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Phonon Signatures of a Quantum Impurity
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We analyze the e�ective spectrum of a vibrating molecule coupled between one conducting and another super-
conducting electrode. The proximity e�ect induces electron pairing which is manifested by the subgap quasiparticle
peaks (the Andreev states) whose broadening depends on a hybridization with the conducting electrode. On the
other hand, the electron�phonon interaction leads to a multilevel structure with the polaronic states separated by
the phonon energy. We inspect a combined e�ect of both these (polaronic and induced pairing) phenomena.
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1. Introduction

In�uence of the boson degrees of freedom (such as
phonons or photons) on the electron tunneling through
hybrid structures with the superconducting reservoirs has
been initiated already half a century ago [1]. Presently
similar issues attract a renewed attention in the theoreti-
cal and experimental studies of nanoscopic devices, where
the quantum dots, quantum wires and/or molecules are
subjected between various reservoirs of the itinerant elec-
trons [2, 3]. Novel fabrication techniques of the hybrid
structures with the superconducting electrodes connected
to non-superconducting nanostructures allow a fully con-
trollable investigation of the competition between elec-
tron pairing and strong Coulomb repulsion [4]. Their in-
terdependence can be also explored taking into account
the bosonic vibrational modes, which contribute addi-
tional spectroscopic features [5�7].

In this report we study the single particle spectrum
of a vibrating quantum dot (QD) coupled between the
superconducting (S) and metallic (N) leads. Electron�
phonon interaction converts the initial QD level into a
series of polaronic states, separated by the phonon en-
ergy. On the other hand, hybridization with the super-
conducting electrode allows the Cooper pairs to penetrate
this nanoobject bringing some features of the supercon-
ducting spectrum (due to the induced electron pairing).
We investigate how this induced pairing a�ects the spec-
trum of a vibrating molecule and �nd that the polaronic
states appear simultaneously above and below the Fermi
energy.

In Sect. 2 we introduce the microscopic model of our
system and discuss some formal aspects of the adopted
methods. To determine the spectral function of a vibrat-
ing QD we disentangle the bosonic from fermionic degrees
of freedom using the Lang�Firsov canonical transforma-
tion. In last section we inspect spectroscopic �ngerprints
of the phononic modes of the proximized quantum dot.

2. Vibrating quantum dot

To describe a vibrating quantum dot hybridized with
two external leads we use the Anderson-type Hamilto-
nian

H =
∑
β

Hβ +Hmol +HT. (1)

The �rst terms describe the normal (β = N) and super-
conducting (β = S) electron reservoirs. We express them

in the usual way byHN =
∑

kσ ξNkC
†
N,kσCN,kσ andHS =∑

kσ ξSkC
†
S,kσCS,kσ−

∑
k(∆∗CSk↓CS−k↑+∆C†S−k↑C

†
Sk↓),

where C
(†)
βkσ denote the annihilation (creation) operators

for spin σ electrons with momentum k and energy ξβk
(measured with respect to the chemical potential µβ).
The energy gap of superconductor is denoted by ∆. The
vibrating molecule is described by the following Hamil-
tonian:

Hmol =
∑
i,σ

εd†σdσ + Un↑n↓ + ω0a
†a

+λ
∑
σ

d†σdσ(a† + a), (2)

where d
(†)
σ , dσ are the second quantization operators for

the QD electron with spin σ and a(†) correspond to the
monochromatic phonon mode of energy ω0. The initial
QD level is denoted by ε and the corresponding electron-
boson coupling by λ. As usually U is the Coulomb po-
tential energy. Hybridization of the molecule with the
external leads is represented by

HT =
∑

β=N,S

∑
kσ

Vβ,kσC
†
β,kσdσ + H.c. (3)

To determine the single-particle Green function G(ω),
expressed in the 2 × 2 Nambu spinor representation [8],
we use the Dyson equation

G−1(ω) = g−1mol(ω)− ΣN(ω)− ΣS(ω), (4)

where gmol(ω) is the propagator of the isolated (but vi-
brating) molecule and the selfenergies ΣN, ΣS describe
the hybridization e�ects. For clarity reasons we shall ne-
glect the in�uence of mutual electron interactions (which
would additionally cause the Coulomb blockade and can
induce the low energy feature in the Kondo regime [9]).

The hybridization HT contributes the following self-
energies [8]:

Σβ(ω) =
∑
k

Vβ,kgβ(k, ω)V ∗β,k, (5)
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where gβ(k, ω) are the Green functions of the external
electrodes, which have the standard form [9]:

gN(k, ω) =

(
1

ω−ξk,β
0

0 1
ω+ξk,β

)
, (6)

gS(k, ω) =

 u2
k

ω−Ek
+

v2k
ω+Ek

−ukvk
ω−Ek

+
ukvk
ω+Ek

−ukvk
ω−Ek

+
ukvk
ω+Ek

u2
k

ω+Ek
+

v2k
ω−Ek

 . (7)

The quasiparticle energies Ek =
√
ξ2S,k + ∆2 have a well

known gaped character and the BCS coe�cients are given

by u2k, v
2
k = 1

2

[
1± ξks

Ek

]
, ukvk = ∆

2Ek
. In the wide band

limit approximation we assume the constant hybridiza-
tion couplings Γβ = 2π

∑
k |Vβ,k|2∆(ω − ξβk). We thus

obtain the selfenergies∑
k

VN,k gN(k, ω)V ∗Nk = − i
ΓN

2

(
1 0

0 1

)
, (8)

∑
k

VS,k gβ(k, ω)V ∗S,k = − i
ΓS

2
γ(ω)

(
1 ∆

ω
∆
ω 1

)
, (9)

where

γ(ω) =
|ω|Θ(|ω| −∆)√

ω2 −∆2
− i

ωΘ(∆− |ω|)√
∆2 − ω2

.

In the remaining part of this work we will focus on a
deep subgap regime |ω| � ∆ when (9) simpli�es to the
following static value:∑

k

VS,k gβ(k, ω)V ∗S,k = −ΓS
2

(
0 1

1 0

)
. (10)

We now calculate the Green function gmol(ω) of a vi-
brating quantum dot. For this purpose we use the canon-
ical transformation to eliminate electron�phonon cou-
pling term from Hamiltonian (2). Using the Lang�Firsov
transformation eSHQD e−S with generating operator [10]:

Ŝ =
∑
σ

d†σdσ
λ

ω0
(a† − a), (11)

one obtains eSHQD e−S =
∑
σ ε̃d̃

†
σd̃σ + ω̃0a

†a + Ũ ñ↓ñ↑.
The fermion and boson subsystems are thus e�ectively
disentangled, renormalizing the energy ε̃ = ε −∆ph and

the electron�electron potential Ũ = U − 2∆ph though
the polaron shift ∆ph = λ2/ω0. Additionally, the cre-
ation and annihilation operators are dressed

d̃(†)σ = d(†)σ X(†), ã(†) = a(†) − λ

ω0

∑
σ

d†σdσ, (12)

where the polaronic cloud operator X is de�ned as:

X = e−(λ/ω0)(a
†−a). (13)

In order to calculate gmol(t, t
′) we can use the following

identities:

g11mol(t, t
′) = − i

〈
T̂ dσ(t)d†σ(t′)e−S eS

〉
=

− i
〈
T̂ eSdσ(t)d†σ(t′)e−S

〉
= − i

〈
T̂ d̃σ(t)d̃†σ

〉
=

− i
〈
T̂ dσ(t)X(t)d†σ(t′)X†(t′)

〉
=

− i
〈
T̂ dσ(t)d†σ(t′)

〉
el

〈
T̂X(t)X†(t′)

〉
vib

=

G̃11
el (t, t′)

〈
T̂X(t)X†(t′)

〉
vib

, (14)

where T̂ is the time ordering operator. Time depen-
dence of the polaron cloud operator can be expressed by

X(t) = e iω0a
†a tX e iω0a

†a t. After lengthy but straight-
forward algebra we �nally obtain〈

X(t)X(t′)†
〉

= exp
(
−(λ/ω0)2((1− e− iω0(t−t′))

× (1 +Np) + (1− e iω0(t−t′))Np)
)

(15)

with the Bose�Einstein distribution Np =
[
eβω0 − 1

]−1
.

We now put this result into Eq. (14) and compute its
Fourier transform assuming the equilibrium conditions,
when the Green functions depend only on the time dif-
ference t− t′. In such conditions [11]:

g11mol(ω) = e−(λ
√

1+2Np/ω0)
2 ∑

l

Il e
lβω0/2G̃(ω − lω0)

×

[
2

(
λ

ω0

)2√
Np(1 +Np)

]
, (16)

where Il are the modi�ed Bessel functions. The Green
function gmol(ω) contains both the electronic and bosonic
degrees of freedom. Note that argument of the electronic
Green function G̃el depends on the number l = 0, 1, 2...
of phonon quanta. At zero temperature this Eq. (16)
simpli�es to

lim
T→0

g11mol(ω) =
∑
l

e−g
gl

l!
G̃el(ω − lω0), (17)

where g = (λ/ω0)2 is a dimensionless adiabacity parame-
ter. Neglecting the electron�electron interactions we can
obtain the spectral function of a molecular quantum dot
ρmol(ω) = −π−1Img11mol(ω + i0+). At zero temperature
this spectral function

ρmol(ω) = e−g
∑
l

gl

l!
∆(ω − ε̃− lω0). (18)

consists of the Dirac delta functions separated by the
phonon energy ω0. Their amplitudes are expressed by the

envelope factor e−g g
l

l! [10, 11]. Since the matrix Green
function gmol(ω) of an isolated molecular dot does not
have any o�-diagonal terms we �nally get

gmol(ω) =

(
g11mol(ω) 0

0 −
[
g11mol(−ω)]∗

] ) . (19)

3. Proximity vs. polaron e�ects

From Eq. (18) we can see that the electron�phonon
interaction induces a series of phonon states starting
from ε̃. The initial single level spectrum is thus trans-
formed into a multilevel structure (Fig. 1), where the
lowest state is shifted by the polaronic term ∆ph. These
polaronic states are separated by the phonon energy ω0

whereas their amplitudes strongly depend on the cou-
pling strength λ [10]. We shall now inspect how the
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Fig. 1. Spectrum of a vibrating quantum dot obtained
at zero temperature for λ = 3ω0 assuming the in�nites-
imally small ΓN. Energies are plotted with respect to
initial QD level ε.

Fig. 2. Spectrum of the quantum dot coupled to the
superconducting lead in absence of bosonic �eld. The
result is obtained for the energy level ε = −ΓS and in-
�nitesimally small ΓN.

induced on-dot pairing (due to ΓS) and the hybridization
ΓN with the normal lead a�ect these polaronic states.
We are now ready to combine the polaronic function

(19) with the hybridization e�ects (8), (10). The e�ec-
tive spectral function ρ(ω) = −π−1ImG(ω+ i0+) can be
easily determined from the Dyson Eq. (4).
In the previous works [8, 9] we have discussed in detail

the in�uence of the proximity e�ect on the energy spec-
trum of single level quantum dot. Let us recall here some
main conclusions of these studies, that are crucial for un-
derstanding the present problem. Due to the proximity
e�ect the energy level ε (in the subgap regime) is split to

the new quasiparticle energies ±Ed = ±
√
ε2 + (Γ

S
/2)2

(see Fig. 2). Amplitudes of such (Andreev) states are
given by the BCS coe�cients u2d, v

2
d = 1

2 [1 ± ε
Ed

]. Addi-
tional coupling ΓN of the proximized quantum dot to the

Fig. 3. Spectral function of a vibrating quantum dot
obtained for −ε = ΓS = 5ω0 and λ = 3ω0 and ΓN/ΓS =
10−5.

Fig. 4. Density of states of a vibrating quantum dot
coupled to the superconducting lead. The results are
obtained for similar parameters as in Fig. 3 with di�er-
ent ΓN = ω0.

metallic electrode causes a broadening of these Andreev
quasiparticle states (i.e. a �nite life-time e�ect).
In a case of the vibrating molecule the multiple lev-

els driven by electron�phonon interaction λ 6= 0 ap-
pear simultaneously above and below Fermi surface. The
lowest Andreev state is formed at the energy −Ẽd =
−
√
ε̃2 + (ΓS/2)2. Other polaronic states appear at

±(Ẽd+ lω0) and amplitudes of these peaks depend both,

on the factor e−g g
l

l! and the BCS coe�cients ũ2, ṽ2 =
1
2 [1 ± ε̃

Ẽd
] (Fig. 3). Hybridization ΓN is responsible for

broadening these polaronic states (see Fig. 4) leading to
a �nite-life time of the subgap states.

4. Summary
We have shown that the electron�phonon interaction

combined with the proximity e�ect induce a series of po-
laronic states simultaneously in the particle and hole ex-
citations. Hybridization ΓN with the metallic lead merely
broadens these polaronic subgap states. In consequence
at the su�ciently large ratio ΓN ≥ ω0, the polaronic
states eventually overlap with each other forming a band-
like spectrum.
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