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The discovery of the colossal magnetoresistance (CMR) in the manganese oxides with perovskite structures
T1-.DMnO3 (T = La, Pr, Nd; D=Sr, Ca, Ba, Pb) and its potential technological application motivated
theoretical and experimental researchers to study the itinerant ferromagnetism. A first theoretical description of
this phenomenon in terms of the double-exchange mechanism was given a long time ago by Zener. In this model,
the spin orientation of adjacent Mn-moments is associated with kinetic exchange of conduction ez electrons.
Consequently, alignment of the core Mn-spins by an external magnetic field causes higher conductivity. The Mn
ions are counsidered as localized forming a spin of S = % and they are coupled to the itinerant electrons by a strong
ferromagnetic Hund coupling, Ju > 0. We apply the flow equation technique (nonperturbative method, based on
continuous canonical transformation) to the double-exchange model for ferromagnetism described by the Kondo
type Hamiltonian. We want to eliminate the interaction term responsible for non-conservation of magnon number
and to take into account fermion and magnon degrees of freedom. We express the spin operators of Mn ions via
the magnon operators (the Holstein—Primakoff transformation) and investigate the magnon excitation spectrum

determined by Green’s function.
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1. Introduction

Due to discovery of the colossal magnetoresistance
and its potential application in information technol-
ogy or spintronic the understanding of itinerant ferro-
magnetism [1, 2] of manganese oxides is a challenge
for scientists. So far, some magnetic properties has
been studied by investigating the magnon spectrum at
non-Ruderman—Kittel-Kasuya—Yosida (non-RKKY) in-
direct exchange in conducting ferromagnets [3], in spin
wave theory of double exchange ferromagnets [4], by ap-
plication of continuous canonical transformation [5] and
slave fermion approach to the quantum double-exchange
(DEX) model [6], by analysis of on-site Hubbard repul-
sion effects [7] and interacting spin waves in the fer-
romagnetic Kondo lattice model [8], etc. Also Monte
Carlo scheme of enhanced ferromagnetism from electron—
electron interactions in double exchange models [9] has
been considered.

In this paper we want to study physics of the DEX fer-
romagnets applying continuous unitary transformation.
So-called flow equation approach introduced in 1994 by
Wegner [10] in the context of condensed matter theory
and independently by Wilson with Glazek [11] in the high
energy physics proved to be very useful nonperturbative
approach for studying a number of problems in the con-
densed matter physics [12]. This method originates from
the renormalization group technique. The flow equation
scheme involves unconventional scaling and retains the
full Hilbert space, so we keep information on all energy
scales of our systems. Such process is based on a contin-
uous diagonalization of the relevant Hamiltonian which
is ultimately reduced to a diagonal (or block-diagonal)
structure via the set of infinite transformation. The uni-

tary flow of the Hamiltonian is generated by the anti-
-Hermitian operator. Particular choice of this canoni-
cal generator depends on the subtleties of the considered
problem [12]. We have applied such unitary transforma-
tions for BCS superconductors [13] and for the systems
of coherent and incoherent preformed pairs [14]. Now,
we shall try to extend such algorithm for the strong fer-
romagnetic coupling limit which is relevant to the man-
ganites.

2. The double exchange model

The DEX model for ferromagnetism is described by
the Kondo type Hamiltonian [15]:
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where é};a (¢ko) is creation (annihilation) operators of

the conduction eg electrons, € are the energies of eg,
i is chemical potential, 5; — spin operators of e, S;
— spin operators of Mn ions, Jgy > 0 is the Hund cou-
pling (for manganites known to be very large) and charac-
terizes local ferromagnetic interaction. Let us represent
the spin operators of Mn ions S; via the magnon op-
erators BI, b; (the Holstein-Primakoff transformation):
Sy = bi(28 = blbe)2, S = (S;), §F = S - blb,
where S = % Magnon operators bl, b; obey the bo-
son comutation relations. By simplifying spin operators:
S’l_ = Eim, S’j‘ = b;V/25 (it is true at low tempera-
tures) and using the Pauli operators for e electron spins
we can rewrite the model Hamiltonian as
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where £ = ep — p%, pt = p+ 3SJu, pt = p— 3SJu
and the last term in (2) describes the double exchange
interaction.
3. Formulation of the flow equations
3.1. Diagonalization of the Hamiltonian
The model Hamiltonian can be split up in a diagonal
and interaction part
H(l) = Ho(l) + Hint (1), 3)
where [5]
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Initial conditions (I = 0) for the model parameters:

00 = 26 = 17, Tg(0) = Juy /5, My g0 0) = %,
Uk.q.q.k(0) = 0. We choose the canonical operator
7,(1) = [H’o(l) Em( )] [10] which is given by
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where ag ¢(l) = §k7q( )
Hamiltonian H([) proceeds as long as (1) is finite, which
occurs until I (1) — 0. This is achieved in the asymp-
totic limit | — oo.

The set of flow equations for parameters of the DEX
model Hamiltonian is given by [5]:
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and additional for U (I) and M(l). In the lowest order
estimation
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For more details see [5].

3.2. Magnon energ spectrum
From the initial derivative in & ) we find that
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where IA):[](O) = I;L and by (0) = b,. Using the generating
operator (6) we calculate the flow of magnon operator
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From Eq. (12) we conclude the following I-dependent
parameterization of the magnon operators
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ba(1) = (b5(D)", (13)
with the initial boundary conditions A4(0) = 1 and
Bi,q(0) = 0. We next use the ansatz (13) in the flow
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equation for the magnon operator gz() = [7(1), b} (1)].
On this basis we obtain the following set of flow equa-
tions for l dependent coefficients
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where ng = [exp(£g/ksT) + 1]~ is the Fermi-Dirac dis-
tribution function. By investigating (14) and (15) in the

lowest order solution we find that
JI%IS nJI; B nI:—q

AN 42 (g — &)

X (exp(—Q(f,zfq — §,t)2l)

Aq(l) =

- 2exp(—(§,17q - g,ﬁ)zl) + 1), (16)
R r an

Their asymptotic values (I — oo) have the following
structure:
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The excitation spectrum can be determined from the
magnon Green function ((by; bq>> - Taking into account
the statistical averages of the observables and the invari-

ance of trace on the unitary transformation we can write

(18)
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which is explicitly given by
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Magnon spectral function is determined by the imaginary
part of the Green function p(q,w) = —23((bg; bl))ew-rio+-

4. Summary

In this paper we construct the continuous unitary
transformation for the DEX model. We present how the
flow equation method works and how the energy spec-
trum appears in this regime. As one can see in Fig. 1,
magnon spectrum consists of the coherent (long-lived) an
incoherent (damped) part. These branches are separated
by a fairly large energy. Contribution of the coherent
part is about 60-70 percent (see Fig. 2). Due to small
occupancy of the incoherent part appearing at high ener-
gies its influence on physical properties could be negligi-
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The effective spectrum of magnons.
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Fig. 2.
tions.

Contribution of the long-lived magnon excita-

ble. The next step will contain analytical and numerical
development of the project and comparison of our esti-
mation to other theoretical and experimental results.
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