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We analyze the effective spectrum of a vibrating molecule coupled between one conducting and another super-
conducting electrode. The proximity effect induces electron pairing which is manifested by the subgap quasiparticle
peaks (the Andreev states) whose broadening depends on a hybridization with the conducting electrode. On the
other hand, the electron—phonon interaction leads to a multilevel structure with the polaronic states separated by
the phonon energy. We inspect a combined effect of both these (polaronic and induced pairing) phenomena.
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1. Introduction

Influence of the boson degrees of freedom (such as
phonons or photons) on the electron tunneling through
hybrid structures with the superconducting reservoirs has
been initiated already half a century ago [1]. Presently
similar issues attract a renewed attention in the theoreti-
cal and experimental studies of nanoscopic devices, where
the quantum dots, quantum wires and/or molecules are
subjected between various reservoirs of the itinerant elec-
trons [2, 3]. Novel fabrication techniques of the hybrid
structures with the superconducting electrodes connected
to non-superconducting nanostructures allow a fully con-
trollable investigation of the competition between elec-
tron pairing and strong Coulomb repulsion [4]. Their in-
terdependence can be also explored taking into account
the bosonic vibrational modes, which contribute addi-
tional spectroscopic features [5-7].

In this report we study the single particle spectrum
of a vibrating quantum dot (QD) coupled between the
superconducting (S) and metallic (N) leads. Electron—
phonon interaction converts the initial QD level into a
series of polaronic states, separated by the phonon en-
ergy. On the other hand, hybridization with the super-
conducting electrode allows the Cooper pairs to penetrate
this nanoobject bringing some features of the supercon-
ducting spectrum (due to the induced electron pairing).
We investigate how this induced pairing affects the spec-
trum of a vibrating molecule and find that the polaronic
states appear simultaneously above and below the Fermi
energy.

In Sect. 2 we introduce the microscopic model of our
system and discuss some formal aspects of the adopted
methods. To determine the spectral function of a vibrat-
ing QD we disentangle the bosonic from fermionic degrees
of freedom using the Lang—Firsov canonical transforma-
tion. In last section we inspect spectroscopic fingerprints
of the phononic modes of the proximized quantum dot.

2. Vibrating quantum dot

To describe a vibrating quantum dot hybridized with
two external leads we use the Anderson-type Hamilto-
nian

H=> Hg+ Hpo + Hr. (1)

B
The first terms describe the normal (8 = N) and super-
conducting (8 = S) electron reservoirs. We express them

in the usual way by Hxy =), §Nk0§)kUC’N7kJ and Hg =
Y ko fSkCgkgCS,ka_Zk(A*CSkJ,CS—kT'i‘ACg_kTCgki)7
where C/(;QU denote the annihilation (creation) operators
for spin o electrons with momentum k and energy &z
(measured with respect to the chemical potential pg).
The energy gap of superconductor is denoted by A. The
vibrating molecule is described by the following Hamil-
tonian:

Hpot = Z edidy +Unyny + woa'a

1,0
XD " didy(a +a), (2)

g
where d((;r), d, are the second quantization operators for

the QD electron with spin ¢ and a(f) correspond to the
monochromatic phonon mode of energy wy. The initial
QD level is denoted by € and the corresponding electron-
boson coupling by A. As usually U is the Coulomb po-
tential energy. Hybridization of the molecule with the
external leads is represented by

Hy= Y>> VskoCl pdo + He. (3)
B=N,S ko
To determine the single-particle Green function G(w),
expressed in the 2 x 2 Nambu spinor representation [8],
we use the Dyson equation
G (W) = oot (w) = In(w) — Ts(w), (4)
where gmoi(w) is the propagator of the isolated (but vi-
brating) molecule and the selfenergies Y, Xg describe
the hybridization effects. For clarity reasons we shall ne-
glect the influence of mutual electron interactions (which
would additionally cause the Coulomb blockade and can
induce the low energy feature in the Kondo regime [9]).

The hybridization Ht contributes the following self-
energies [8]:

Eﬁ(w) = Z Vﬁ,kgﬁ(kaw)v,f;,k’ (5)
k
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where gg(k,w) are the Green functions of the external
electrodes, which have the standard form [9]:

1
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The quasiparticle energies Ey = ggyk + A2 have a well

known gaped character and the BCS coefficients are given

1 s
by ui,vi = 5 [1i %’“
limit approximation we assume the constant hybridiza-
tion couplings I's = 2m >, |Vak|?Al(w — Esr). We thus

obtain the selfenergies
L1
2 \o1)’

} UV = ﬁ In the wide band

Z Wk 9N (e, W) VR =
k
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where
y(w) = w[O(w| —4) w64~ |wl)
Vo2 = A2 A2 2

In the remaining part of this work we will focus on a
deep subgap regime |w| < A when (9) simplifies to the
following static value:

. I's {01
ZVS,k 9p(k,w)Vg, = 9 ( 10 ) .
k

We now calculate the Green function g (w) of a vi-
brating quantum dot. For this purpose we use the canon-
ical transformation to eliminate electron—phonon cou-
pling term from Hamiltonian (2). Using the Lang—Firsov
transformation e® Hqp e~ with generating operator [10]:

~ A
S:ngdaw—o(aT —a), (11)

one obtains eSHqpe S = Y _&dld, + Goata + Un g
The fermion and boson subsystems are thus effectively
disentangled, renormalizing the energy € = ¢ — A, and
the electron—electron potential U = U — 2A,;, though
the polaron shift A,, = A*/wy. Additionally, the cre-
ation and annihilation operators are dressed

(10)

J((;r) - d((;r)X(T), a® = o0 ZdT d,, (12)
where the polaronic cloud operator X is defined as:
X = e Mwo)a'—a) (13)

In order to calculate gmoi(t,t') we can use the following
identities:

géllol(t’ t/) =

i <fesdg(t)d:f,(t’)e’

i <fdg(t)d:f,(t’)e’ses> -

=i (fa0)-
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where T is the time ordering operator. Time depen-
dence of the polaron cloud operator can be expressed by

X(t) = eiwoa'at X giwoa’at After lengthy but straight-
forward algebra we finally obtaln

(XOX(E)T) = exp (—(Mewo)2(1 = e 10¢=)
X (L+Np) + (1 - ei%(t*f’))Np))

with the Bose-Einstein distribution N, =
We now put this result into Eq. (14) and compute its
Fourier transform assuming the equilibrium conditions,
when the Green functions depend only on the time dif-

(14)

(15)

[efe0 1] 7",

ference t — ¢'. In such conditions [11]:
Gano () = e VRNl N7 1y 61002 G100 — L)
A\ |
x [2 () N,(14 N,) (16)
wo
where I; are the modified Bessel functions. The Green

function gmol(w) contains both the electronic and bosonic
degrees of freedom. Note that argument of the electronic
Green function G.; depends on the number [ = 0,1, 2...

of phonon quanta. At zero temperature this Eq. (16)
simplifies to
— 9
%Hn gl (w Z e 9= — lwp), (17)

where g = (A\/wp)? is a dimensionless adiabacity parame-

ter. Neglecting the electron—electron interactions we can

obtain the spectral function of a molecular quantum dot

pmol(w) = =7 Imgll (w+ i0T). At zero temperature
this spectral function

!
_ g ~
Pmol(w) = €79 FA(w — & —lwp). (18)
!
consists of the Dirac delta functions separated by the
phonon energy wy. Their amplitudes are expressed by the

envelope factor e™9% [10, 11]. Since the matrix Green
function gmoel(w) of an isolated molecular dot does not
have any off-diagonal terms we finally get

W) = grlnlol(w) 0
Gmoi )—< 0 [gé}ol(w)]*])

3. Proximity vs. polaron effects

From Eq. (18) we can see that the electron—phonon
interaction induces a series of phonon states starting
from €. The initial single level spectrum is thus trans-
formed into a multilevel structure (Fig. 1), where the
lowest state is shifted by the polaronic term Apy,. These
polaronic states are separated by the phonon energy wy
whereas their amplitudes strongly depend on the cou-
pling strength A [10]. We shall now inspect how the

(19)
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Fig. 1. Spectrum of a vibrating quantum dot obtained
at zero temperature for A = 3wo assuming the infinites-
imally small I'v. Energies are plotted with respect to
initial QD level e.
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Fig. 2. Spectrum of the quantum dot coupled to the
superconducting lead in absence of bosonic field. The
result is obtained for the energy level ¢ = —Is and in-
finitesimally small I'x.

induced on-dot pairing (due to I's) and the hybridization
I'y with the normal lead affect these polaronic states.

We are now ready to combine the polaronic function
(19) with the hybridization effects (8), (10). The effec-
tive spectral function p(w) = —7~ImG(w + i0T) can be
easily determined from the Dyson Eq. (4).

In the previous works [8, 9] we have discussed in detail
the influence of the proximity effect on the energy spec-
trum of single level quantum dot. Let us recall here some
main conclusions of these studies, that are crucial for un-
derstanding the present problem. Due to the proximity
effect the energy level e (in the subgap regime) is split to
the new quasiparticle energies +Fy = ++/€? + (I,/2)?
(see Fig. 2). Amplitudes of such (Andreev) states are
given by the BCS coefficients u2,v3 = $[1 + £]. Addi-
tional coupling I'y of the proximized quantum dot to the

200

150

2100
(SN

50 ‘
Lot

-10 -5 0 5 o/ay

Fig. 3. Spectral function of a vibrating quantum dot
obtained for —e = I's = bwp and A = 3wp and I'n/[s =
107°.
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Fig. 4. Density of states of a vibrating quantum dot
coupled to the superconducting lead. The results are
obtained for similar parameters as in Fig. 3 with differ-
ent I'n = wo.

metallic electrode causes a broadening of these Andreev
quasiparticle states (i.e. a finite life-time effect).

In a case of the vibrating molecule the multiple lev-
els driven by electron—phonon interaction A # 0 ap-
pear simultaneously above and below Fermi surface. The
lowest Andreev state is formed at the energy —Fy =

—+/€ + (I's/2)2.  Other polaronic states appear at

+(E4+lw) and amplitudes of these peaks depend both,
L

on the factor e 9% and the BCS coefficients 2, 9° =

i+ Eid] (Fig. 3). Hybridization I'y is responsible for

broadening these polaronic states (see Fig. 4) leading to

a finite-life time of the subgap states.

4. Summary
We have shown that the electron—phonon interaction

combined with the proximity effect induce a series of po-
laronic states simultaneously in the particle and hole ex-
citations. Hybridization I'y with the metallic lead merely
broadens these polaronic subgap states. In consequence
at the sufficiently large ratio I'y > wq, the polaronic
states eventually overlap with each other forming a band-
like spectrum.
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