η†α are the self-conjugated operators, εm stands
for the overlap between MBSs, λα is the hybridization of α-
MBS to the QD. As usually, d†

σ(dσ) denote the creation (anni-
hilation) operators of the QD electron with spin σ. In the
main part of this paper we assume the MBSs coupled only to
σ =↑ electrons. More general situation, taking into account the
couplings to both spins, is considered in appendix A.

Our setup can be described by the Hamiltonian

H = HMQD +
∑
σ

εσd†
σdσ +

∑
β=S,N

(
Hβ + Hβ−QD

)
(2)

where εσ is the spin-dependent QD energy. The Majorana
modes usually emerge at some moderate magnetic field, on
the order of 1 T. This affects the QD energy levels εσ , splitting
them by the Zeeman energy ε↓ − ε↑ = μBgB0 [62], where μB

is the Bohr magneton and B0 stands for the magnetic field.
The other contributions Hβ appearing in (2) refer to the nor-

mal β = N and SC β = S leads, respectively. We describe the
SC lead by the BCS-type Hamiltonian

HS =
∑
k,σ

ξkSc†kσSckσS −
∑

k

(
Δc†k↑Sc†−k↓S + h.c.

)
(3)

with c†kσS(ckσS) being the creation (annihilation) operators of
electrons whose energy ξkS = εkS − μS is measured from the
chemical potential μS. We treat this chemical potential as a
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convenient reference level for all energies (μS ≡ 0). The pair-
ing gap Δ depends on the magnetic field. Following [30], we
choose

Δ = Δ0

√
1 − (B/Bcr)2, (4)

where Bcr is the critical field at which the gap closes. The
normal electrode is treated as a free fermion gas

HN =
∑
k,σ

ξkNc†kσNckσN, (5)

where c†kσN(ckσN) denote the creation (annihilation) operators
of electron with momentum k and spin σ whose energy ξkN =
εkN − μN is measured with respect to the chemical potential
μN. Applying the bias voltage V one can lift/lower this chem-
ical potential μN = eV. Couplings of the QD to both external
reservoirs is expressed by the hybridization term

Hβ−QD =
∑
k,σ

(Vkβd†
σckσβ + h.c.) (6)

with the matrix elements Vkβ . We introduce the auxiliary
couplings Γβ = 2π

∑
k|Vkβ |2δ(ω − ξkβ), assuming them to be

constant in the subgap regime.
For convenience, we replace η1,2 by the standard fermion

operators [9] η1 = 1√
2
( f + f †), η2 = i√

2
( f † − f ) and repre-

sent the couplings λα of QD to the Majorana modes as λ1 =√
2tm1 and λ2 = i

√
2tm2, respectively. Equation (1) simplifies

then to the following structure [45]

HMQD = εm

(
f † f − 1

2

)
+ t+

(
d†
↑ f − d↑ f †

)

+ t−
(

d†
↑ f † − d↑ f

)
, (7)

where t+ = tm1 + tm2 and t− = tm1 − tm2.

2.1. Method

The spectral and transport properties of our sys-
tem can be determined within the Green’s function
approach. The SC proximity effect can be taken into
account, using the Nambu representation augmented
with the fermionic degrees of freedom related to the
MBSs Ψ = (d↑, d†

↑, d↓, d†
↓, f , f †). For this purpose we

consider the retarded spin-Nambu Green’s function
G(t) = −iθ(t)〈Ψ(t)Ψ†(0) +Ψ†(0)Ψ(t)〉, where θ(t) is the step
function, 〈. . .〉 denotes the statistical averaging, and the time-
dependent operators are defined as Ψ(t) = eitH/�Ψe−itH/�.
Fourier transform of G(t) takes the following form

G−1(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω − ε↑ − Σ0(ω) 0 0 −Σ1(ω) −t+ −t−
0 ω + ε↑ − Σ0(ω) Σ∗

1(−ω) 0 t− t+
0 Σ∗

1(−ω) ω − ε↓ − Σ0(ω) 0 0 0
−Σ1(ω) 0 0 ω + ε↓ − Σ0(ω) 0 0
−t+ t− 0 0 ω − εm 0
−t− t+ 0 0 0 ω + εm

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where the selfenergy terms are given by [63]

Σ0(ω) = −i
ΓN

2
− ΓS

2
ϕ(ω), (9)

Σ1(ω) = −ΓS

2
Δ

ω
ϕ(ω) (10)

and

ϕ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

|ω|√
ω2 −Δ2

for |ω| > Δ,

−i
ω√

Δ2 − ω2
for |ω| < Δ.

(11)

2.2. Tunneling current

The charge current, IT =
∑

σ

(
IσA + IσQ

)
, induced through

N–QD–SC heterojunction by the voltage V consists of the
Andreev IσA and the quasi-particle contributions IσQ, respec-
tively. Within the Landauer-type approach they can be
expressed as [63, 64]

IσA =
2e
h

∫
Tσ

A(ω) [ f (ω − eV) − f (ω + eV)] dω, (12)

IσQ =
2e
h

∫
Tσ

Q(ω) [ f (ω − eV) − f (ω)] dω, (13)

where f (ω) =
[
1 + exp

(
ω/kBT

)]−1
denotes the Fermi–Dirac

distribution function. The spin-resolved Andreev transmit-
tance is given by

T↑
A(ω) = |ΓN|2|G14(ω)|2, (14)

T↓
A(ω) = |ΓN|2|G23(ω)|2 (15)

and the quasi-particle transmittance is

T↑
Q(ω) = ΓNΓS Re[ϕ(ω)]

×
[
|G11(ω)|2 + |G14(ω)|2 − 2Δ

ω
Re

[
G11(ω)G∗

14(ω)
]]

(16)

T↓
Q(ω) = ΓNΓS Re[ϕ(ω)]

×
[
|G33(ω)|2 + |G23(ω)|2 + 2Δ

ω
Re

[
G33(ω)G∗

23(ω)
]]

.

(17)
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Figure 2. Left panel: the differential conductance G = dI/dV as a
function of the bias voltage V and magnetic field B for ΓS = 2,
ΓN = 0.25 and tm1 = 0. Right panel: dependence of the zero-bias
conductance G0 = G(0) on magnetic field.

The Andreev current occurs when electron arriving from
the normal lead is converted (on QD) into the pair and next
propagates to the SC electrode, while simultaneously a hole
with opposite spin is reflected back to the normal lead. Con-
tributions of the Andreev current, IA, and the quasi-particle
current, IσQ, to the total charge transport are sensitive to the
ratio |eV| /Δ. For |eV| < Δ the quasi-particle current vanishes
IσQ = 0, therefore the subgap transport is contributed solely by
the Andreev refection mechanism. For |eV| > Δ the dominant
contribution comes from the quasi-particle current, IσQ, and for
increasing |V| the particle–hole reflections become less and
less efficient [65].

3. The numerical results

In this section we analyze the differential conductance G =
dI/dV of the tunneling current I =

∑
σ

(
IσA + IσQ

)
, focusing on

its variation with respect to the magnetic field. Hybridization
of the QD with any SC reservoir induces the electron pair-
ing, leading to formation of the in-gap bound states symmet-
rically around the chemical potential μS. Since the magnetic
field splits the QD level ε↓ 
= ε↑ this is going to affect the
in-gap states and shall be manifested in the sub-gap conduc-
tance [12, 29, 59, 60]. In particular, such bound states can
also cross each other, undergoing the quantum phase transition
[66].

In the present hybrid structure, comprising the side-
attached topological superconductor, there is also a possibility
of the Majorana quasiparticle leakage onto the QD. This has
been indeed evidenced empirically by the ZBCP [11, 13, 15,
16, 22, 60, 67] in the tunneling measurements. In what follows,
we show the numerical results obtained for N–QD–SC het-
erostructure, considering the trivial case λα = 0 (section 3.1)
and the same heterostructure with the QD coupled to the
long (section 3.2) and short (section 3.3) topological NWs,
respectively.

We choose for computations the zero-temperature pairing
gap as the energy unit (Δ0 = 1). Our studies are done for the
strong coupling to SC lead (ΓS = 2), assuming the weak cou-
pling to the normal N electrode (ΓN = 0.25) because otherwise
the quasiparticle broadening would smear the in-gap features.
The critical field, Bcr, at which the SC gap closes is imposed
as Bcr = 1.7Δ0.

3.1. Magnetic field effect on trivial states

Let us consider first the magnetic field dependent transport
properties of N–QD–SC heterostructure in absence of the
Majorana fermions (tm1,m2 = 0) [29, 64]. Coupling of the QD
to the SC lead induces the on-dot pairing, which is manifested
by the gaped density of states and emergence of the in-gap
bound states. Energies of these trivial bound states depend on
εσ , Δ, and ΓS. In the limit ΓN → 0 such bound states appear

at z

(
± ε↑−ε↓

2 ± 1
2

√
(ε↑ + ε↓)2 + Γ2

S

)
where z = (1 + ΓS

2Δ )−1

is quasiparticle weight factor [68, 69]. Their positions can
be observed experimentally by enhancement of the subgap
conductance [29, 60, 70–73].

The external magnetic field splits these Andreev peaks [29,
59, 60, 64] because of the spin-dependent QD level ε↑,↓ = ε±
B, where B = 1

2 gμBB0. In consequence, we observe appear-
ance of four bound states. A pair of the inner bound states even-
tually cross each other, when B ≈ ΓS/2. Figure 2 displays the
differential conductance G = dI/dV versus the bias voltage V
and the magnetic field B obtained for ε = 0. The white dashed
line refers to eV = Δ(B) and denotes a boundary between the
pure subgap Andreev conductance GA with another region,
where the quasi-particle conductance GQ is finite. We notice,
that by increasing the magnetic field the outer bound states
merge with a continuum region, while the inner bound states
reveal the aforementioned crossing at B ≈ ΓS/2. At this par-
ticular magnetic field we observe, that the zero-bias conduc-
tance approaches the optimal value equal to 4e2/h (see the
right panel in figure 2). Further increase of the magnetic field
separates these bound states, therefore the zero-bias conduc-
tance is suppressed. At the critical magnetic field (Bcr ≈ 1.7)
the SC gap closes. For this reason at higher magnetic fields
the conductance originates entirely from the quasi-particle tun-
neling [65]. Such changeover is manifested by a tiny dis-
continuity of the linear conductance G0, when approaching
B → Bcr.

Figure 3 presents the differential conductance with respect
to the bias voltage V and the QD level ε (which can be varied by
the gate potential) obtained for several values of the magnetic
field, as indicated. At B = 0 we observe only one pair of the
bound states with the optimal conductance appearing at finite
voltage. For the weak magnetic field there are four branches
of the in-gap bound states. At the critical magnetic field B =
ΓS/2 a pair of the inner bound states overlap with one another.
At the stronger magnetic field the inner pair of bound states
takes a form of the loop structure, whereas the outer bound
states merge with a continuum (where they are hardly visible).
Similar qualitative behavior has been observed experimentally
by Deng et al [13] and by other groups [12, 29].

3.2. QD coupled to a long topological wire

The spectroscopic properties of N–QD–SC heterojunction
substantially change when the QD is coupled to the Majorana
mode(s) [51–53, 74]. To inspect the role of magnetic field, let
us first consider the long topological SC wire, where the Majo-
rana modes do not overlap with one another (εm = 0) and only
η1 is directly hybridized with the QD, tm2 = 0. Under such
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Figure 3. The differential conductance G = dI/dV of the tunneling
current flowing though N–QD–S heterostructure as a function of the
bias voltage V and the QD energy ε obtained for different values of
the magnetic field, as indicated. We used the model parameters
ΓS = 2 and ΓN = 0.25.

Figure 4. The spin-resolved spectral function ρσ(ω) and total
spectral function ρt(ω) varying with respect to the magnetic field
obtained for the weak tm1 = 0.1 (left) and strong coupling tm1 = 0.4
(right), respectively. We used the model parameters ε = 0, ΓS = 2,
ΓN = 0.25, εm = 0.

conditions the spectrum of QD reveals some novel features,
displayed in figure 4.

In absence of the magnetic field we have previously shown
[53], that the matrix Green’s function (8) is characterized by
five poles. One of them corresponds to the zero-energy Majo-
rana mode transmitted onto QD from the NW and the other

ones appearing at±z
√

C ± 1
2

√
D, where C =

ε2
↑+ε2

↓
2 + Γ2

S/4 +

2t2
m1 and D = (ε2

↑ − ε2
↓ + 4t2

m1)2 + Γ2
S(ε↑ − ε↓)2, represent the

trivial bound states which are partly affected by the Majorana
mode. Such five-pole structure is particularly evident in the

Figure 5. Variation of the differential conductance G with respect to
magnetic field B and bias voltage V obtained for εm = 0, ΓS = 2,
ΓN = 0.25 and (a) tm1 = 0.1, ε = 0; (b) tm1 = 0.4, ε = 0; (c)
tm1 = 0.4, ε = −0.5; (d) tm1 = 0.4, ε = 0.5.

strong coupling (tm1 > ΓN) limit (right side panels in figure 4).
The spin resolved spectra reveal differences, mainly in the
spectral weights of the trivial bound states. In both spin sec-
tors, however, we clearly observe the common avoided cross-
ing behavior whenever the trivial bound states approach the
zero-energy mode. Spectral weight of the zero-energy mode
depends on the spin sector as well. Physically this effect comes
from the direct (indirect) coupling of the topological NW to ↑
(↓) electrons.

At B = 0 the spectrum of ↑ electrons (which is directly cou-
pled to the Majorana mode) is characterized by four peaks and
a dip at ω = 0, where the density is reduced by half in com-
parison to the system without the Majorana wire, ρ↑(0)tm1 
=0 =
0.5ρ↑(0)tm1=0. This reduction of the spectral function ρ↑(ω =
0) is caused by a partial leakage of ↑ electrons onto the
topological NW.

Influence of the Majorana quasiparticle is also well man-
ifested in the differential conductance of our heterostructure.
Figure 5 presents G(V) = dI/dV versus the magnetic field B
and the bias voltage V. In the strong coupling tm1 limit (panel
(b)) we clearly notice a considerable separation of the trivial
bound states from the Majorana mode. Upon increasing the
magnetic field the trivial bound states change their energies:
the outer ones merge with a continuum region whereas the
inner ones approach each other and gradually loose their spec-
tral weights at expense of the enhanced ZBCP. Such behavior
can be contrasted with N–QD–SC heterostructure (figure 2),
where the ZBCP is driven solely from a crossing of the
trivial bound states. This avoided-crossing tendency between
the trivial and topological bound states have been indeed
observed in presence of the magnetic field by the Copenhagen
group [16].

The bottom panels in figure 5 show the tunneling conduc-
tance dI/dV obtained for non-zero energy level of the QD
(ε 
= 0), which could be realized by applying the gate poten-
tial. ZBCP turns out to be sensitive, both to the magnetic field
B and the QD energy level ε. The optimal conditions for such
zero-bias conductance G(0) are presented in figure 6. Let us

5
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Figure 6. The zero-bias conductance as a function of the magnetic
field for several values of the QD energy level ε = 0 (solid line),
ε = 0.5 (dashed line) and ε = −0.5 (dotted line). Results are
obtained for the model parameters ΓS = 2, ΓN = 0.25, εm = 0,
tm1 = 0.4.

remark, that for arbitrary ε the optimal value of the zero-bias
conductance approaches e2/h, being four-fold smaller than
G(V=0)tm1=0 in absence of the Majorana quasiparticles (see
the right panel in figure 2). This feature stems from a frac-
tional character of the Majorana mode, interfering with the
QD.

3.3. QD coupled to a short topological wire

The separated Majorana modes are pretty robust against the
perturbations from an environment, owing to their topologi-
cal protection. Any overlap, however, between the Majorana
quasiparticles εm 
= 0 or finite coupling tm2 
= 0 can spoil this
protection, inducing some novel spectroscopic features dif-
fering from the zero-energy quasiparticles [15, 33, 75–78].
For the QD–topological SC wire hybrid structures Clarke [76]
has introduced the useful concept of topological quality factor
q = 1 − tm2

tm1
and emphasized that non-abelian properties would

be preserved only when q ≈ 1.
Figure 7 displays the influence of tm2 coupling on the dif-

ferential conductance G(V) obtained for εm = 0. In compar-
ison to the case tm2 = 0 (figure 5) we notice the splitting of
the zero-bias peak into two (lower and upper) branches. In
particular, for tm2 = tm1 (panel (b) in figure 7) these branches
ultimately merge with the trivial bound states at some value
of the magnetic field (here for B ≈ 1.1), where the differential
conductance is locally enhanced. Similar behavior has been
previously predicted theoretically by Prada et al [75] for the
topological NW hybridized with N–QD–N junctions. For all
values of the magnetic field the zero-bias conductance prac-
tically vanishes G(V = 0) ≈ 0, what can be interpreted as a
result of the complete destructive quantum interference. For a
comparison let us recall, that for tm1 
= 0 and tm2 = 0 the linear
conductance is reduced only by factor 1/4 [53].

Finally let us explore influence of the magnetic field on the
transport properties of N–QD–SC setup, assuming the topo-
logical NW to be short enough to guarantee an overlap between
the Majorana quasiparticles εm 
= 0. Under such circumstances
the leaking Majorana modes induces two resonances appear-
ing in the QD spectral function. For B = 0 they occur at ω =
±εm [15, 52, 75, 79]. The magnetic field strongly affects these
features. Figure 8(a) presents the differential conductance as
a function of the bias voltage V and the magnetic field B

Figure 7. The differential conductance dI/dV as a function of the
bias voltage V and the magnetic field B obtained for different values
of tm2. Other parameters ε = 0, ΓS = 2, ΓN = 0.25, tm1 = 0.2 and
εm = 0.

Figure 8. The differential conductance dI/dV as a function of the
bias voltage V and the magnetic field B obtained for tm2 = 0,
εm = 0.2 (a) and tm2 = 0.15, εm = 0.1 (b). Other parameters ε = 0,
ΓS = 2, ΓN = 0.25 and tm1 = 0.2.

obtained for εm = 0.2 and tm2 = 0 for the same set of model
parameters as in the previous sections. Upon increasing the
magnetic field we again notice a splitting of the trivial bound
states. The inner states gradually move towards each other and
near eV ≈ ±εm they show an anti-crossing tendency from the
low-energy (Majorana) features. At the characteristic magnetic
field (here B ≈ ΓS/2) these low-energy features eventually
cross each other, enhancing the zero-bias conductance up to
4e2/h. This effect is in stark contrast with the properties of
similar setup obtained for εm = 0 (discussed in section 3.2).
This zero-bias conductance is reminiscent of the conventional
N–QD–SC heterojunction in absence of any topological SC
wire.

For the case tm2 
= 0, |εm| < tm2 (see panel (b) in figure 8)
we observe, that spectroscopic properties vary qualitatively
against the magnetic field. In the limit of weak magnetic field
the signatures of Majorana modes are induced nearby the zero
energy (like for finite εm and tm2 = 0 as shown in figure 8(a)).
Contrary to that, for the strong magnetic field we again notice
the well pronounced splitting between the lower and upper
Majorana-branches, similar to the case εm = 0 and finite tm2

presented in figure 7.

3.4. Influence of QD level

All qualitative properties discussed so far for the long
(section 3.2) and short (section 3.3) NWs are also observed,
when considering the influence of QD energy level. In prac-
tice ε could be experimentally varied by applying the gate
potentials. Figure 9 shows the anti-crossing behavior observ-
able in the tunneling conductance against the energy level ε
which occurs near ε ≈ ±B. In distinction to the system with-
out the Majorana quasiparticles (figure 3) the tunneling con-
ductance is asymmetric with respect to ε. Such characteristic

6
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Figure 9. Variation of the differential conductance dI/dV with
respect to the bias voltage V and the QD energy level ε obtained for
several magnetic fields (as indicated) using the model parameters
ΓS = 2, ΓN = 0.25, tm1 = 0.2, tm2 = 0 and εm = 0.2.

Figure 10. Variation of the differential conductance dI/dV with
respect to the bias voltage V and the QD energy level ε obtained for
εm = 0 and tm2 = 0.2 (a) or εm = 0.2 and tm2 = 0 (b). Other
parameters ΓS = 2, ΓN = 0.25, tm1 = 0.2 and B = 1.4.

dependence of G(V, ε) has been reported experimentally by
Copenhagen [13] and Delft [60] groups. Prada et al [75] ana-
lyzed the low-energy QD spectrum, taking into account the
couplings to both Majorana modes (tm1,m2 
= 0) and consider-
ing their overlap (εm 
= 0). Under such circumstances the QD
spectrum develops the characteristic bow-tie shape, especially
in the limit tm2  (tm1, εm). In our case this bow-tie struc-
ture is appearing at sufficiently large magnetic field B > ΓS/2
(figure 9(d)).

Figure 10 presents the differential conductance with respect
the QD energy level ε. We focus on two extreme situations, cor-
responding to: (i) the identical couplings of QD to both MBS
tm1 = tm2 without any overlap εm = 0, and (ii) the finite cou-
pling of QD only to the left-side MBS, assuming tm1 = εm. In
the first case we observe that, the trivial bound states merge
with the Majorana feature. This resembles the diamond struc-
ture predicted by Prada et al [75] and Clarke [76]. In the second
case we notice the crossings of Majorana features, acquiring
the characteristic bow-tie form [75].

4. Conclusions

We have theoretically studied the charge transport through
the normal metal–quantum dot–superconductor (N–QD–SC)
heterojunction, where QD is side-coupled to the topological

SC wire. We have investigated a role played by the magnetic
field, which (a) splits the QD level by the Zeeman energy and
(b) affects the energy gap of SC lead Δ(B). We have shown,
that the charge tunneling contributed by the Andreev-typescat-
tering mechanism could be useful to distinguish the Majorana
features leaking onto the QD from its trivial bound states. The
characteristic Majorana signatures would be observable, both
in the line-shapes of the differential conductance and in the
magnitude of its zero-bias value.

In the case, when QD is coupled to the long topological
SC wire (without any overlap between the Majorana modes)
the zero-bias conductance would reach the optimal value equal
to e2/h. This feature stems from a fractional character of the
Majorana quasiparticle. Our calculations show, that a pro-
nounced ZBPC would persist over a broad range of the mag-
netic field. This behavior is in stark contrast to the proper-
ties of N–QD–SC heterostructures in absence of the topolog-
ical SC wire, where a crossing of the trivial bound states (at
some magnetic field and/or QD level) could enhance the zero-
bias conductance to the maximal value 4e2/h, corresponding
to the perfect Andreev conductance [33]. For the QD cou-
pled to the short topological SC wire (where the Majorana
modes overlap with one another εm 
= 0) we obtain the zero-
bias conductance analogous to the conventional N–QD–SC
heterostructure. Fingerprints of the overlapping Majorana
quasiparticles are also evidenced in the voltage-dependent dif-
ferential conductance by the anti-crossing behavior, appearing
at V ≈ ±εm/e. Influence of the magnetic field on the spec-
troscopic properties of N–QD–S heterostructure attached to
the topological SC NW could be thus useful for detecting the
Majorana mode(s).

In future studies it would be worth to consider the corre-
lation effects driven by the Coulomb repulsion between the
opposite spin electrons in order to check the role of the Kondo
effect. In presence of the magnetic field its signatures are
expected to appear away from the zero-bias conductance, they
should be hence distinguishable from the Majorana features.
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Appendix A. Spin-dependent tunneling between
QD and topological wire

Influence of the spin-dependent tunneling between the QD
and Majorana wire on the spectral properties has been partly
investigated, considering both N–QD–N [15, 75, 80–83]
and N–QD–SC [74] heterostructures. For N–QD–N junc-
tions we have previously shown [83], that this spin-dependent
tunneling affects the polarization of transport properties,
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Figure A1. The spin-dependent spectral functions, ρσ(ω) (top and middle panels), and the differential tunneling conductance, G(V) (bottom
panels), as the functions of magnetic field B obtained for several values of the canting angle θ assuming the model parameters ε = 0,
ΓS = 2, ΓN = 0.25, εm = 0, tm1 = 0.4 and tm2 = 0.

such as the spin-dependent zero-bias conductance and spin-
dependent thermopower, while the total (finite-bias) trans-
port properties are rather very weakly dependent on the
polarization of tunneling amplitudes. In this appendix we
briefly inspect the effect of spin-polarized coupling on prop-
erties N–QD–SC heterostructure in presence of the magnetic
field.

We can describe our setup with such spin-dependent tun-
neling amplitude using the Hamiltonian

H =
∑
σ

tσ
(
d†
σ − dσ

) (
f + f †

)
+ εm

(
f † f − 1

2

)

+
∑
σ

εσd†
σdσ +

∑
β=S,N

(
Hβ + Hβ−QD

)
, (A.1)

where tσ = λ1σ/
√

2. The retarded Green’s function defined
in the spin-Nambu representation takes the following
form

G−1(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω − ε↑ − Σ0(ω) 0 0 −Σ1(ω) −t↑ −t↑
0 ω + ε↑ − Σ0(ω) Σ∗

1(−ω) 0 t↑ t↑
0 Σ∗

1(−ω) ω − ε↓ − Σ0(ω) 0 −t↓ −t↓
−Σ1(ω) 0 0 ω + ε↓ − Σ0(ω) t↓ t↓
−t↑ t↑ −t↓ t↓ ω − εm 0
−t↑ t↑ −t↓ t↓ 0 ω + εm

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.2)
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Prada et al [75] has proposed to represent the spin-
dependent hopping amplitudes tσ

t↑ = tm1 sin

(
θ

2

)
(A.3)

t↓ = −tm1 cos

(
θ

2

)
(A.4)

in terms of the auxiliary canting angle θ of the first Majorana
mode. This canting angle can vary in the range 0 � θ � π [15].

In figure A1 we show the spin-dependent spectral func-
tions, ρσ , and the differential tunneling conductance, G(V),
obtained for a few representative values of the canting angle
θ. Panels (a)–(c) present the results for θ = π, corresponding
to the strong polarization of the hopping amplitude (t↑ = tm1

and t↓ = 0). In this case the signatures of the zero-energy
Majorana mode show up in the spectral function ρ↑ at some
finite magnetic field, whereas the zero-energy peak exists in
ρ↓ for all values of the magnetic field. Because of the parti-
cle–hole Andreev scattering mechanism the ZBCP can emerge
at this finite magnetic field. In panels (d)–(f) we use θ = 3π/4,
which corresponds to |t↑| > |t↓| and in panels (g)–(i) we use
θ = π/2, referring to |t↑| = |t↓|. For the finite values of both
spin-dependent hopping amplitudes we observe enhancement
of the spectral weight of the Majorana mode appearing in
ρ↑. Furthermore, the ZBCP is present starting from the zero
magnetic field.

We thus conclude, that the finite hopping amplitude in both
spin sectors is responsible for shifting the zero-bias conduc-
tance to somewhat smaller magnetic fields, leaving its optimal
value G0 = e2/h untouched. For the large bias voltages |V|
we also observe possible crossings of the trivial bound states,
giving rise to the enhanced differential conductance.
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Spin- 1
2 Kondo effect in an InAs nanowire quantum dot: uni-

tary limit, conductance scaling, and Zeeman splitting Phys.
Rev. B 84 245316

[28] van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M,
Tarucha S and Kouwenhoven L P 2000 The Kondo effect in
the unitary limit Science 289 2105

[29] Lee E J H, Jiang X, Houzet M, Aguado R, Lieber C M and De
Franceschi S 2014 Spin-resolved Andreev levels and parity
crossings in hybrid superconductor–semiconductor nanos-
tructures Nat. Nanotechnol. 9 79

[30] Liu C-X, Sau J D, Stanescu T D and Das Sarma S 2017
Andreev bound states versus Majorana bound states in quan-
tum dot-nanowire-superconductor hybrid structures: trivial
versus topological zero-bias conductance peaks Phys. Rev. B
96 075161

[31] Moore C, Stanescu T D and Tewari S Apr 2018 Two-
terminal charge tunneling: disentangling Majorana zero
modes from partially separated Andreev bound states in semi-
conductor–superconductor heterostructures Phys. Rev. B 97
165302

[32] Moore C, Zeng C, Stanescu T D and Tewari S 2018
Quantized zero-bias conductance plateau in semiconductor-
superconductor heterostructures without topological Majo-
rana zero modes Phys. Rev. B 98 155314

[33] Liu C-X, Sau J D and Das Sarma S 2018 Distinguishing topolog-
ical Majorana bound states from trivial Andreev bound states:
proposed tests through differential tunneling conductance
spectroscopy Phys. Rev. B 97 214502

[34] Liu D E and Baranger H U 2011 Detecting a Majorana-fermion
zero mode using a quantum dot Phys. Rev. B 84 201308

[35] Sasaki S, Tamura H, Akazaki T and Fujisawa T 2009
Fano–Kondo interplay in a side-coupled double quantum dot
Phys. Rev. Lett. 103 266806
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[49] Weymann I and Wójcik K P 2017 Transport properties of a
hybrid Majorana wire-quantum dot system with ferromag-
netic contacts Phys. Rev. B 95 155427

[50] Andreev A F 1964 The thermal conductivity of the intermediate
state in superconductors J. Exp. Theor. Phys. 19 1228

[51] Chirla R and Moca C P Jul 2016 Fingerprints of Majorana
fermions in spin-resolved subgap spectroscopy Phys. Rev. B
94 045405
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[69] Górski G and Kucab K 2017 Irreducible Green’s functions
method for a quantum dot coupled to metallic and supercon-
ducting leads Physica E 89 21–8

10

https://doi.org/10.1103/physrevb.84.245316
https://doi.org/10.1103/physrevb.84.245316
https://doi.org/10.1126/science.289.5487.2105
https://doi.org/10.1126/science.289.5487.2105
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1103/physrevb.96.075161
https://doi.org/10.1103/physrevb.96.075161
https://doi.org/10.1103/physrevb.97.165302
https://doi.org/10.1103/physrevb.97.165302
https://doi.org/10.1103/physrevb.98.155314
https://doi.org/10.1103/physrevb.98.155314
https://doi.org/10.1103/physrevb.97.214502
https://doi.org/10.1103/physrevb.97.214502
https://doi.org/10.1103/physrevb.84.201308
https://doi.org/10.1103/physrevb.84.201308
https://doi.org/10.1103/physrevlett.103.266806
https://doi.org/10.1103/physrevlett.103.266806
https://doi.org/10.1103/physrevb.81.115316
https://doi.org/10.1103/physrevb.81.115316
https://doi.org/10.1103/physrevb.84.205320
https://doi.org/10.1103/physrevb.84.205320
https://doi.org/10.1103/physrevb.90.115308
https://doi.org/10.1103/physrevb.90.115308
https://doi.org/10.1103/PhysRevB.84.195424
https://doi.org/10.1103/PhysRevB.84.195424
https://doi.org/10.1103/physrevb.89.205418
https://doi.org/10.1103/physrevb.89.205418
https://doi.org/10.1103/physrevb.87.241402
https://doi.org/10.1103/physrevb.87.241402
https://doi.org/10.1103/physrevb.86.115311
https://doi.org/10.1103/physrevb.86.115311
https://doi.org/10.1103/physrevb.89.165314
https://doi.org/10.1103/physrevb.89.165314
https://doi.org/10.1103/physrevb.89.245413
https://doi.org/10.1103/physrevb.89.245413
https://doi.org/10.1103/physrevb.91.081405
https://doi.org/10.1103/physrevb.91.081405
https://doi.org/10.12693/aphyspola.127.198
https://doi.org/10.12693/aphyspola.127.198
https://doi.org/10.1038/srep11416
https://doi.org/10.1038/srep11416
https://doi.org/10.1088/1361-648x/aa5526
https://doi.org/10.1088/1361-648x/aa5526
https://doi.org/10.1103/physrevb.95.155427
https://doi.org/10.1103/physrevb.95.155427
https://doi.org/10.1103/physrevb.94.045405
https://doi.org/10.1103/physrevb.94.045405
https://doi.org/10.1088/1361-648x/aa5214
https://doi.org/10.1088/1361-648x/aa5214
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1103/physrevlett.93.166602
https://doi.org/10.1103/physrevlett.93.166602
https://doi.org/10.1103/physrevb.72.045308
https://doi.org/10.1103/physrevb.72.045308
https://doi.org/10.1103/physrevb.87.241104
https://doi.org/10.1103/physrevb.87.241104
https://doi.org/10.1103/physrevresearch.2.012065
https://doi.org/10.1103/physrevresearch.2.012065
https://doi.org/10.1126/science.1202204
https://doi.org/10.1126/science.1202204
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1103/physrevb.97.045404
https://doi.org/10.1103/physrevb.97.045404
https://doi.org/10.1088/0953-8984/25/43/435305
https://doi.org/10.1088/0953-8984/25/43/435305
https://doi.org/10.1103/physrevb.94.054506
https://doi.org/10.1103/physrevb.94.054506
https://doi.org/10.1103/physrevb.76.104514
https://doi.org/10.1103/physrevb.76.104514
https://doi.org/10.1103/physrevb.91.045441
https://doi.org/10.1103/physrevb.91.045441
https://doi.org/10.1103/physrevlett.119.176805
https://doi.org/10.1103/physrevlett.119.176805
https://doi.org/10.1143/jpsj.76.074701
https://doi.org/10.1143/jpsj.76.074701
https://doi.org/10.1016/j.physe.2017.01.026
https://doi.org/10.1016/j.physe.2017.01.026
https://doi.org/10.1016/j.physe.2017.01.026
https://doi.org/10.1016/j.physe.2017.01.026


J. Phys.: Condens. Matter 32 (2020) 445803 G Górski et al
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