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We study spectroscopic signatures of a monochromatic boson mode interacting with a T-shape
double quantum dot coupled between the metallic and superconducting leads. Focusing on a weak
interdot coupling we find that the proximity effect together with bosonic mode are responsible
for series of the Fano-type resonances appearing simultaneously at negative and positive energies.
We investigate these interferometric features and discuss their influence on the subgap Andreev
conductance taking into account the correlation effects driven by the Coulomb repulsion.
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I. INTRODUCTION

Fano-type interference arises when a discrete level is
combined with a broad spectrum, giving rise to the asym-
metric spectroscopic shapes [1]. Such interferometric
structures attract presently substantial interests in the
studies of electron propagation through disordered sys-
tems [2], STM data for the Kondo-type impurities [3],
spectra of the heavy fermion compounds [4], charge/spin
transport through nanoscopic systems [5] etc. In this
work we analyze the Fano-type lineshapes appearing in
the subgap spectrum and tunneling conductance of a
double quantum-dot coupled between a normal (N) and
superconducting (S) electrode, as shown in figure 1. In
particular we examine how the bosonic bath (assumed
as a monochromatic mode) combines with the proximity
induced pairing and the strong electron interactions.

Under nonequilibrium conditions charge can be trans-
mitted between the external (N and S) electrodes either
via the usual single particle tunneling (if applied volt-
age V is sufficiently large to break the electron pairs,
|eV | ≥ ∆) or by activating the anomalous Andreev chan-
nel. In the latter case electrons from the normal electrode
are converted into Cooper pairs in the superconducting
lead, simultaneously reflecting the holes back to metal-
lic electrode. Differential conductance of such Andreev
current is sensitive to both, the induced on-dot pairing
and the electron correlations [6–9]. This issue has been
studied theoretically for the single quantum dot [10–15]
(see also other references cited therein) and the double
quantum dot heterojunctions [16–22].

Since nanoscopic objects (quantum dots, nanowires or
molecules) are never entirely separated from their envi-
ronment (e.g. photon [23] or vibron [24] quanta) therefore
transport properties can reveal additional features origi-
nating from the constructive/destructive interference. In
this work we study the system (Fig. 1), where a direct
electron transport occurs via the central quantum dot
(QD1) and a weak leakage to the side-coupled quantum
dot (QD2) contributes the interference effects. Similar
mechanism has been investigated for the case with both
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FIG. 1: (color online) Schematic view of the T-shape double
quantum dot coupled between the metallic (N) and supercon-
ducting (S) electrodes, where the side-attached dot (QD2) is
affected by a monochromatic boson mode (e.g. vibrons).

normal electrodes [25, 26] predicting the Fano-type reso-
nances in the differential conductance, as has been indeed
confirmed experimentally [27].

When the quantum dots are hybridized with a super-
conducting reservoir one expects the interference pat-
terns simultaneously in the particle and hole sectors, be-
cause of the induced on-dot pairing [28, 29]. We have
already analyzed such interferometric Fano resonances
considering dephasing due to the external fermionic bath
[30]. In the present work we extend such study taking
into account the external bosonic mode.

In section II we introduce the model and specify the
characteristic energy scales. Next, we discuss formal
aspects related the approximations. In section IV we
present signatures of the boson mode for the uncorrected
quantum dots. Finally, in section V, we consider the cor-
relation effects (including the Kondo regime). Appendix
provides a simple phenomenological explanation of the
Fano-type interferometric lineshapes of the heterojunc-
tions consisting of two weakly coupled quantum dots.
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II. MICROSCOPIC MODEL

The heterojunction shown in figure 1 can be described
by the following microscopic Hamiltonian

Ĥ = ĤN + ĤS + ĤDQD + ĤT (1)

where ĤN (ĤS) refers to the normal (superconduct-

ing) charge reservoir, ĤDQD describes the quantum
dots together with a boson bath and the last term
ĤT corresponds to hybridization of the central QD1

to external leads. We treat the conducting lead as

a Fermi gas ĤN =
∑

k,σ ξkN ĉ†
kσN ĉkσN and describe

the isotropic superconductor by the BCS Hamiltonian

ĤS =
∑

k,σ ξkS ĉ†
kσS ĉkσS−∆

∑

k
(ĉ†

k↑S ĉ†−k↓S +ĉ−k↓S ĉk↑S),

where ĉ
(†)
kσβ denote the annihilation (creation) operators

of mobile electrons with spin σ =↑ or ↓. The energies
ξkβ =εkβ−µβ are measured with respect to the chemical
potentials µβ , where µN − µS = eV .

We assume that external bosonic bath directly affects
only the side-attached quantum dot (QD2). Hamiltonian
of the quantum dots and such bosonic mode is given by

ĤDQD =
∑

σ,i

εin̂iσ +
∑

i

Uin̂i↑n̂i↓ + ω0â
†â (2)

+ t
∑

σ

(

d̂†1σd̂2σ+H.c.
)

+ λ
∑

σ

n̂2σ(â† + â).

d̂
(†)
i are the annihilation (creation) operators of QDi=1,2

electrons, â(†) refer to the bosonic mode and n̂iσ =

d̂†iσd̂iσ. As usually εi denote the energy levels, λ is a cou-
pling of the boson mode with QD2, and ω0 is the bosonic
energy. In what follows we shall analyze the Fano-type
interference originating form a weak coupling between
both quantum dots (see the Appendix for details)

ĤT =
∑

β=N,S

∑

k,σ

(

Vkβ d̂†1σ ĉkσβ + H.c.
)

. (3)

The model (1) can be generalized to more complex situ-
ations, for instance when both quantum dots are coupled
to the external leads [14, 20] and to the boson mode. For
clarity we focus on the case illustrated in figure 1, be-
cause it represents the simplest realization of the Fano-
type lineshapes originating from the bosonic mode.

III. OUTLINE OF THE FORMALISM

To study the electronic spectrum and the transport
properties of the system (1) we introduce the matrix

Green’s function Gi(τ1, τ2) = −iT̂τ 〈Ψ̂i(τ1)Ψ̂
†
i (τ2)〉 in the

Nambu representation Ψ̂†
i ≡ (d̂†i↑, d̂i↓), Ψ̂i ≡ (Ψ̂†

i )
†. In

equilibrium conditions (µN = µS) the Green’s function
depends only on time difference τ1−τ2 and its Fourier
transform can be expressed as

G−1
i (ω) = g−1

i (ω) − Σ
0
i (ω) − Σ

corr
i (ω), (4)

where the bare Green’s functions gi(ω) are given by

gi(ω) =

(

ω − εi 0
0 ω + εi

)−1

. (5)

The first part of the selfenergy Σ
0
i (ω) comes from the

hybridizations and the second term Σ
corr
i (ω) is due to

the correlation effects.

A. Uncorrelated quantum dots

Let us start with the selfenergies Σ
0
i (ω) of the uncor-

related quantum dots, that are solvable exactly. We can
express them as

Σ
0
1(ω) = |t|2 G2(ω) +

∑

k

∑

β=N,S

|Vkβ |2 gβ(k, ω), (6)

Σ
0
2(ω) = |t|2 G1(ω), (7)

where gβ(k, ω) denote the Green’s functions of the leads.
For the normal lead gN (k, ω) has a diagonal structure

gN (k, ω) =

( 1
ω−ξkN

0

0 1
ω+ξkN

)

(8)

and for the superconductor gS(k, ω) takes the BCS form

gS(k, ω) =

(

u2

k

ω−Ek

+
v2

k

ω+Ek

−ukvk

ω−Ek

+ ukvk

ω+Ek

−ukvk

ω−Ek

+ ukvk

ω+Ek

u2

k

ω+Ek

+
v2

k

ω−Ek

)

(9)

with the gaped quasiparticle energies Ek =
√

ξ2
kS + ∆2

and the coefficients u2
k
, v2

k
= 1

2

[

1 ± ξkS

Ek

]

, ukvk = ∆
2Ek

.

In the wide band limit one can introduce the constant
hybridization functions Γβ = 2π

∑

k
|Vkβ |2 δ(ω− ξkβ).

Formally we then obtain

∑

k

|VkN |2 gβ(k, ω) = −i
ΓN

2

(

1 0
0 1

)

(10)

∑

k

|VkS |2 gS(k, ω) = −i
ΓS

2
γ(ω)

(

1 ∆
ω

∆
ω 1

)

(11)

with the auxiliary function [10]

γ(ω) =

{

|ω|√
ω2−∆2

for |ω| > ∆,
ω

i
√

∆2−ω2
for |ω| < ∆.

(12)

Deep in a subgap regime (i.e. for energies |ω| ≪ ∆) the
expression (11) simplifies to a purely off-diagonal struc-
ture with the following static terms −ΓS/2. One can
hence interpret |−ΓS/2| ≡ ∆d1 as the pairing gap in-
duced in the central quantum dot [10, 12].
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B. Influence of a boson mode

To take into account the boson mode we first deter-
mine the selfenergy Σ

corr
2 (ω) of the side-attached quan-

tum dot, neglecting the inter-dot coupling t. For conve-
nience we introduce the molecular Hamiltonian

Ĥmol = ε2n̂2σ + U2n̂2↑n̂2↓ + ω0â
†â + λ

∑

σ

n̂2σ(â† + â)

(13)

and use the unitary transformation eŜĤmole
−Ŝ = ˆ̃Hmol

to eliminate the electron-boson coupling. Adopting the
Lang-Firsov generating operator [31]

Ŝ =
λ

ω0

∑

σ

d̂†2σd̂2σ

(

â† − â
)

(14)

one obtains [32]

ˆ̃Hmol =
∑

σ

ε̃2
ˆ̃
d†2σ

ˆ̃
d2σ + ω̃0â

†â + Ũ2
ˆ̃n2↓ ˆ̃n↑ (15)

with the renormalized energy ǫ̃2 = ε2 − λ2/ω0 and ef-

fective potential Ũ2 = U2 − 2λ2/ω0. Additionally, the
operators

ˆ̃
d(†)

σ = d̂(†)
σ X̂(†), ˆ̃a(†) = â(†) − λ

ω0

∑

σ

d̂†σd̂σ, (16)

are dressed with the polaronic cloud

X̂ = e−(λ/ω0)(â
†−â). (17)

In absence of the interdot coupling we can exactly deter-
mine the Green’s function G2(ω) using the identity

〈

T̂τ d̂σ(τ1)d̂
†
σ(τ2)

〉

Ĥmol

=
〈

T̂τ
ˆ̃
dσ(τ1)

ˆ̃
d(τ2)

†
σ

〉

ˆ̃Hmol

=
〈

T̂τ d̂σ(τ1)d̂
†
σ(τ2)

〉

fer.

〈

T̂τ X̂(τ1)X̂
†(τ2)

〉

bos.
(18)

with T̂τ being the time ordering operator. The first
part of equation (18) expresses invariance of the trace
〈...〉Ĥmol

= 〈..〉 ˆ̃Hmol

under the unitary transformation.

The second line of (18) comes from the fact that statis-
tical averaging with respect to the transformed Hamil-
tonian (15) is exactly equal to a product of the average
with respect to the bosonic and the fermionic degrees of
freedom. In particular, the polaronic propagator acquires
the following standard form [32]

〈

T̂τ X̂(τ1)X̂(τ2)
†
〉

= exp
{

−(λ/ω0)
2 (19)

× [(1 − e−iω0(τ1−τ2))(1 + Np) + (1 − eiω0(τ1−τ2))Np]
}

with the Bose-Einstein distribution Np =
[

eβω0 − 1
]−1

.
This result (19) can be used to compute the Fourier
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ρ m
ol

(ω
)

ε2
~

ε2+U2
~    ~

U2
~

FIG. 2: (color online) The molecular spectral function ob-
tained at zero temperature using the following set of param-
eters ε2 = −1ΓN , U2 = 5ΓN , ω0 = 0.2ΓN , g = 1, ε1 = 0.

transform of the molecular Green’s function gmol(ω) ≡
limt→0 G2(ω). Such propagator has a diagonal structure
with the following terms [33]

gmol,11(ω) = e−(λ
√

1+2Np/ω0)
2

(20)

×
∑

l

elβω0/2Il

[

2(
λ

ω0
)2

√

Np(1 + Np)

]

×
(

1 − 〈n̂2↓〉
ω − ε̃2 − lω0

+
〈n̂2↓〉

ω − ε̃2 − Ũ2 − lω0

)

and gmol,22(ω) = −
[

gmol,11(−ω)
]∗

, where Il denote
the modified Bessel functions. At zero temperature the
Green’s (20) simplifies to

lim
T→0

gmol,11(ω) = (21)

∑

l

e−g gl

l!

(

1 − 〈n̂2↓〉
ω − ε̃2 − lω0

+
〈n̂2↓〉

ω − ε̃2 − Ũ2 − lω0

)

with the adiabacity parameter g = (λ/ω0)
2.

Effectively the molecular spectral function ρmol(ω) =
−π−1Imgmol,11(ω + i0+) shows two groups of the pola-
ronic peaks (see figure 2). The lower polaronic branch
starts at ε̃2 and the upper branch one is separated from
it by Ũ2 (because the Coulomb potential U2 is partly sup-
pressed by the bipolaronic shift 2λ2/ω0) [32, 33]. For the
particular value g = 1 we observe about five peaks, but
in the antiadiabatic regime (g ≫ 1) a number of boson
peaks considerably increases.

In the succeeding sections we are treating the correla-
tion effects (driven by the bosonic mode and the Coulomb
repulsion U2) within the following approximation

Σ
corr
2 (ω) ≃ g−1

2 (ω) − g−1
mol(ω) (22)

which shall be reliable for the weak interdot coupling t.
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FIG. 3: (color online) The interferometric Fano-type line-
shapes of the spectral function ρd1(ω) of QD1 obtained at
T = 0 for the uncorrelated quantum dots (Ui = 0) using
ε1 = 0, ε2 = 1ΓN , t = 0.2ΓN , ΓS = 5ΓN and ∆ = 10ΓN .

C. Subgap transport

In a subgap regime |eV |<∆ electrons are transmitted
between the external electrodes practically only via the
Andreev channel. Such anomalous current IA(V ) can be
expressed by the Landauer-type formula [34–36]

IA(V ) =
2e

h

∫

dωTA(ω) [f(ω−eV )−f(ω+eV )] , (23)

where f(ω) =
[

eω/kBT + 1
]−1

is the Fermi-Dirac distri-
bution. Andreev transmittance TA(ω) depends on the
off-diagonal part of the Green’s function G1(ω) via [34]

TA(ω) = Γ2
N |G1,12(ω)|2 . (24)

Roughly speaking, (24) is a quantitative measure of the
induced on-dot pairing and its optimal values coincide
with the quasiparticle energies of the in-gap states). This
transmittance TA(ω) depends also on the effects related
to the quantum interference [19, 21, 22, 30].

Experimental measurements usually probe the differ-

ential conductance GA(V ) = ∂IA(V )
∂V . We now discuss the

spectrum and the tunneling conductance GA(V ) of the
double quantum dot system: i) neglecting both Coulomb
interactions Ui (section IV) and ii) treating the electron-
electron repulsion by suitable approximations (section
V). Let us notice that TA(−ω)=TA(ω) implies the sym-
metric Andreev conductance GA(−V ) = GA(V ). This
property comes from the fact that particle and hole states
equally participate in the Andreev scattering.

IV. UNCORRELATED QUANTUM DOTS

In absence of both Coulomb interactions Ui we can
determine the matrix Green’s functions Gi(ω) using the
Dyson equation (4) with the selfenergies (6, 7). We treat
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FIG. 4: (color online) The subgap Andreev conductance
GA(V ) obtained for the same parameters as in figure 3.

the influence of a boson mode through the local solu-
tion (22), assuming U2 = 0. For small interdot coupling
t ≪ Γβ the induced pairing affects mainly the low en-
ergy states of central dot (QD1), therefore we focus on
the case ε1 = 0, ε2 6= ε1. Figure 3 shows the equilib-
rium spectrum ρd1(ω) obtained at zero temperature for
g = λ/ω0 = 1 assuming the small boson energy ω0 < ∆.
Such case is interesting because the interferometric pat-
terns appear in the subgap Andreev spectroscopy. Let
us emphasize that the boson mode considered here is not
related with the origin of superconductivity of the ex-
ternal lead. Such low energy boson mode could either
represent the vibrational mode or the electromagnetic ac

field. Such subgap vibration modes have been indeed
reported experimentally for the carbon nanotubes sus-
pended between external electrodes [37, 38]. For the sin-
gle quantum dot heterojunctions this situation has been
studied theoretically in Refs [39–42].

We notice two Lorentzian peaks at the quasiparticle
energies ±ΓS/2 and two series of the Fano resonances.
Such resonances appear at energies ±(ε̃2 + lω0) because
of the particle - hole mixed excitations [28]. Number
of these interferometric features is sensitive to the adia-
badicity parameter g. In the adiabatic regime (g ≤ 1)
there appear only a few features, whereas in the antia-
diabatic limit their number considerably increases. The
Fano-type lineshapes appear also in the Andreev conduc-
tance (see Fig. 4). In comparison with the spectral func-
tion ρd1(ω) the resonances are symmetrized for the rea-
sons mentioned in the preceding section. Measurements
of the subgap Andreev conductance would thus be able
to detect such boson induced interferometric features.

The in-gap quasiparticle peaks (often referred as the

bound Andreev states) depend on the energy level ε1. In
the case of single quantum dot (i.e. for vanishing t) the
spectral function ρd1(ω) consists of two lorentzians at

±E1 (where E1 =
√

ε2
1 + (ΓS/2)2) broadened by ΓN .

Their spectral weights are given by the BCS factors
1
2 (1 ± ε1/E1). This property has also influence on the
interferometric features. Figure 5 shows the spectrum
ρd1(ω) for several values of ε1. When the energy level ε1
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FIG. 5: (color online) Dependence of the spectral function
ρd1(ω) and the Andreev conductance GA(V ) on ε1 (tunable
by the gate voltage) for the same parameters as in Fig. 4.

is more distant from the Fermi level we observe a grad-
ual redistribution of the quasiparticle spectral weights
accompanied with suppression of the Fano resonances,
especially at −(ε̃2 + lω0). The Andreev conductance
GA(V ) is even function of the voltage V therefore such
particle-hole redistribution is not well pronounced, how-
ever suppression of the boson induced Fano lineshapes is
noticeable.

V. CORRELATION EFFECTS

In this last section we discuss additional effects caused
by the Coulomb repulsion Ui. Since electron transport
occurs via the central quantum dot we expect U1 to
play the most significant role. For completeness we sep-
arately analyze the qualitative effects originating from
both Coulomb potentials Ui.

A. U1 = 0, U2 6= 0

In order to study the influence of U2 we simply use
the approximate selfenergy (22), which is reliable in the
case of weak interdot coupling. For stronger couplings
t ≥ Γβ one should rather adopt eigen-basis of the double
quantum dot and consider higher order correlation ef-
fects, like e.g. an indirect exchange interaction (between
QD2 and the metallic reservoir) which could induce the
exotic Kondo effect [43]. This interesting aspect, how-
ever, goes beyond a scope of the present study.
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FIG. 6: (color online) Spectral function ρd1(ω) of the central
quantum dot (top panel) and the differential Andreev conduc-
tance (bottom panel) obtained at zero temperature for ε1 = 0,
ε2 = −1ΓN , t = 0.2ΓN , g = 1, ω0 = 0.2ΓN , ∆ = 10ΓN , and
U2 = 5ΓN .

The upper panel of figure 6 illustrates the QD1 spec-
trum ρd1(ω) obtained at zero temperature for U2 = 5ΓN ,
U1 = 0. As far as the spectrum of QD2 is concerned it
still consists of two series of the bosonic peaks appearing
around ε̃2 and near the Coulomb satellite ε̃2+Ũ2, similar
to what is shown figure 2 except a finite broadening of
the peaks ∼ t2/D.

The Fano-type resonances appearing in ρd1(ω) result
from a combined effect of the interference (caused by the
side attached quantum dot) and the proximity induced
on-dot pairing. We can notice effectively four groups of
such structures appearing near ±ε̃2 and ±(ε̃2+Ũ2) due
to the particle-hole mixing. These Fano structures show
up also in the Andreev conductance GA(ω), though in a
symmetrized way (bottom panel in Fig. 6).

B. U1 6= 0, U2 = 0

The potential U1 has a qualitatively different influence
on the transport properties than U2. The central quan-
tum dot is coupled between N and S leads therefore it
is affected by the on-dot pairing (promoted by ΓS) and
by the effective exchange interaction (due to finite ΓN

and U1) leading to the Kondo effect. These phenom-
ena are antagonistic. Their competition has been so far
addressed by various groups using different many-body
techniques (see e.g. [12] for a survey).

Here we analyze spectroscopic features of the system
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FIG. 7: (color online) Spectral function ρd1(ω) of QD1 ob-
tained in the Kondo regime for kBT = 10−3ΓN , ε1 = −2ΓN ,
U2 = 15ΓN , ΓS = 4ΓN , t = 0.2ΓN , ω0 = 0.2ΓN , g = 1,
∆ ≫ ΓN . Vertical arrows indicate quasiparticle energies of
the Andreev states (at ±E1 and their Coulomb satellites). We
can notice the Kondo peak at ω = 0 coexisting with a number
of the Fano-type resonances induced by the boson mode.

(Fig. 1) following our studies [44–47] based on the equa-
tion of motion technique (EOM) [48]. Such approxi-
mation proved to give satisfactory results for the single
quantum dot heterojunctions [7, 8]. We thus assume the
correlation selfenergy Σ

corr
1 (ω) in a diagonal form with

Σ
corr
1,11 (ω) = U1 [n1↓−Σ1(ω)] (25)

+
U1 [n1↓−Σ1(ω)] [Σ3(ω) + U1(1−n1↓)]

ω − ε1 − Σ0(ω) − [Σ3(ω) + U1(1 − n1↓)]

and Σ
corr
1,22 (ω) = −

[

Σ
corr
1,11 (−ω)

]∗
. The other symbols ap-

pearing in (25) have the following meanings [48] Σ0(ω) =
∑

k
|VkN |2/(ω−ξkN )≃−iΓN/2 and

Σν(ω) =
∑

k

|VkN |2
[

1

ω−ξkN
+

1

ω−U1− 2ε1+ξkN

]

×
{

f(ξkN ) for ν = 1,
1 for ν = 3.

(26)

Eqn. (25) qualitatively captures both the Coulomb block-
ade and the Kondo effect, when ε1 < 0 < ε1 + U1 and

T ≤ TK ∼ 0.29
√

U1ΓN/2 exp
[

πε1(ε1+U1)
ΓN U1

]

. Under such

conditions there appears a narrow Abrikosov-Suhl peak
at ω = 0 whose broadening is scaled by kBTK . The EOM
treatment is however not reliable in reproducing the low
energy shape of this peak, that could be obtained from
the numerical renormalization group calculations [10, 29]
or other many-body methods [49–55].

Let us briefly point out the characteristic properties of
the Kondo regime. Spectral function of the central quan-
tum dot (shown in Fig. 7) consists of four lorentzians at
energies of the Andreev bound states indicated by the
arrows. Such quasiparticle subgap states are formed at
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FIG. 8: (color online) Differential conductance of the Andreev
current obtained in the Kondo regime for the same set of
parameters as in figure 7 and for varying ε2.

±
√

ε2
1 + (ΓS/2)2 and ±

√

(ε1 + U1)2 + (ΓS/2)2. We have
chosen ε1 slightly below the Fermi level therefore the
quasipartice spectral weights are not symmetric. Apart
of the lorentzians we notice the narrow Kondo peak at
the Fermi level. It is considerably reduced in compari-
son to the normal case ∆=0 because of the competition
between pairing and spin ordering [44]. Finally, we addi-
tionally recognize the Fano-type interference patterns at
±(ε̃2 + lω0).

These features show up also in the subgap Andreev
conductance. Figure 8 shows maxima of GA(V ) at volt-
ages corresponding to the quasiparticle energies of the
Andreev bound states. Moreover, we notice the addi-
tional zero-bias enhancement due to the Kondo effect
which has been indeed observed experimentally [8]. On
top of such behavior there appear the Fano-type reso-
nances. They can have detrimental effect on the zero-
bias Kondo feature when these interferometric features
appear near the Fermi energy. We would like to empha-
size also that this zero-bias anomaly is visible only when
ΓN ∼ ΓS [45].

VI. SUMMARY AND OUTLOOK

We have investigated the spectrum and Andreev con-
ductance of the T-shape double quantum dot coupled
between one metallic and another superconducting elec-
trode. Focusing on the low energy (subgap) regime we
have studied influence of a bosonic mode coupled to the
side-attached quantum dot, converting its spectrum to
multilevel structure. Electrons tunneling through the
central quantum dot are resonantly scattered (in a weak
interdot coupling regime) by such multilevel ’molecule’,
giving rise to the Fano-type interference patterns.

The effective spectrum of central quantum dot and
the differential conductance of N-DQD-S junction re-
veal groups of the equidistant bosonic resonances formed
nearby ±(ε̃2 + lω0) and ±(ε̃2 + Ũ2 + lω0). Correlation
effects due to the Coulomb potential U1 do also sig-
nificantly affect the spectroscopic properties. Spin of
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the central quantum dot is screened (at low tempera-
tures) by itinerant electrons of the metallic lead provided
that proximity induced pairing (promoting the BCS-
type configurations) does not completely suppress it [29].
Quantum interference eventually obscure it whenever the
Fano-type resonances appear close enough to the Kondo
peak.

It would be worthwhile to extend our study to the case
of stronger interdot coupling. Both quantum dots (as
a whole) might then be characterized by new molecu-
lar eigen-states where the boson mode could manifest it-
self in a qualitatively different way, no longer resembling
the Fano-type resonances. Under such circumstances the
Coulomb potential U2 could play as much important role
as U1 via the indirect exchange interaction allowing for
exotic realizations of the Kondo effect [43].
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Appendix A: Fano resonances of DQD junctions

Let us simply explain the origin of interferometric
Fano structures showing up in the transport proper-
ties of the DQD systems. Such characteristic lineshapes
[56] usually emerge whenever some localized (resonant)
electron waves interfere with a continuum (or with a
broad electron spectrum). To provide explicit arguments
let us consider the useful example [57], where the ’di-

rect’ transmission channel td =
√

Gde
iφd (Gd denotes

its conductance and φd stands for an arbitrary phase)
is superposed with the transmission amplitude tr(ω) =√

Gr
(ΓL+ΓR)/2

ω−εr+i(ΓL+ΓR)/2 of the ’resonant’ level εr. The cor-

responding conductance can be expressed by the popular

formula [48] Gr = 2e2

h
4ΓLΓR

(ΓL+ΓR)2
. Combining these two

channels one obtains the characteristic function

G(ω) = |td + tr(ω)|2 = Gd
|ω̃ + q|2
ω̃2 + 1

(A1)

with the auxiliary argument ω̃ = 2(ω − εr)/(ΓL + ΓR)

and the asymmetry factor q = i + e−iφd

√

Gr

Gd
.

We can apply similar reasoning to the T-shape dou-
ble quantum dot system shown in Fig. 1. Neglecting
the phonon bath let us assume for simplicity that both
electrodes are metallic conductors. For the weak in-
terdot coupling t the side-attached dot QD2 plays a
role of the ’resonant’ channel whose transmission am-
plitude is tr(ω) =

√
Gr

t/2
ω−ε2+it/2 , where Gr = 2e2

h .

On the other hand QD1 contributes a broad back-
ground with the following effective transmission td(ω) =
√

2e2

h
4ΓNΓS

(ΓN+ΓS)2
(ΓN+ΓS)/2

ω−ε1+i(ΓN+ΓS)/2 . For energies ω ∼ ε2

the latter amplitude is nearly constant td(ω) ≃
√

Gde
iφd

with
√

Gd =
√

2e2

h
4ΓNΓS

(ΓN+ΓS)2

∣

∣

∣

1
2(ε1−ε2)/(ΓN+ΓS)+i

∣

∣

∣
. Thus

the resulting conductance G(ω) = |td + tr(ω)|2 is indeed
characterized by the Fano-type function (A1). Micro-
scopic arguments explaining the origin of the Fano-type
interference patters in the strongly correlated quantum
dots have been discussed at length e.g. by Maruyama [25]
and by Žitko [26].
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[19] Barański J and Domański T 2011 Phys. Rev. B 84 195424
[20] Bai L, Zhang R and Duan C -L 2012 Nanoscale Research

Letters 7 670
[21] MichaÃlek G and BuÃlka B R 2012 Acta Phys. Polon. A

122 981



8

[22] Calle A M, Pacheco M and Orellana P A 2013 Phys. Lett.

A 377 1474
[23] Platero G and Aguado R 2004 Phys. Rep. 395 1
[24] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.:

Condens. Matter 19 103201
[25] Maruyama I, Shibata N and Ueda K 2004 J. Phys. Soc.

Jpn. 73 3239
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