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Abstract. Development of the STM and ARPES spectroscopy enabled to reach the resolution sufficient
for probing the particle-hole entanglement in superconducting materials, even above the critical tempera-
ture Tc. On a quantitative level one can characterize such entanglement in terms of the Bogoliubov angle
which determines to what extent the particles and holes constitute the effective quasiparticles. In classical
superconductors, where the phase transition is related to formation of the Cooper pairs almost simultane-
ously accompanied by onset of their long-range phase coherence, the Bogoliubov angle is slanted (due to
finite particle-hole mixing) all the way up to Tc. In the high temperature superconductors and in super-
fluid ultracold fermion atoms near the Feshbach resonance the situation is different because the preformed
pairs can exist above Tc albeit loosing coherence due to the strong quantum fluctuations. We discuss a
generic temperature dependence of the Bogoliubov angle in such pseudogap state indicating a novel, non-
BCS behavior. For analysis we use the two-component model describing the pairs coexisting with single
fermions and study selfconsistently their feedback effects by the similarity transformation originating from
the renormalization group approach.

1 Introduction

Physical systems such as the classical and/or high Tc

cuprate superconductors, ultracold superfluid fermion
atoms as well as certain cosmological (superfluid neutron
stars) and subatomic objects (odd-odd nuclei) can un-
der specific conditions show up appearance of the coher-
ent pairs consisting of fermions from a vicinity of their
Fermi surface. What differs one case from another is an
underlying mechanism and the energy scale involved in
the pairing. They all however share the universal feature
of the effective Bogoliubov quasiparticles which represent
a superposition of the particles and their absence. It is
particularly intriguing that the recent spectroscopic data
obtained for the cuprate superconductors [1,2] provide ev-
idence for such particle-hole mixing even above the tran-
sition temperature Tc.

The particle-hole (p-h) mixing has a purely quantum
nature, to some extent resembling the corpuscular-wave
dualism [3]. One of its spectacular manifestations is for
instance the mechanism of Andreev reflection in which
an incident fermion-particle is converted into Cooper pair
with a simultaneous reflection of the fermion-hole. Such
particle-hole conversion processes are indeed observed ex-
perimentally in the isotropic and/or anisotropic supercon-
ductors [4,5], for the relativistic-like fermions [6] or in the
nanoscopic systems with quantum dots attached to the
superconducting electrodes [7–9].
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On a qualitative level the p-h mixing can be indirectly
determined by the STM [3] and ARPES spectroscopy [10]
designed to probe either the spatially [11] or the mo-
mentum resolved [12] single particle excitation spectra
of superconductors. The recent developments allow also
for a simultaneous r- and k-space measurement using
the Fourier transformed quasiparticle interference imag-
ing [13]. Roughly speaking, the p-h mixing manifests itself
by appearance of two peaks separated around the Fermi
level by twice the value of (pseudo)gap and whose spec-
tral weights correspond to the particle/hole contributions
to the effective Bogoliubov quasiparticles. In conventional
superconductors these contributions are given by the BCS
coefficients u2

k and v2
k = 1 − u2

k. It is hence convenient to
define the, so called, Bogoliubov angle [14]

θk = −π

2
+ 2 arctan

( |uk|
|vk|

)
(1)

as a measure of the p-h mixing. Its magnitude can vary
between −π/2 and π/2 depending on momentum k and
indirectly on temperature. In mathematical terms, θk

corresponds to azimuthal angle of the vector 〈ŝk〉 =
1
N

∑
ri

e−ik·ri〈ŝ(ri)〉, where ŝ(ri) is the pseudospin oper-
ator introduced by Anderson [15] (see Appendix A for
details). Restricting to non-magnetic solutions 〈ĉ†k↑ĉk↑〉=
〈ĉ†−k↓ĉ−k↓〉 the pseudospin eventually points down (up)
when effective quasiparticles are represented by parti-
cles (holes). The upper and bottom panels of Figure 1
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Fig. 1. Variation of the Anderson’s pseudospin (the left h.s.
column) and the Bogoliubov angle θk (the right h.s. column)
against momentum in the normal, pseudogap and supercon-
ducting states. Notice that particle-hole mixing is present in
the superconducting and pseudogap states, however above Tc

the Bogoliubov angle becomes discontinuous at kF .

illustrate such behavior well known for the normal and
superconducting states [15]. In general, the pseudospins
〈ŝk〉 are also governed by a non-trivial dynamics through
the Bloch-type equations of motion [15]. Such aspect be-
comes of a practical importance for the ultracold atoms
where time-controlled sweeps through the Feshbach reso-
nance trigger the soliton-like solutions [16,17].

In the high Tc cuprate superconductors the pairing oc-
curs between itinerant holes from the nearest neighbor lat-
tice sites [11]. The Bogoliubov angle is there defined rather
locally (see Appendix A). For studying the intrinsic inho-
mogeneities leading to the amplitude fluctuations of the
order parameter (which strongly depend on the doping
of charge carriers) one can use the mean-field Bogoliubov
de Gennes equations as has been done by Balatsky with
coworkers [3]. However, the other very important prob-
lem concerns the pseudogap state where the coherence of
fermion pairs is restricted to only short spatial and tempo-
ral scales. The superconducting state of cuprates is known
to obey nearly the BCS-type behavior [18] but it is not yet
agreed whether the whole pseudogap regime Tc < T < T ∗
does or does not correspond to the superconducting fluc-
tuations [19–21]. Nonetheless a number of recent experi-
ments unambiguously indicate that the phase-incoherent
pairs exist at temperatures at least up to dozen Kelvin
above Tc [1,2,22–26]. The theoretical studies of such pre-
cursor pairing conducted independently by several groups
pointed out that, remnants of the BCS features can be
preserved above Tc [27,28]. Our former analysis [29,30]
has also indicated such a possibility. In the present con-
tinuation we explore in some more detail the particle and
hole contributions and hope that such study could be of
real interest for experimentalists.

To analyze the influence of preformed pairs on
the Bogoliubov angle we use a phenomenological
two-component model where itinerant fermions and their

paired counterparts are introduced without referring to
any specific microscopic mechanism. The selfconsistent
non-perturbative treatment of the paired and single
fermions permits us to conclude that the effective p-h mix-
ing, signified by |θk| �= π/2, takes place both below and
above Tc. In the latter case, absence of the phase coher-
ence causes a characteristic discontinuity of θk at kF . We
thus find that in the pseudogap state the Bogoliubov angle
behaves in a manner partly reminiscent of the normal and
partly of the superconducting phases (see the middle panel
in Fig. 1). We hope that such result can be soon confirmed
by other theoretical methods and would be eventually ver-
ified/invalidated experimentally. Besides the cuprates the
similar effects could also play a role above Tc in the ul-
tracold atoms of Li6 and K40 where near the Feshbach
resonance the shallow bound boson molecules are strongly
scattered into the large Cooper-like pairs [31].

In the next section we briefly introduce the model and
discuss its main properties. Some methodological details
are outlined in Section 3 and the essential part concern-
ing the p-h mixing of the pseudogap state is described in
Section 4. We finally summarize our results and point out
some related problems.

2 Phenomenological model

For description of the superconducting and pseudogap
states we shall use the following Hamiltonian [32]

Ĥ =
∑
k,σ

(εk−μ) ĉ†kσ ĉkσ +
∑
q

(Eq−2μ) b̂†qb̂q

+
1√
N

∑
k,q

(
gk,qb̂†qĉq−k↓ĉk↑ + g∗k,qĉ†k↑ĉ

†
q−k↓b̂q

)
, (2)

where operators ĉ
(†)
kσ refer to annihilation (creation) of

single fermions with energy εk and b̂
(†)
q correspond to the

local pairs of the corresponding energy Eq. Interactions
between the single and paired fermions are scaled by the
potential gk,q. For simplicity, we assume that concentra-
tion of the local pairs per lattice site is small enough so
that b̂

(†)
q can be treated as the usual bosonic operators

(we neglect the hard-core constraint). The boson-fermion
model (2) has been introduced by Ranninger [32] and
has been intensively studied by several groups [33–35].
Independently of the microscopic scenarios (for instance
using the Hubbard model) some authors [36–39] agree-
ably concluded that essential physics of the strongly
correlated cuprates is well captured by the interdepen-
dent fermion and boson degrees of freedom given in the
Hamiltonian (2). This model turned out to be also useful
for description of the Feshbach resonance widely used in
the systems of ultracold fermion atoms [28,31].

In the simplest mean-field treatment one can lin-
earize the interaction term so that the decoupled bo-
son and fermion parts become exactly solvable [32].
The fermion spectrum acquires then the BCS structure
AMF (k, ω) = u2

k δ(ω − ξk) + v2
kδ(ω + ξk) with the usual
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quasiparticle energy ξk =
√

(εk−μ)2 + Δ2
k and the co-

herence factors u2
k, v2

k = 1
2 [1± (εk −μ)/ξk] which yield

the standard Bogoliubov angle. The energy gap of sin-
gle particle excitation spectrum is effectively given by
Δk =gk,0

√
〈nB

0 〉 which means that fermions undergo tran-
sition to the superconducting state if and only if the Bose-
Einstein condensation of bosons takes place [32]. This
property is valid exactly [40,41] even beyond the mean
field approximation.

The mean-field treatment is not capable to take into
account the quantum fluctuations which in turn become
more and more efficient upon approaching Tc and above
of it. In the next section we shall introduce the selfcon-
sistent method suitable for studying the boson-fermion
model in the scheme originating from the renormalization
group technique. We shall apply it to determine the su-
perconducting correlations preserved above Tc and obtain
the Bogoliubov angle.

3 The procedure

We use the selfconsistent, non-perturbative procedure
based on the continuous canonical transformation Ĥ −→
eŜ(l)Ĥe−Ŝ(l) [42,43]. Our main goal is to eliminate the
interaction part gk,q by a sequence of infinitesimal steps
l → l+δl. In analogy to the Renormalization Group (RG)
technique one starts from renormalizing the high energy
sector and subsequently turns to the low energy sector
(in the present case this corresponds to the fermion states
located near μ and the boson states close to 2μ). Below
we highlight some technicalities clarifying how the parti-
cle and hole contributions can be evaluated within this
procedure.

Initially we start by setting Ĥ(l) ≡ eŜ(l)Ĥe−Ŝ(l),
where Ĥ(0) corresponds to the initial Hamiltonian,
and construct the flow equation ∂lĤ(l) = [η̂(l), Ĥ(l)]
with the generating operator η̂(l) ≡ ∂lŜ(l). Follow-
ing the original proposal of Wegner [42,43] we choose
η̂(l) = [Ĥ0(l), Ĥint(l)], where Ĥ0(l) denotes the to-
tal kinetic energy of fermions and bosons and Ĥint(l)
stands for their interaction. From this commutator we
obtain η̂(l) = − 1√

N

∑
k,q αk,q(l)

(
b†qcq−k↓ck↑ − h.c.

)
with

αk,q(l) = (εk(l) + εq−k(l) − Eq(l)) gk,q(l). It has been
previously shown [44] that such antihermitean operator
η̂(l) indeed guarantees the asymptotic disappearance of
the boson-fermion coupling liml→∞ gk,q(l)=0.

During this continuous transformation the boson-
fermion Hamiltonian (2) evolves according to the following
set of coupled flow equations ∂lgk,q(l) = −α2

k,q(l)gk,q(l),

∂lεk(l) = 2
N

∑
q αk,q(l)|gk,q(l)|2n(B)

q and ∂lEq(l) =
2
N

∑
k αk−q,k(l)|gk−q,k(l)|2

(
−1 + n

(F )
k−q↓ + n

(F )
k↑

)
[44].

We have solved them numerically considering itinerant
fermions and local bosons placed on the two-dimensional
lattice avoiding any need for the infrared cutoffs. The
fixed point values

lim
l→∞

εk(l) ≡ ε̃k, lim
l→∞

Eq(l) ≡ Ẽq (3)

have shown the following features: (a) for T <Tc the renor-
malized fermion dispersion ε̃k develops a true gap at μ
which evolves into a pseudogap for Tc < T < Tp, (b) the
effective boson dispersion Ẽq shows the long-wavelength
Goldstone mode for T <Tc and its remnants are preserved
in the pseudogap state [29,30].

To obtain the needed information about the fermion
and boson spectra we have to construct the continuous
transformations also for the individual operators ĉ

(†)
kσ(l)≡

eŜ(l)ĉ
(†)
kσe−Ŝ(l) and b̂

(†)
q (l) ≡ eŜ(l)b̂

(†)
q e−Ŝ(l). This is a bit

difficult task because the operator Ŝ(l) is not known ex-
plicitly. Since we are interested here mainly in the particle-
hole mixing of the single particle excitations we can re-
strict to the fermion operators ∂lĉ

(†)
kσ(l) = [η̂, ĉ

(†)
kσ(l)]. The

generating operator η̂(l) chosen according to Wegner’s
prescription [42,43] yields the following ansatz [29,30]

ck↑(l) = uk(l) ck↑ + vk(l) c†−k↓

+
1√
N

∑
q �=0

[
uk,q(l) b†qcq+k↑ + vk,q(l) bqc†q−k↓

]
,

(4)

c†−k↓(l) = −v∗k(l) ck↑ + u∗
k(l) c†−k↓

+
1√
N

∑
q �=0

[
−v∗k,q(l) b†qcq+k↑ + u∗

k,q(l) bqc†q−k↓
]
,

(5)

where uk(0) = 1 and all other coefficients initially vanish-
ing at l=0. The parametrizations imposed in (4,5) repre-
sent the lowest order estimations (beyond the mean field
level) which approximately satisfy the formal flow equa-
tions for the operators ∂lĉ

(†)
kσ(l) = [η̂, ĉ

(†)
kσ(l)]. In order to

satisfy them exactly one should supplement (4, 5) by an
infinite set of the higher order terms, but obviously their
analysis would become intractable.

Restricting to the lowest order ansatz (4, 5) beyond
the mean-field solution we obtain the following differ-
ential equations for the appearing l-dependent coeffi-
cients [29,30]

∂luk(l) =
√

nB
q=0 α−k,0(l) vk(l)

+
1
N

∑
q �=0

αq−k,q(l)
(
nB
q + nF

q−k↓
)
vk,q(l), (6)

∂lvk(l) = −
√

nB
q=0 αk,0(l) uk(l)

− 1
N

∑
q �=0

αk,q(l)
(
nB
q + nF

q+k↑
)
uk,q(l), (7)

∂luk,q = α−k,q(l) vk(l), (8)
∂lvk,q = − αk,q(l)uk(l). (9)

We have explored them numerically along with the equa-
tions ∂lεk(l), ∂lEq(l), ∂lgk,q(l) setting the initial (l = 0)
tight-binding dispersion εk(0)=−2t (cos(kxa) + cos(kya))
and Eq(0)=E0. To reproduce d-wave symmetry of the en-
ergy gap in the superconducting state we have imposed the
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prefactor gk,q(0)=g (cos(kxa)−cos(kya)) and next solved
the coupled flow equations iteratively by the Runge-Kutta
algorithm. We have chosen E0(0) = 0.2t whereas the
concentration of charge carriers ntot =

∑
k

(
nF
k↑+nF

k↓
)

+

2
∑

q nB
q was fixed at ntot = 2 in order to reproduce the

hole concentration x ≡ 1−nF ∼ 0.1 relevant for the un-
derdoped regime. In Figures 2–4 we illustrate the results
obtained for several temperatures along the antinodal di-
rection (π, π) ↔ (π, 0) for g =0.1D (D≡8t is used as the
unit for energies).

Our ansatz (4, 5) generalizes the standard Bogoliubov-
Valatin transformation by including the scattering on fi-
nite momentum pairs. The single particle spectral function
is given by

A(k, ω) = |ũk|2δ (ω+μ−ε̃k)

+
1
N

∑
q �=0

(
nB
q + nF

q+k↑
) |ũk,q|2δ(ω+μ−ε̃q+k+Ẽq)

+ |ṽk|2δ (ω−μ+ε̃−k) +
1
N

∑
q �=0

(
nB
q + nF

q−k↓
)

× |ṽk,q|2δ(ω−μ+ε̃q−k−Ẽq), (10)

where ũk, ṽk and ũk,q, ṽk,q denote the asymptotic l → ∞
values. The overall structure (10) indicates that besides
the long-lived states (the delta peaks) there is addition-
ally formed a background of the damped (finite life-time)
states.

To justify a correspondence of this study with the
traditional mean field solution let us suppose that the
terms uk,q and vk,q were absent in (4, 5). In such situ-
ation the flow equations (6,7) would simplify to ∂luk(l) =√

nB
q=0 α−k,0(l)vk(l) and ∂lvk(l) = −

√
nB
q=0 αk,0(l)uk(l)

yielding the invariance |vk(l)|2 + |vk(l)|2 = 1. Rewrit-
ing the first equation as

∫ uk(∞)=ũk

uk(0)=1
duk(l)√

1−|uk(l)|2 =√
nB
q=0

∫ ∞
0 α−k,0(l)dl we immediately reproduce the

mean-field result ũ2
k, ṽ2

k = 1
2

(
1 ± εk−μ√

(εk−μ)2+nB
0 |gk,0|2

)
. In

the next section we shall investigate the spectral function
(10) taking into account the scattering on finite momen-
tum pairs.

4 Particle-hole mixing above Tc

Any preformed pairs can exist in the normal state only
at finite momenta, in other words 〈b̂q=0〉 = 0. From the
differential equations (7,8) above Tc we infer that vk(l)=0
and uk,q(l) = 0 so, in consequence, the ansatz (4,5) is
simplified to

ĉk↑(l) = uk(l) ĉk↑ +
1√
N

∑
q �=0

vk,q(l) b̂qĉ†q−k↓ (11)
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Fig. 2. (Color online) The excitation spectrum of fermions
in the pseudogap regime. The narrow quasiparticle peaks (ar-
tificially broadened here by the filled Gaussians of the total
weight ũk) of energy renormalized to ω = ε̃k−μ are accompa-
nied by appearance of their mirror reflections representing the
Bogoliubov shadow branch which has been indeed observed in
the recent ARPES experiments [1,2]. Both branches ultimately
merge into a single one at temperatures far above Tc. Close to
kF the quasiparticle peak moves inside the pseudogap however
it simultaneously becomes overdamped and its spectral weight
undergoes a considerable suppression.

−0.1 0 0.1

A(k,ω)

ω

k=kF−0.012

50 v
2

k

u
2

k

100

0 0

10

5

2Δpg

da
m

pe
d 

st
at

es

na
rr

ow
 p

ea
k

Fig. 3. The spectral function A(k, ω) consisting of the long-
lived states (we have artificially broadened the delta peak
using the units marked on the left axis) and the damped
fermion states (labels on the right h.s. axis) slightly below
kF for kBT = 0.004D. Spectral weight of the particle peak
is |uk|2 � 0.47 whereas the total weight of the hole branch
formed around ω = −(ε̃k−μ)�Δpg is estimated to |vk|2 � 0.19
by subtracting the high temperature background (the shaded
area).

ĉ†−k↓(l) = − 1√
N

∑
q �=0

v∗k,q(l) b̂†qĉq+k↑ + u∗
k(l) ĉ†−k↓. (12)

Under such conditions the resulting spectral function
takes the following form

A(k, ω) = |ũk|2δ (ω+μ−ε̃k) +
1
N

×
∑
q �=0

(
nB
q + nF

q−k↓
) |ṽk,q|2δ(ω−μ+ε̃q−k−Ẽq). (13)

It consists of the delta peak at the renormalized en-
ergy ε̃k − μ whose spectral weight |ũk|2 < 1 (like
in superconductors). The remaining spectral weight is
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k - kF
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Fig. 4. Variation of the Bogoliubov angle obtained in the pseu-
dogap regime for temperatures kBT = 0.004 (the solid line),
0.007 (the short-dashed curve) and 0.012 (the long-dashed
line). For comparison we plot by open circles the character-
istics of the superconducting state at T =0.

distributed among the finite life-time states given by the
second term in (13).

Figure 2 shows the representative results obtained
above Tc for kBT = 0.007D. Damped states are spread
over the large energy regime and most of them are in-
sensitive to temperature except the certain fraction (very
important to us) accumulating around ω=−(ε̃k−μ). This
broadened excitation branch, being a mirror reflection of
the quasiparticle dispersion ε̃k−μ, corresponds to the hole
(particle) contribution of the Bogoliubov quasiparticles
for momenta below (above) kF . Its total spectral weight
completes the needed information about the Bogoliubov
angle (1) for the pseudogap regime (the technical proce-
dure used for estimating the particle and hole weights
is illustrated in Fig. 3). Signatures of such quasiparticle
branches appearing above Tc at ω =±(ε̃k−μ) have been
recently detected experimentally by ARPES measure-
ments for Bi2Sr2CaCu2O8 [1] and La1.895Sr0.105CuO4 [2]
compounds. These facts unambiguously confirm that the
Bogoliubov type quasiparticles (along with the p-h mix-
ing) survive above Tc even-though the off-diagonal-long-
range-order is completely lost.

Strictly speaking, we find that at T >Tc the quasipar-
ticle dispersion ε̃k evolves into an S-like shape near the
chemical potential μ [44]. Absence of its sharp discontinu-
ity is directly related to disappearance of the Bose Einstein
condensed pairs (physically such loss of the superfluid frac-
tion leads to non-vanishing resistance above Tc). Neverthe-
less, the low energy states are still considerably depleted
because of a strong suppression of the spectral weight
|ũk|2 [29,30]. In a narrow momentum regime around kF we
thus observe the in-gap state which at first glance seems to
be in a contradiction with the ARPES experimental data.
This is however not the case. Such peak must exist (for
all temperatures above Tc) as has been recently empha-
sized by Senthil and Lee [45,46] in their ‘synthesis of the
phenomenology of the underdoped cuprates’. In-gap states
result from the interference of the paired fermions (which
above Tc represent only the diffusive modes) with the un-
paired fermions (into which they decay). In particular,
such states are expected [45–47] to be responsible for the

magnetooscillations observed experimentally by Doiron-
Leyraud et al. [48]. We shall discuss this issue separately in
a future paper, let us only comment here that in-gap states
are heavily overdamped so ARPES measurements [1,2] ap-
parently could not resolve them. In analysis of the p-h
mixing we have determined the Bogoliubov angle over mo-
menta distant from kF where only two excitation branches
are present, and we then extrapolated our data numeri-
cally for the region ε̃k∼μ.

Figure 4 shows the Bogoliubov angle as a function
of momentum calculated along the antinodal direction
(π, 0) −→ (π, π) for several temperatures. Presence of
the shadow Bogoliubov branch above Tc yields the non-
vanishing p-h mixing which finally fades away for higher
temperatures when the pseudogap closes. We moreover
notice that upon approaching kF the Bogoliubov angle
is discontinuous. Physically it means that particles and
holes not equally participate in the effective Bogoliubov
quasiparticles, even near the Fermi surface. Similar sug-
gestion has been also previously stressed within the RVB
theory (see Eq. (2) in Ref. [49]). In the present study we
observe that the BCS-type behavior is finally recovered at
temperatures T ≤Tc as shown by the open circles in Fig-
ure 4. Since the magnitude of superconducting gap does
not much vary below Tc [50] the Bogoliubov angle is there
practically frozen, i.e. temperature-independent.

5 Concluding remarks

We have analyzed the superconducting fluctuations [51,52]
above the transition temperature Tc for the system where
itinerant fermions coexist and interact with the preformed
pairs. Interaction between the paired and single fermions
has been studied within the selfconsistent similarity trans-
formation [42,43]. We have found that the single particle
excitation spectrum is depleted near the chemical poten-
tial over the energy region |ω| ≤ Δpg. Additionally there
emerge the Bogoliubov-type branches which signify the
particle-hole mixing above Tc. We have numerically esti-
mated such particle and hole spectral weights determining
the Bogoliubov angle θk in the pseudogap regime.

We have found that momentum dependence of the
Bogoliubov angle of the pseudogap state differs qualita-
tively from its behavior known for the normal and super-
conducting phases. In the normal state (where no particle-
hole mixing exists) θk changes abruptly at kF from −π/2
to π/2. On the other hand in the superconducting state
below Tc the Bogoliubov angle smoothly evolves between
these extreme values over the energy regime |ω| ≤ Δsc

where the particle and hole excitations are mixed with one
another. Our present study shows that in the pseudogap
regime |θk| �=π/2 (what is similar to the superconducting
state) but at the Fermi surface the Bogoliubov angle is dis-
continuous (like in the normal state). We hope that STM
and ARPES techniques could verify whether such uncon-
ventional relation between the particle and hole weights
does really occur in the systems with strong superconduct-
ing fluctuations.
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Appendix A: Concept of the BA angle
in pseudogap state

Following Anderson [15] let us introduce the local opera-
tors

ŝ+(ri, t) = ĉ↓(ri, t) ĉ↑(ri, t), (A.1)

ŝ−(ri, t) = ĉ†↑(ri, t) ĉ†↓(ri, t), (A.2)

ŝz(ri, t) =
1
2
− 1

2

∑
σ=↑,↓

ĉ†σ(ri, t) ĉσ(ri, t), (A.3)

which obey the spin- 1
2 algebra where the correspond-

ing x(y) components are defined by ŝx(y)(ri, t) =
1

2(i) (ŝ+(ri, t)+ (−)ŝ−(ri, t)). In the superconducting and
pseudogap states the Bogoliubov angle θ(ri, t) refers to
azimuthal orientation of the statistically averaged vector-
operator s(ri, t) ≡ 〈ŝ(ri, t)〉 located on the Bloch sphere.
The other planar angle φ(ri, t) of the spherical coordinates
corresponds to phase of the complex order parameter

〈ĉ†↑ (ri, t)ĉ
†
↓(ri, t)〉 ≡ χ(ri, t) eiφ(ri,t). (A.4)

In physical systems where pairing occurs in the real space
(which is the case in cuprates) both the azimuthal θ(ri, t)
and planar angles φ(ri, t) can fluctuate over some char-
acteristic spatial and temporal scales. Intrinsic inhomo-
geneities might furthermore generate also the amplitude
χ(ri, t) fluctuations.

In general, the Bogoliubov angle θ(ri, t) is convoluted
with the amplitude χ(ri, t) and phase φ(ri, t) of the local
order parameter (A.4). Effect of the amplitude fluctua-
tions has been already investigated within the single [3]
as well as two-component pairing models [53] by means of
the Bogoliubov de Gennes equations solved on the finite
size lattice clusters.

As concerns the planar angle its fluctuations depend
on the superfluid stiffness hence they can be expected to
play a role in the underdoped regime of HTSC materials.
To analyze the phase fluctuations and study their impact
on θ(ri, t) one must go beyond the mean field framework.
In this work we have done it using the renormalization
group-like approach but certainly one can also try some
alternative methods. To convince ourselves that apart of
any particular technique the Bogoliubov angle is indeed
a reasonable concept above Tc let us consider the case
of a uniform amplitude χ(ri, t)=χ. The pseudogap state
χ �=0 can then be envisioned as a randomly oriented pla-
nar angle φ(ri, t) with vanishing planar components of the
pseudospin vector averaged over all lattice sites ri (and/or
eventually over some time interval Δt). Such situation
where pairing of the incoherent local pairs does not estab-
lish the off-diagonal-long-range-order (ODLRO) has been
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Fig. 5. (Color online) Visualization of the local pseudospin
vector for (a) the superconducting and (b) the pseudogap
states. In both cases the azimuthal (Bogoliubov) angle is well
established although in the pseudogap state the ODLRO does
not exist due to the random planar phase.

previously discussed by Györffy et al. [54]. In Figure 5 we
illustrate orientation of the pseudospin in the supercon-
ducting and pseudogap states. Notice, that the latter case
with a completely random planar phase does still describe
a well defined azimuthal (Bogoliubov) angle.

Since ODLRO does not exist above Tc we have to
search for some possible fingerprints of the pairing fluctua-
tions (and the related p-h mixing) either in the single par-
ticle excitation spectrum or the two-particle correlation
functions. Preformed pairs have then a total finite momen-
tum q �= 0 and represent the overdamped (short life-time)
objects. Nevertheless they still affect unpaired electrons
through the scattering processes. Perturbative treatment
within the single component pairing model gives usually
the following type selfenergy [55–58]

Σ(k, ω) =
Δ2

pg(k)
ω + (εk−μ) + iΓ0

− iΓ1, (A.5)

where parameters Γ0, Γ1 correspond to the life-
time effects and Δpg(k) is a magnitude of pseudo-
gap. The single particle spectral function A(k, ω) =
− 1

π Im [ω−(εk−μ)−Σ(k, ω)]−1 is then composed of two
broadened QP peaks. By integrating their spectral weights
one eventually can estimate the coefficients u2

k, v2
k and

through (1) this determines the Bogoliubov angle. Our
procedure based on the RG equations described in Sec-
tions 3 and 4 relies practically on the same idea. However,
instead of (A.5) for T > Tc we obtain the spectral func-
tion (13) which contains one delta-peak and another QP
peak being broadened (this particular result is typical for
the flow equation procedure [42,43] whose scheme resem-
bles the projective methods where the long-lived modes
are well separated from damped states). Thus u2

k is di-
rectly determined from the flow equations whereas we de-
rive the other QP coefficient numerically (see illustration
in Fig. 3) using the algorithm described above.
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Appendix B: Pairing in the single component
scenario

Let us consider electron pairing using the flow equation
scheme applied to the usual one component system de-
scribed by the Hamiltonian

Ĥ =
∑
k,σ

(εk−μ) ĉ†kσ ĉkσ +
1
N

×
∑

k,k′,q

gk,k′(q)ĉ†k′↑ĉ
†
q−k′↓ĉq−k↓ĉk↑. (B.1)

We assume a separable form gk,k′(q) = gηkηk′ of the
attractive potential g < 0, so that the prefactor ηk =
1
2 [cos (kx) + cos (ky)] can eventually yield d-wave symme-
try of the order parameter. By introducing the pair oper-
ators

b̂q =
1√
N

∑
k

ηkĉq−k↓ĉk↑ (B.2)

and b̂†q = (b̂q)† we rewrite the Hamiltonian (B.1) in a more
compact form as

Ĥ =
∑
k,σ

(εk−μ) ĉ†kσ ĉkσ +
∑
q

g b̂†qb̂q. (B.3)

On the level of mean field approach one simplifies (B.1)
to the bilinear structure

Ĥ � ĤMF =
∑
k,σ

(εk−μ) ĉ†kσ ĉkσ + g
(
b̂†0〈b̂0〉

+〈b̂†0〉b̂0 − 〈b̂†0〉〈b̂0〉
)

(B.4)

neglecting the contributions from: (a) the finite mo-
mentum pairs δĤ ′ = g

∑
q �=0 b̂†qb̂q, and (b) quantum

fluctuations of the Bose-Einstein (BE) condensed pairs
δĤ0 = g δb̂†0 δb̂0, where δb̂0 = b̂0−〈b̂0〉. Such reduced
BCS Hamiltonian (B.4) is exactly diagonalizable using the
standard Bogoliubov-Valatin transformation

ˆ̃ck↑ = uk ĉk↑ + vk ĉ†−k↓, (B.5)

ˆ̃c†−k↓ = −vk ĉk↑ + uk ĉ†−k↓. (B.6)

Quasiparticles defined by equations (B.5, B.6) imply the
p-h mixing of initial fermions for momenta k located near
the Fermi surface. The effective single particle excitation
spectrum

A(k, ω) = u2
kδ(ω − ξk) + v2

kδ(ω + ξk), (B.7)

consists of two quasiparticle branches ξk =

±
√

(εk−μ)2+Δ2
k separated by the energy gap

Δk = |gηk〈b̂0〉| and the corresponding spectral weights
given by u2

k = 1
2 [1+(εk−μ)/ξk], v2

k =1 − u2
k. In classical

superconductors (which are fairly well described by
mean field theory) the electron pairs extend over the
large spatial scales and exist only below Tc. The order
parameter, related to BEC of the Cooper pairs 〈b̂q=0〉,
vanishes then at the transition temperature and so does
the p-h mixing.

In order to go beyond this usual BCS framework one
should consider the effects arising from the quantum fluc-
tuations g δb̂†0 δb̂0 and the finite momentum pairs b̂

(†)
q �=0. So

far there have been implemented various methods taking
into account the superconducting-type fluctuations (via
the Maki-Thompson or Aslamazov-Larkin diagrams) to
the transport [59], Gaussian corrections around the sad-
dle point solution [60,61], and several other [62–64]. Here
we proceed guided by the RG-like treatment [42,43]. Our
main idea is to redefine the Bogoliubov-Valatin transfor-
mation (B.5, B.6) by introducing new terms arising from
scattering of electrons on the finite momentum pairs (these
local pairs can originate from an arbitrary mechanism).
Following the general scheme outlined in Section 3 we ob-
tain

ˆ̃ck↑ = uk ĉk↑ + vk ĉ†−k↓ +
1√
N

×
∑
q �=0

[
uk,q b̂†qĉq+k↑ + vk,q b̂qc†q−k↓

]

+
1
N

∑
q,q′ �=0

[
uk,q,q′ b̂†qb̂q′ ĉq−q′+k↑

+vk,q,q′ b̂qb̂†q′c
†
q−q′−k↓

]
+ O(b̂3), (B.8)

ˆ̃c†−k↓ = −v∗k ĉk↑ + u∗
k ĉ†−k↓ +

1√
N

×
∑
q �=0

[
−v∗k,q b̂†qĉq+k↑ + u∗

k,q b̂qĉ†q−k↓
]

+
1
N

∑
q,q′ �=0

[
−v∗k,q,q′ b̂†qb̂q′ ĉq−q′+k↑

+u∗
k,q,q′ b̂qb̂†q′c

†
q−q′−k↓

]
+ O(b̂3), (B.9)

where the terms O(b̂3) involve three and more pair oper-
ators b̂

(†)
q . Let us remark that b̂

(†)
0 simplify to the complex

numbers so formally we could interpret vk as vk,0
b̂0√
N

,
however we retain vk to have a clear comparison between
(B.8, B.9) and the mean-field ansatz (B.5, B.6).

To determine all the appearing coefficients u and v we
have to fulfill the anticommutation relations between the
operators ˆ̃ckσ and ˆ̃c†kσ along with further constraints which
naturally come out from the flow equation procedure.
Since this is a rather cumbersome issue itself we merely
focus on the generic outcome of our proposal (B.8, B.9).
The leading contributions in the single particle spectral
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function are given by

A(k, ω) = |uk|2δ
(
ω−ξ̃k

)
+

1
N

∑
q �=0

|uk,q|2nF
q+k↑

× (
1 + nF

−k↓
)
δ(ω−ξ̃q+k+Ẽpair

q )

+ |vk|2δ
(
ω+ξ̃−k

)
+

1
N

∑
q �=0

|vk,q|2nF
q−k↓

× (
1 + nF

k↑
)
δ(ω+ξ̃q−k−Ẽpair

q ) + O(b̂2).
(B.10)

As before, ξ̃k denotes the effective fermion energy mea-
sured from the chemical potential μ and Ẽpair

q corresponds
to the energy of fermion pairs. Specific information about
the coefficients u and v is not crucial and will be presented
elsewhere.

In the superconducting state below Tc the effective dis-
persion ξ̃k is gaped. Under such circumstances besides the
QP peaks (whose weights determine p-h mixing) the spec-
tral function (B.10) develops an additional background
arising from the scattering on the finite momentum pairs.
Such damped states exist only outside the superconduct-
ing gap. For increasing temperature a number finite mo-
mentum pairs is growing thereby such scattering becomes
more efficient. Ultimately in the pseudogap state above
Tc the term |vk|2δ

(
ω+ξ̃−k

)
completely vanishes (because

the BE condensate 〈b̂q=0〉 no longer exists) but in its place
there emerges a well pronounced branch of the damped
states located along the energy ω � −ξ̃k. They arise from
the scattering of fermions on the low momentum q ∼ 0
pairs and formally are contributed by the terms contain-
ing |vk,q|2 in expression (B.10). Such remnants of the
Bogoliubov-type quasiparticles above Tc seem thus to be
a universal feature of the models describing pre-existing
pairs. Their existence above Tc has been recently con-
firmed experimentally by the ARPES measurements [1,2].
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Rev. B 76, 104514 (2007)

9. G.E. Graber, M. Tinkham, T.M. Klawijk, Notechnology
15, 479 (2004)

10. A.V. Balatsky, W.S. Lee, Z.X. Shen, Phys. Rev. B 79,
020505 (2009)

11. O. Fisher, M. Kugler, I. Maggio-Aprile, Ch. Berthod, Ch.
Renner, Rev. Mod. Phys. 79, 353 (2007)

12. A. Damascelli, A. Hussain, Z.X. Shen, Rev. Mod. Phys.
75, 473 (2003)

13. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K.
Fujita, J.W. Alldredge, K. McElroy, Jinho Lee, H. Eisaki,
S. Uchida, D.-H. Lee, J.C. Davis, Nature 454, 1072 (2008)

14. In reference [3] the Bogoliubov angle is defined as θk =

arctan
∣∣∣ uk

vk

∣∣∣ but we use a different notation adopted from

the Anderson’s pseudospin representation [15]
15. P.W. Anderson, Phys. Rev. 112, 1900 (1958)
16. R.A. Barankov, L.S. Levitov, Phys. Rev. A 73, 033614

(2006)
17. A.V. Andreev, V. Gurarie, L. Radzihovsky, Phys. Rev.

Lett. 93, 130402 (2004)
18. H. Matsui, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang,

H. Ding, T. Fujii, T. Watanabe, A. Matsuda, Phys. Rev.
Lett. 90, 217002 (2003)

19. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17
(2006)

20. M. Eschrig, Adv. Phys. 55, 47 (2006)
21. M. Norman, D. Pines, C. Kallin, Adv. Phys. 54, 715 (2005)
22. O. Yuli, I. Asulin, Y. Kalchaim, G. Koren, O. Millo, Phys.

Rev. Lett. 103, 197003 (2009)
23. N. Bergeal, J. Lesueur, M. Aprili, G. Faini, J.P. Contour,

B. Leridon, Nature Phys. 4, 608 (2008)
24. Z.A. Xu, N.P. Ong, Y. Wang, T. Takeshita, S. Uchida,

Nature 406, 486 (2000)
25. J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, I.

Bozovic, Nature 398, 221 (1999)
26. L. Li, J.G. Checkelsky, S. Komiya, Y. Ando, N.P. Ong,

Nature Phys. 3, 311 (2007)
27. V.J. Emery, S.A. Kivelson, Nature 374, 434 (1995)
28. Q. Chin, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412, 1

(2005)
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