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We address the linear response for superconductors using the non-perturbative technique based on the
continuous unitary transformation. We discuss how this method rigorously reproduces the standard BCS solution
and point out how such result can be generalized to the case of electron systems with strong pairing �uctuations
and in presence of the nonequilibrium phenomena.

PACS: 74.20.Fg, 71.10.Li, 05.10.Cc

1. Introduction

The �ow equation approach introduced in a context of
the condensed matter by F. Wegner [1] and in a context of
the high energy physics by K. Wilson with S. Gªazek [2]
proved to be very useful tool for studying a number of
problems in physics [3]. Its main idea is based on a con-
tinuous unitary transformation which in a sequence of
in�nitesimal steps converts the initial Hamiltonian to a
diagonal or block-diagonal structure. The unitary �ow of
the Hamiltonian is generated by an antihermitean opera-
tor η̂ which can be choosen in a somewhat arbitrary way.
The most convenient choice of such generator is usually
dictated by the speci�c problem under consideration [3].
In this paper we discuss the continuous unitary trans-

formation used for digonalization of the BCS model
which can be further extended to various non-trivial mod-
els, where the strong electron correlations play an impor-
tant role. We focus on the technical details concerning
determination of the current�current response function
for the BCS superconducting which have been omitted
in our previous work [4]. We also point out how this
treatment can be used for studying the �uctuations and
various non-equilibrium phenomena.

2. The �ow equation approach

Let us brie�y sketch the main idea how the �ow equa-
tion method deals with an arbitrary Hamiltonian Ĥ

Ĥ = Ĥ0 + Ĥint, (1)

consisting of the diagonal Ĥ0 and the interactions terms
Ĥint (the latter part can describe any kind of interac-
tions or perturbations). Diagonalization of the Hamilto-
nian is achieved by the continuous unitary transforma-
tion Ĥ(l) = Û†(l)ĤÛ(l) (where l is a formal �ow param-
eter). Evolution of the Hamiltonian is governed by the
�ow equation [1]

dĤ(l)

dl
= [η̂(l), Ĥ(l)], (2)

where the canonical generator is de�ned as η̂(l) ≡
dÛ(l)
dl Û−1(l). For the case without any degenerate states

in the system Wegner proposed the following convenient

generating operator [1]

η̂(l) =
[
Ĥ0(l), Ĥint(l)

]
. (3)

This choice (3) guarantees the asymptotic �ow to a di-

agonal structure liml→∞ Ĥint(l) = 0.
In the many particle systems we usually need to deter-

mine various statistical averages of the observables

⟨Ô⟩Ĥ = Tr
(
e−βĤÔ

)
/Tr
(
e−βĤ

)
, (4)

where β−1 = kBT . Using invariance of the trace on
the unitary transformations Ô(l) = Û(l)ÔÛ−1(l) one
has then to analyze the �ow of individual observables
Ô → Ô(l) → Ô(∞) according to the di�erential equa-
tion [1]

dÔ(l)

dl
= [η̂(l), Ô(l)], (5)

besides the �ow (2) of the Hamiltonian Ĥ(l).

3. BCS problem

To illustrate how the �ow equation procedure repro-
duces the BCS solution let us consider the bilinear Hamil-
tonian describing electrons coupled to the classical pair-
ing �eld ∆k

Ĥ =
∑
k,σ

ξkĉ
†
kσ ĉkσ −

∑
k

(
∆kĉ

†
k↑ĉ

†
−k↓ + h.c.

)
, (6)

where ĉ†kσ (ĉkσ) is the creation (annihilation) operator,
ξk = εk − µ is the energy measured with respect to
the chemical potential µ. We can regard the classical
�eld ∆k as Bose�Einstein condensate of the Cooper pairs
∆k = −

∑
q Vk,q⟨ĉ−q↓ĉq↑⟩ formed by an attractive poten-

tial Vk,q < 0. The present procedure can be generalized
on the nontrivial case when ∆k is treated as the quantum
�eld [4].
According to (3), we obtain for the BCS model (6) the

following canonical generator

η̂(l) = 2
∑
k

ξk(l)
(
∆k(l)ĉ

†
k↑ĉ

†
−k↓

−∆∗
k(l)ĉ−k↓ĉk↑

)
. (7)

Transformation of the Hamiltonian Ĥ(l) proceeds as long

(854)
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as η(l) is �nite, which occurs until ∆k(l) → 0. This is
achieved in the asymptotic limit l → ∞.
Substituting (7) to the general �ow equation (2) for

the Hamiltonian (6) we obtain

d

dl
ln ξk(l) = 4|∆k(l)|2, (8)

d

dl
ln∆k(l) = −4

(
ξk(l)

)2
. (9)

The Equation (9) yields an exponential �ow

∆k(l) = ∆k e
−4

∫ l
0
dl′
(
ξk(l′)

)2
, (10)

and (8) leads to ξk(l) = ξk e
4
∫ l
0
dl′|∆k(l′)|2 , therefore

the o�-diagonal term ∆k(l) vanishes in the limit l →
∞. Combining (8) and (9) we notice that d

dl

(
ξ2k(l) +

|∆k(l)|2
)

= 0 which implies the invariance ξ2k(l) +

|∆k(l)|2 = const. Due to ∆k(∞) = 0 we conclude that
the quasi-particle energies take the following BCS form

ξ̃k = sgn(ξk)
√
ξ2k + |∆k|2, (11)

where the asymptotic value is denoted by ξ̃k ≡
liml→∞ ξk(l).

4. Linear response theory

We now apply the same procedure for studying the
electrodynamic properties of the superconductor. In
presence of a weak electromagnetic �eld A(r, t) the lin-
ear response is given by an integral relation between the
vector potential A and the induced current J(r, t)

J(r, t) = −
∫

dr′
∫ t

−∞
dt′K(r − r′, t− t′)

×A(r′, t′). (12)

Speci�c properties of the medium are contained in the
kernel K(r − r′, t − t′). The Fourier transform of this
kernel function consists of the diamagnetic and param-
agnetic contributions [5]

Kα,β(q, ω) =
ne2

m
δα,β + e2Πα,β(q, ω), (13)

where α, β are x, y, z coordinates.
Introducing the imaginary time τ we can express

the paramagnetic term by the following current�current
Green's function

Πα,β(q, τ) ≡ −⟨T̂τ ĵq,α(τ)ĵ−q,β⟩, (14)

where the current operator ĵq is de�ned as

ĵq =
∑
k,q

v
k+

q
2

ĉ†k,σ ĉk+q,σ, (15)

and velocity vk = ∇kεk.
In order to re-derive the kernel of BCS superconduc-

tor [5] we start the analysis of the initial derivative(
dĵ

σ

q(l)

dl

)
l=0

=
[
η̂(l), ĵ

σ

q(l)
]
l=0

, (16)

for each spin con�guration. Using the generating opera-
tor (7) we �nd that

 dĵ
↑
q(l)

dl


l=0

= 2
∑
k

vk+
q
2

(17)

×
(
ξk∆kĉ−k,↓ĉk+q,↑ + ξk+q∆k+q ĉ

†
k,↑ĉ

†
−k − q,↓

)
, dĵ

↓
q(l)

dl


l=0

= −2
∑
k

vk+
q
2

(18)

×
(
ξk∆kĉ−k,↑ĉk + q,↓ + ξk + q∆k + q ĉ

†
k,↓ĉ

†
−k − q,↑

)
.

From the Eqs. (17), (18) we infer the following l-
dependent parametrization of the current operators (tak-
ing into account the initial structure and the new terms
appearing in the derivatives)

ĵ
↑
q(l) =

∑
k

vk+ q
2

(19)

×
(
Ak,q(l)ĉ

†
k,↑ĉk + q,↑ +Bk,q(l)ĉ−k,↓ĉ

†
−k − q,↓+

Dk,q(l)ĉ
†
k,↑ĉ

†
−k − q,↓ + Fk,q(l)ĉ−k,↓ĉk + q,↑

)
,

ĵ
↓
q(l) =

∑
k

vk+
q
2

(20)

×
(
Ak,q(l)ĉ

†
k,↓ĉk+q,↓ +Bk,q(l)ĉ−k,↑ĉ

†
−k − q,↑

−Dk,q(l)ĉ
†
k,↓ĉ

†
−k − q,↑ − Fk,q(l)ĉ−k,↑ĉk + q,↓

)
,

with the initial values Ak,q(0) = 1 and Bk,q(0) =
Dk,q(0) = Fk,q(0) = 0. In the next step, we insert the
ansatz (19), (20) in the �ow equation for the current op-
erator

dĵ
σ

q(l)

dl
=
[
η̂(l), ĵ

σ

q(l)
]
. (21)

By inspecting the terms on left and right hand side of
the �ow equation (21) we derive the following set of �ow
equations for all l-dependent coe�cients

dAk,q(l)

dl
= −2

(
ξk+q∆k+qDk,q(l)

+ξk∆kFk,q(l)
)
, (22)

dBk,q(l)

dl
= 2
(
ξk∆kDk,q(l)

+ξk+q∆k+qFk,q(l)
)
, (23)

dDk,q(l)

dl
= 2
(
ξk+q∆k+qAk,q(l)

−ξk∆kBk,q(l)
)
, (24)

dFk,q(l)

dl
= 2
(
ξk∆kAk,q(l)

−ξk+q∆k+qBk,q(l)
)
. (25)

From these Eqs. (22)�(25) we �nd that
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d

dl
(Ak,q(l) +Bk,q(l)) = 2 (ξk+q∆k+q − ξk∆k)

× (Fk,q(l)−Dk,q(l)) , (26)

d

dl
(Fk,q(l)−Dk,q(l)) = −2 (ξk+q∆k+q − ξk∆k)

× (Ak,q(l) +Bk,q(l)) . (27)

For clarity we shall now introduce the compact notation

Ak,q(l) +Bk,q(l) ≡ xk,q(l), (28)

Fk,q(l)−Dk,q(l) ≡ yk,q(l). (29)

From Eqs. (26), (27) we obtain the following invariance

|xk,q(l)|2 + |yk,q(l)|2 = const. = 1. (30)

This invariance is useful when determining the asymp-
totic l → ∞ values of both parameters xk,q(l) and yk,q(l).
We can rewrite (26) as

dxk,q(l)

yk,q(l)
= 2 (ξk+q∆k+q − ξk∆k) dl, (31)

and we further integrate both sides (31) in the limits
l=∞∫
l=0

.

Using yk,q(l) =
√
1− (xk,q(l))2 we get for the l.h.s.∫ l=∞

l=0

dxk,q(l)√
1− (xk,q(l))2

= −arccos
(
xk,q(∞)

)
. (32)

Integrating the r.h.s. of the Eq. (31), where l-dependent
ξk and ∆k obey the following invariance |ξk(l)|2 +
|∆k(l)|2 = const. = |ξk(∞)|2, we obtain∫ l=∞

l=0

2 (ξk+q∆k+q − ξk∆k) dl

= −1

2

(
arccos

(
|∆k|

|ξk(∞)|

)
−arccos

(
|∆k+q|

|ξk+q(∞)|

))
. (33)

From these integrals (32) and (33) we get

2arccos
(
xk,q(∞)

)
= arccos

(
∆k+q∆k

ξk+q(∞)ξk(∞)

+

√
1−

∆2
k+q

ξ2k+q(∞)

√
1−

∆2
k

ξ2k(∞)

)
, (34)

and �nally determine the l = ∞ parameters

[x̃k,q]
2
=

1

2

(
1 +

∆k+q∆k + ξk+qξk

ξ̃k+q ξ̃k

)
, (35)

[ỹk,q]
2
=

1

2

(
1− ∆k+q∆k + ξk+qξk

ξ̃k+q ξ̃k

)
, (36)

where we used the abbreviation α̃ ≡ liml→∞ α(l). These
solutions (35), (36) correspond to the usual BCS coher-
ence factors (ũk+qũk+ṽk+q ṽk)

2 and (ũk+q ṽk−ṽk+qũk)
2.

Due to the diagonal form of the transformed Hamilto-
nian Ĥ(∞) one can easily calculate the current�current
response function (14) at arbitrary temperature T . The
�nal expression takes the following form

Πα,β(q, iν) =
∑
k

vk+
q
2 ,αvk+

q
2 ,β

×
(
[x̃k,q]

2
(
fFD(ξ̃k+q)− fFD(ξ̃k)

)
×
(

1

iν + ξ̃k+q − ξ̃k
− 1

iν − ξ̃k+q + ξ̃k

)
+ [ỹk,q]

2
(
1− fFD(ξ̃k+q)− fFD(ξ̃k)

)

×
(

1

iν − ξ̃k+q − ξ̃k
− 1

iν + ξ̃k+q + ξ̃k

))
, (37)

where fFD(ω) =
(
exp(ω/kBT )+1

)−1

is the Fermi�Dirac

distribution function. Equation (37) rigorously repro-
duces the BCS response function [5]. In the static ω = 0
and long wave-length limit q → 0 the response function
has a nonvanishing value (for T < Tc) and in consequence
the relation (13) implies the Londons' equation describ-

ing the Meissner e�ect [5] ĵq = −A(q)ns(T )e2

mc , where
ns(T ) is the super�uid density.

5. Further outlook

The �ow equation technique is useful for investigating
the linear response of the BCS superconductor but one
can generalize it also to determine the current�current
response function of the electron systems with strong
pairing �uctuations. We have applied such approach to
the boson�fermion model and examined the pseudogap
state where the preformed pairs are incoherent above
Tc [4]. We were motivated by the experimental data of
the torque magnetometry [6] revealing the residual dia-
magnetism in cuprates above Tc. We have analyzed the
response function in the static limit and found a clear
evidence for the pronounced diamagnetic contribution,
which might be relevant to the experimental data ob-
tained for the underdoped cuprate materials [6�8].
Nonperturbative scheme of the �ow equation method

can be also used to deal with nonequilibrium phenomena
of the correlated systems. One can for instance calcu-
late the transient and steady currents beyond the linear
response regime for the interacting quantum impurities
(described by the Anderson-type models). In the long
time limit the steady state is reached uniformly using
the expansion with respect to the interaction term [9].
The real time evolution problems of the quantum many
body systems might be determined from the correspond-
ing �ow equations.
The nonequilibrium spin dynamics has been also stud-

ied for the spin-boson model [10]. The stable, long-time
behavior has been obtained from the forward�backward
unitary transformation, giving the nonperturbative so-
lution of the Heisenberg equations of motion for an op-
erator [10]. The equilibrium and nonequilibrium Kondo
model has been investigated so far in the weak-coupling
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regime. The �ow equation approach allowed to estimate
the static and dynamical quantities, including their lead-
ing logarithmic corrections [11].
We thus conclude that the �ow equation technique

allows for studying the symmetry broken state within
the linear response framework and o�ers a possibility to
go beyond such limitation. This nonperturbative aspect
is very important whenever the many-body e�ects are
strong and one has to consider the quantum �uctuations
beyond the usual gaussian corrections.
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