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1. Introduction

When a nonsuperconducting quantum dot (QD) with
discrete energy spectrum is placed in electrical contact
with BCS superconductor, then the proximity effect in-
duces the eigenstates whose energies appear in a sub-gap
regime. These Andreev bound states (ABS) can be ex-
pressed in form of the BCS-like superposition u |[0)—v [1])
involving an empty |0) and doubly occupied |1|) config-
urations. The other single occupied states |o) are not
affected by the BCS condensate and represent true eigen-
states of the QD, forming a spin-degenerate doublet.

Recent experiments with use of the self assembled
quantum dots [1], semiconducting nanowires [2, 3] and
carbon nanotubes [4, 5] coupled between the supercon-
ducting and conducting electrodes clearly indicated ap-
pearance of the ABS. Such Andreev states activate an
anomalous tunneling channel which operates even if ex-
ternal voltage is below the energy gap threshold |eV| <
A. The in-gap resonant states have been also detected
in the quantum dots placed between both superconduct-
ing reservoirs [6-8] leading to inversion of the Josephson
current.

In what follows we introduce the microscopic model
capturing the essential physics of ABS. Next, we design
the continuous canonical transformation, derive the set
of flow equations and obtain the effective single particle
spectral function.

2. The model

For description of the ABS we use the Anderson-type
quantum impurity model
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The localized QD electrons are described by the annihi-
lation (creation) operators d, (d}), where o denotes the
spin, eq is the energy level and Ag = min {A, I's/2} [9]
is the on-dot pairing gap. The Coulomb potential Uy is
responsible for the charging effect and, at sufficiently low
temperatures, can lead to the Kondo-type correlations.
Another important ingredient is the hybridization V3 of
the QD with external metallic lead. Energies of the itin-
erant electrons &, = e — p are measured with respect

to the chemical potentials p. In this work we shall inves-
tigate the low energy features, therefore we assume the
wide band limit |Vi|< D (where —D <g, < D).

3. The method

We apply the continuous unitary transformation
(CUT) originating from the renormalization group treat-
ments. It has been introduced in 1994 independently
by Wegner [10] and Wilson with Glazek [11] and proved
to be useful approach for studying a number of prob-
lems in the condensed matter physics [12]. The so-called
flow equation scheme involves unconventional scaling and
operates in the full Hilbert space, so that we keep in-
formation about all energy scales of the system. This
aspect is particularly useful for determining the correla-
tion functions and for studying mutual feedback effects
between the large and small energy scales. The CUT al-
gorithm is based on a continuous diagonalization of the
Hamiltonian, which is ultimately reduced to a diagonal
(or blockdiagonal) structure via the set of infinitesimal
transformations. The unitary flow of the Hamiltonian is
generated by the anti-Hermitian operator.

Let us briefly sketch the main idea of CUT considering
an arbitrary Hamiltonian H = Hp + V with the main
part Hy and the off-diagonal contribution V' (i.e. inter-
actions, external perturbations, etc). Construction of an
effective Hamiltonian H (1) = UT(1)HU(l) is achieved in a
sequence of infinitesimal steps, upon varying a continuous
flow parameter [. Transformation of the Hamiltonian is

governed by the differential equation dlgd[l(l) = (1), H(1)],

where 7(I) = %LA{*(Z) is the generating operator. It
has been proved by Wegner [10] that choosing

i) = A0, V()] (2)
guarantees that V(I) vanishes in the asymptotic limit
I — oo. All [-dependent observables obey the differential
equation
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similar to the flow equation for the model Hamiltonian.

4. Effective Hamiltonian

The Anderson-type Hamiltonian (1) is a microscopic
model for the systems exhibiting the Kondo effect. To
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investigate the Kondo-type correlations we eliminate the
hybridization between the proximized quantum dot and
the normal electrode
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The eﬁective Hamiltonian takes the following form [13]:

ka ckgckg+zed (O)dtd, V(1)
+U(l)nd¢nd¢ — Ad( ) <d dT + didT)

> Tkp(D)3a - Skp, (5)

k,p,o1,02

where 84 is the spin operator of QD electrons and S’k,p
describes the spin operator of itinerant electrons. This
additional term is important, because it yields the in-
duced spin—spin interaction.

To eliminate the hybridization term (4) we apply the
original Wegner prescription (2) to the Hamiltonian (1).
We obtain the following anti-Hermitian operator [13]:
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where ldependent amplitudes are given by ng(l) =
(&) — a@)VeD), mep(D) = FVeOVp(), 17 (1) =

= A()Vie(1) and 0 (1) = — LUV ().

Transformation of the Hamiltonian proceeds according
to the flow equation
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During the flow many additional couplings are generated
which did not occur in the initial Hamiltonian. We either
linearize such new terms and/or neglect some of the ir-
relevant terms [14]. From (7) we finally derive the set of
coupled flow equations for all I-dependent coefficients and
solve it numerically. Differences between the renormal-
ized (I=00) and initial (I=0) values of e4(1), U(1), Aq(l)
range between 5 to 12 percent, whereas the hybridization
Vi (1) completetly vanishes for | — oo.

From our analysis [13] we find the destructive influ-
ence of pairing on the antiferromagnetic order. These
theoretical results are in a qualitative agreement with
experimental data [2]. Since the effective exchange cou-
pling Jg,, is suppressed by the induced on-dot pairing Aq
it further suppresses also the Kondo temperature Tx of
the proximized quantum dot.

5. Spectrum of ABS states
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In this section we analyze the in-gap states of a proxi-
mized quantum dot. The excitation spectrum can be de-
termined from the Green function ((d;(0); d1(0)>> fo =

A(0)
(L)) = (dr(o)id}(oo)) . where
I-dependent, operators obey the flow Eq. (3). To de-
duce their evolution we start with the initial derivative
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where d,(0) = d, and d} (0)
generator (6) we find
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Taking into account the initial operators and the new
terms appearing in Egs. (9),(10) we deduce the following
[-dependent parameterizations:
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with the boundary conditions a(0) = 1 and S(0) =
ax(0) = Ar(0) = %, (0) = 7 (0) = 7,7 (0) = 0. Next,
we use the parameterized operators in the flow equation
d . .
0] = (1), s (D). (13
Comparing the left and the right hand side of Eq. (13)

we obtain the following set of differential flow equations
for [-dependent coefficients:
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propagator which takes the following explicit form:
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We can now calculate the single particle
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