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Renormalization Group Approach
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The discovery of the colossal magnetoresistance (CMR) in the manganese oxides with perovskite structures
T1−xDMnO3 (T = La, Pr, Nd; D=Sr, Ca, Ba, Pb) and its potential technological application motivated
theoretical and experimental researchers to study the itinerant ferromagnetism. A �rst theoretical description of
this phenomenon in terms of the double-exchange mechanism was given a long time ago by Zener. In this model,
the spin orientation of adjacent Mn-moments is associated with kinetic exchange of conduction eg electrons.
Consequently, alignment of the core Mn-spins by an external magnetic �eld causes higher conductivity. The Mn
ions are considered as localized forming a spin of S = 3

2
and they are coupled to the itinerant electrons by a strong

ferromagnetic Hund coupling, JH > 0. We apply the �ow equation technique (nonperturbative method, based on
continuous canonical transformation) to the double-exchange model for ferromagnetism described by the Kondo
type Hamiltonian. We want to eliminate the interaction term responsible for non-conservation of magnon number
and to take into account fermion and magnon degrees of freedom. We express the spin operators of Mn ions via
the magnon operators (the Holstein�Primako� transformation) and investigate the magnon excitation spectrum
determined by Green's function.

PACS: 05.10.Cc, 75.47.Gk, 75.30.Et, 75.30.Ds

1. Introduction

Due to discovery of the colossal magnetoresistance
and its potential application in information technol-
ogy or spintronic the understanding of itinerant ferro-
magnetism [1, 2] of manganese oxides is a challenge
for scientists. So far, some magnetic properties has
been studied by investigating the magnon spectrum at
non-Ruderman�Kittel�Kasuya�Yosida (non-RKKY) in-
direct exchange in conducting ferromagnets [3], in spin
wave theory of double exchange ferromagnets [4], by ap-
plication of continuous canonical transformation [5] and
slave fermion approach to the quantum double-exchange
(DEX) model [6], by analysis of on-site Hubbard repul-
sion e�ects [7] and interacting spin waves in the fer-
romagnetic Kondo lattice model [8], etc. Also Monte
Carlo scheme of enhanced ferromagnetism from electron�
electron interactions in double exchange models [9] has
been considered.
In this paper we want to study physics of the DEX fer-

romagnets applying continuous unitary transformation.
So-called �ow equation approach introduced in 1994 by
Wegner [10] in the context of condensed matter theory
and independently by Wilson with Gªazek [11] in the high
energy physics proved to be very useful nonperturbative
approach for studying a number of problems in the con-
densed matter physics [12]. This method originates from
the renormalization group technique. The �ow equation
scheme involves unconventional scaling and retains the
full Hilbert space, so we keep information on all energy
scales of our systems. Such process is based on a contin-
uous diagonalization of the relevant Hamiltonian which
is ultimately reduced to a diagonal (or block-diagonal)
structure via the set of in�nite transformation. The uni-

tary �ow of the Hamiltonian is generated by the anti-
-Hermitian operator. Particular choice of this canoni-
cal generator depends on the subtleties of the considered
problem [12]. We have applied such unitary transforma-
tions for BCS superconductors [13] and for the systems
of coherent and incoherent preformed pairs [14]. Now,
we shall try to extend such algorithm for the strong fer-
romagnetic coupling limit which is relevant to the man-
ganites.

2. The double exchange model

The DEX model for ferromagnetism is described by
the Kondo type Hamiltonian [15]:

Ĥ =
∑
k,σ

(εk − µ)ĉ†kσ ĉkσ

− JH
∑
i,σ,σ′

(Ŝiŝi)
σσ′

ĉ†iσ ĉiσ′ , (1)

where ĉ†kσ (ĉkσ) is creation (annihilation) operators of
the conduction eg electrons, εk are the energies of eg,

µ is chemical potential, ŝi � spin operators of eg, Ŝi

� spin operators of Mn ions, JH > 0 is the Hund cou-
pling (for manganites known to be very large) and charac-
terizes local ferromagnetic interaction. Let us represent
the spin operators of Mn ions Ŝi via the magnon op-

erators b̂†i , b̂i (the Holstein�Primako� transformation):

Ŝ−
i = b̂†i(2S − b̂†i b̂i)

1
2 , Ŝ+

i = (Ŝ−
i )†, Ŝz

i = S − b̂†i b̂i,

where S = 3
2 . Magnon operators b̂†i , b̂i obey the bo-

son comutation relations. By simplifying spin operators:

Ŝ−
i = b̂†i

√
2S, Ŝ+

i = b̂i
√
2S (it is true at low tempera-

tures) and using the Pauli operators for eg electron spins
we can rewrite the model Hamiltonian as
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Ĥ =
∑
k,σ

ξσk ĉ
†
kσ ĉkσ +

∑
q

ωq b̂
†
q b̂q

+
JH
2N

∑
k,p,q

b̂†p+q b̂p
(
ĉ†k−q↑ĉk↑ − ĉ†k−q↓ĉk↓

)
− JH

√
S

2N

∑
k,q

(
b̂†q ĉ

†
k−q↑ĉk↓ +H.c.

)
, (2)

where ξσk = εk − µσ, µ↑ = µ + 1
2SJH, µ

↓ = µ − 1
2SJH

and the last term in (2) describes the double exchange
interaction.

3. Formulation of the �ow equations

3.1. Diagonalization of the Hamiltonian
The model Hamiltonian can be split up in a diagonal

and interaction part

Ĥ(l) = Ĥ0(l) + Ĥint(l), (3)

where [5]

Ĥint(l) = − 1√
N

∑
k,q

(Ik,q(l)b̂
†
q ĉ

†
k−q↑ĉk↓ +H.c.) (4)

and

Ĥ0(l) =
∑
k,σ

ξσk ĉ
†
kσ ĉkσ +

∑
q

ωq b̂
†
q b̂q

+
1

N

∑
k,k′,q,q′

δk+q,k′+q′

[
Uk,q,q′,k′ ĉ†k↓ĉ

†
q↑ĉq′↑ĉk′↓

+ b̂†q b̂q′

(
M↑

k,k′,q,q′(l)ĉ
†
k↑ĉk′↑

−M↓
k,k′,q,q′(l)ĉ

†
k↓ĉk′↓

)]
+ δH0(l). (5)

Initial conditions (l = 0) for the model parameters:

ξσk(0) = εk − µσ, Ik,q(0) = JH

√
S
2 , M

σ
k,k′,q,q′(0) = JH

2 ,

Uk,q,q′,k′(0) = 0. We choose the canonical operator

η(l) = [Ĥ0(l), Ĥint(l)] [10] which is given by

η̂(l) = − 1√
N

∑
k,q

αk,q(l)
(
Ik,q(l)b̂

†
q ĉ

†
k−q↑ĉk↓ −H.c.

)
,

(6)

where αk,q(l) = ξ↑k−q(l) − ξ↓k(l). Transformation of the

Hamiltonian Ĥ(l) proceeds as long as η(l) is �nite, which
occurs until Ik,q(l) → 0. This is achieved in the asymp-
totic limit l → ∞.
The set of �ow equations for parameters of the DEX

model Hamiltonian is given by [5]:

dIk,q(l)

dl
= −α2

k,q(l)Ik,q(l), (7)

dξ↓k(l)

dl
= − 2

N

∑
q

αk,q(l)|Ik,q(l)|2 (8)

and additional for U(l) and M(l). In the lowest order
estimation

Ik,q(l) = Ik,q(0)e
−α2

k,q l

= JH

√
S

2
e
−(ξ↑

k−q
−ξ↓

k
)2l

, (9)

ξ↓k(∞) = ξ↓k − J2
HS

2

∑
q

1

ξ↑k−q − ξ↓k
. (10)

For more details see [5].
3.2. Magnon energy spectrum

From the initial derivative in (l = 0) we �nd that(
db̂†q(l)

dl

)
l=0

=
[
η̂(l), b̂†q(l)

]
l=0

, (11)

where b̂†q(0) = b̂†q and b̂q(0) = b̂q. Using the generating
operator (6) we calculate the �ow of magnon operator(

db̂†q(l)

dl

)
l=0

=
1√
N

∑
k

αk,q(0)Ik,q(0)ĉ
†
k↓ĉk−q↑,

(
db̂q(l)

dl

)
l=0

=

(
db̂†q(l)

dl

)†

l=0

. (12)

From Eq. (12) we conclude the following l-dependent
parameterization of the magnon operators

b̂†q(l) = Aq(l)b̂
†
q +

∑
k

Bk,q(l)ĉ
†
k↓ĉk−q↑,

b̂q(l) =
(
b̂†q(l)

)†
, (13)

with the initial boundary conditions Aq(0) = 1 and
Bk,q(0) = 0. We next use the ansatz (13) in the �ow

equation for the magnon operator
db̂†q(l)

dl = [η̂(l), b̂†q(l)].
On this basis we obtain the following set of �ow equa-
tions for l-dependent coe�cients

dAq(l)

dl
=

1√
N

∑
k

αk,q(l)Ik,q(l)
[
n↓
k − n↑

k−q

]
Bk,q(l),

(14)
dBk,q(l)

dl
=

1√
N

αk,q(l)Ik,q(l)Aq(l), (15)

where nσ
k = [exp(ξσk/kBT ) + 1]−1 is the Fermi�Dirac dis-

tribution function. By investigating (14) and (15) in the
lowest order solution we �nd that

Aq(l) =
J2
HS

4N

∑
k

n↓
k − n↑

k−q

(ξ↑k−q − ξ↓k)
2

×
(
exp
(
−2
(
ξ↑k−q − ξ↓k

)2
l
)

− 2 exp
(
−
(
ξ↑k−q − ξ↓k

)2
l
)
+ 1
)
, (16)

Bk,q(l) = − 1√
N

Ik,q(l)− Ik,q(0)

ξ↑k−q − ξ↓k
. (17)

Their asymptotic values (l → ∞) have the following
structure:

Ãq = 1− J2
HS

4N

∑
k

n↑
k−q − n↓

k

(ξ↑k−q − ξ↓k)
2
, (18)

B̃k,q = JH

√
S

2N

1

ξ↑k−q − ξ↓k
. (19)

The excitation spectrum can be determined from the

magnon Green function ⟨⟨b̂q; b̂†q⟩⟩Ĥ . Taking into account
the statistical averages of the observables and the invari-
ance of trace on the unitary transformation we can write
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⟨⟨b̂q; b̂†q⟩⟩Ĥ = ⟨⟨b̂q(l); b̂†q(l)⟩⟩Ĥ(l) = ⟨⟨b̂q(∞); b̂†q(∞)⟩⟩Ĥ(∞)

which is explicitly given by⟨⟨
b̂q(∞); b̂†q(∞)

⟩⟩
Ĥ(∞)

=

⟨⟨
Ã∗

q b̂q +
∑
k

B̃∗
k,q ĉ

†
k−q↑ĉk↓; Ãq b̂

†
q

+
∑
k′

B̃k′,q ĉ
†
k′↓ĉk′−q↑

⟩⟩
= |Ãq|2

⟨⟨
b̂q; b̂

†
q

⟩⟩
+
∑
k,k′

B̃∗
k,qB̃k′,q

⟨⟨
ĉ†k−q↑ĉk↓; ĉ

†
k′↓ĉk′−q↑

⟩⟩
= |Ãq|2

1

ω − ω̃q
+
∑
k

|B̃k,q|2
n↑
k−q − n↓

k

ω + ξ̃↑k−q − ξ̃↓k
. (20)

Magnon spectral function is determined by the imaginary

part of the Green function ρ(q, ω) = − 1
πℑ⟨⟨b̂q; b̂

†
q⟩⟩ω+i0+ .

4. Summary

In this paper we construct the continuous unitary
transformation for the DEX model. We present how the
�ow equation method works and how the energy spec-
trum appears in this regime. As one can see in Fig. 1,
magnon spectrum consists of the coherent (long-lived) an
incoherent (damped) part. These branches are separated
by a fairly large energy. Contribution of the coherent
part is about 60�70 percent (see Fig. 2). Due to small
occupancy of the incoherent part appearing at high ener-
gies its in�uence on physical properties could be negligi-

Fig. 1. The e�ective spectrum of magnons.

Fig. 2. Contribution of the long-lived magnon excita-
tions.

ble. The next step will contain analytical and numerical
development of the project and comparison of our esti-
mation to other theoretical and experimental results.
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