Vol. 121 (2012)

ACTA PHYSICA POLONICA A

No. 4

Proceedings of the XV-th National School “Hundred Years of Superconductivity”, Kazimierz Dolny, October 9-13, 2011

Interference Effects on Double Quantum Dots Coupled

Between Metallic and Superconducting Leads

J. BARANSKI AND T. DOMANSKI
Institute of Physics, M. Curie Sktodowska University, 20-031 Lublin, Poland

We describe the quantum interference effects in the nanodevice consisting of the double quantum dot coupled

to the metallic and superconducting electrodes.

In such heterostructures the superconducting properties are
spread to the quantum dot due to the proximity effect.

We investigate the density of states and anomalous

Andreev conductance of the interfacial quantum dot exploring the conditions necessary for appearance of the
Fano-type lineshapes. We also consider the electron correlations and discuss an interplay between the Coulomb

blockade and the Fano-type interference.
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1. Introduction

When nanoobjects like quantum dots (QDs) are con-
nected to superconductor (S) the Cooper pairs may dif-
fuse from S to QD [1]. The diffusion is possible because
the quantum dot behaves like a superconducting grain [2—
5]. This phenomenon is known as the prozimity effect.

With such quantum dot coupled to superconducting
and metallic leads the indirect Andreev current via quan-
tum dot becomes possible. In fact, in the extreme limit
A, — o0 [2, 4] the single particle current is forbidden
and the Andreev reflection is the only possible transport
channel.

Heterostructures involving the quantum dots coupled
to superconducting and metallic leads represent also the
attractive field to investigate an interplay between the su-
perconducting order and correlation effects [1]. Usually
the on-dot pairing is strongly suppressed by the Coulomb
repulsion but, if QD is coupled to superconductor with
the strength I's much bigger than the coupling I'y to
the normal metal, the proximity induced pairing could
be dominant. Here we focus on the regimes where such
correlation effects and the superconducting order can co-
exist.

Some aspects of a competition between the correlations
and proximity effect have been so far addressed by a num-
ber of authors (see e.g. the review paper [6] and other
references cited therein) using various techniques ranging
from the perturbative expansions, the auxiliary fields to
the exact solution within the numerical renormalization
group scheme. Besides the rather obvious effect of the
Coulomb blockade it has been also argued [6] and later
on confirmed experimentally [1] that for I's ~ I'y the
formation of the Kondo resonance slightly enhances the
subgap Andreev conductance.

In the present study we discuss the interference effects

that occur in a presence of additional degrees of freedom.
For this purpose we consider the side-coupled quantum
dot which is connected only to the interfacial QD (Fig. 1).
The additional quantum dot allows for an extra pathway
when electrons have the energies €2, corresponding to the
levels at the side-coupled quantum dot [7].
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Fig. 1. Schematic illustration of the double quantum
dot coupled in the T-shape configuration to the metallic
(N) and superconducting (S) leads.

2. The model and method

We start with the Anderson impurity Hamiltonian

ﬁ:ﬁN“v‘ﬁS‘f'HDQD‘i‘ﬁta (1)
where
Hy = ZﬁkC;aCk,m (2)
k,o

ffs = Z fpé;,oépﬁo - Z (Apépﬂ‘éfp,i + h.c.) ,(3)
p,o

P
are respectively the Hamiltonians of metal-
lic/superconducting reservoirs with the energies

(812)
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& = € — pp measured from the chemical poten-
tials puy and ps. CA',Z,U(CA’;CVJ) are creation (annihilation)
operators in metal (index k) and superconductor (index
p) in two possible configurations o =1,] and A, is the
energy gap of superconductor. The double quantum dot
(DQD) nanostructure is described by the Hamiltonian

HDQD = Z Gid,!.’o_d\i,g +1 Z (dAI,O.d\Q’O- + h.C.)

+Ur 4701, (4)
where ¢; is energy of each quantum dot (interfacial
i = 1 and orbital i = 2), ¢ denotes the hopping integral
between the quantum dots and U; is the on-dot Coulomb
repulsion. As usually, CZIU((Z“,) stand for the creation
(annihilation) operator of ¢ spin electron on the i-th
dot. Transport phenomena of the setup (Fig. 1) are
provided by the hybridization of the interfacial QD to
the external electrodes

=Y Vi (4 ,Crp+he). (5)
k,B,0
It is useful to introduce the constant coupling strength
between the interfacial dot and both reservoirs

Ig=2m)  |Vipld(w — &), (6)
k.

and we shall use I'y as the unit for energies. To find
the density of states and the effective transmittance we
need to calculate the matrix elements of the retarded
Green’s function G1(7) = —T,(¥(7)¥T) in the Nambu
representation V' = (a?h, dyy), v = (whHf,

The Dyson equation

Gl(w)_l = (wq X

U
O w + 61 ) - E(gl - Edl (OJ), (7)

consists of the selfefenergy, where chl originates from
the non-interacting case (U = 0) and Z(% corresponds
to the correlation effects. By focusing first on the non-

interacting case we analyze the deep subgap regime |w| <
|Ap|, where the selfenergy is given by X9 [9]

o iy £ _Is
_ 2 w—e€g 2
Edl - _Is _il'y t2 : (8)
2 2 w-te€o

3. Coexistence of the proximity and Fano effects

Fixing the initial energy of the interfacial quantum
dot at zero ¢ = 0 we noticed that energy spectrum
p(w) = —13G 11(w+i07) of @Dy is symmetrically split
by the induced energy gap Ay = %Fs (see the solid line
in Fig. 2). For € # 0 the quasiparticle peaks move to

the energies w = £E; = £\/e7 + (%)2 and they are
weighted by the BCS coefficients u?, v? = 3(1 4 £-).
The Fano-type resonance/antiresonance lineshapes ap-
pear near the energies +e;. These shapes are clearly the
result of an additional degree of freedom for electrons

that can hop in/from the side-coupled QD. For a weak
hoping amplitude t < I'y the resonance near +es is due

p(w)

Fig. 2. Density of states of the interfacial quantum
dot QD obtained for I's = 5I'n, e2 = 0.7TIn, t =
0.3'v and few values of ¢1. Quasiparticle peaks at
+./€? + (I's/2)? are weighted by the BCS coefficients
(u?, v®) and the interference structures appear around
:tég.
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Fig. 3. Density of states of the interfacial quantum dot

QD obtained for I's = 5I'n, €1 = I'n, €2 = 0.6y and
three values of the interdot hoping parameter t. For
t = 0.31'y the Fano lineshapes are formed near +e. For
large t = 2I'n, t = 3I'n they evolve into the additional
quasiparticle peaks.

to the induced pairing in the side-coupled quantum dot
<d£Td; ¢>' This indirect proximity effect is transmitted
via the interfacial QD.

For a relatively small hoping integral ¢ < I'y the in-
terference effects are manifested by Fano-type lineshapes
formed at energies +ep. With increasing parameter ¢t the
Fano structures evolve into the new quasiparticle peaks
shifted from the initial position £ez (see Fig. 3). This is
partly related to an increasing superconducting order of
the second quantum dot. The energy level of the side-
coupled QD is significantly split by the induced energy
gap.

4. The Andreev conductance

Transport properties of our setup may be measured
by the differential conductance %. In the regime of
eV| <« | 4] the single particle current is suppressed and
the only possible transport occurs via Andreev-type scat-
tering where electron from the normal metal is converted
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to Cooper pair (that propagates in superconductor) with
a hole reflection back to the normal metal. We calculate
such Andreev current via the interfacial QD using the
Landauer-like formula [8]

I4(V) = 2—he / dwTs (W) (f(w — eV, T)
_f(w + €V, T))? (9)

where Ty (w) = I'%|G1 12(w)|? is the transmittance de-
pending on the off-diagonal parts of the retarded Green’s
function (7) and f(w,T) is the Fermi distribution.
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Fig. 4. Differential Andreev conductance Ga(V) =
dI;“(,V) as a function of the bias voltage eV obtained

for the parameters ¢; = 0, I's = 5I'n, t = 0.6/~ and
several values of e2. The broad quasiparticle peaks are

formed near +£+/€? 4+ (I's/2)? and the Fano-type line-

shapes are seen near +ea.
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Fig. 5. The Fano-type lineshapes near £e> in the An-
dreev conductance obtained for I's = 5I'y, e2 = 0.3y
and several values of €;.

The indirect proximity effect transmitted onto the side-
coupled quantum dot allows the Cooper pairs to hop be-
tween QD1 and QQDs. This phenomenon is pronounced in
the Andreev differential conductance G (V) = %‘(fv).
On top of the quasiparticle peaks appearing at eV =
++/€? + (I's/2)? we notice additional substructures near
+e5 which take a form of the Fano-type lineshapes as
shown in Fig. 4. These Fano-type features are well pro-
nounced for a small hopping integral ¢ and also the en-
ergy level €1 has an influence on their fine structure (see
Fig. 5).

5. Interplay with correlations

We now inspect the role of Coulomb repulsion U on
the density of states in QD;. The main objective of this
section is to investigate an interplay between the Fano-
type interference with the correlations and the proximity
effect.

In order to perceive the correlation effects appearing
on the interfacial quantum dot we extend our previous
procedure [2] approximating the selfenergy part that cor-
responds to correlations by the diagonal matrix

_ [ En(w) 0
ZU(W)< NO _EJ*V(_W)) (10)

By imposing the off-diagonal parts of XV (w) equal to
zero we neglect the influence of correlations on the in-
duced on-dot pairing. As long as we stay in the deep
subgap regime an eventual suppression of the dot pairing
by the Coulomb repulsion seems to be rather justified.

To estimate the selfenergy of our system we use the
Hubbard I approximation

1 _ 1- <n1,70‘> <n170> ] (11)
w—e€ — Xn(w) w— € w—e€ —U

We assume that our system is close to half-filling (n1,) ~
1/2 and the energy levels are placed symmetrically with
respect to the chemical potential e = —U/2, e, + U =
U/2. With these assumptions we can express the Dyson
equation (7) in the following form

w2—(Y 2
Lo (==EE .
Gw) " = wo(2)? ] T X (12)
0 —
where £ is given by the expression (8).
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Fig. 6. Density of states of the correlated QD; ob-

tained in the equilibrium case for I's = 3I'n, U = 2y
and Eg = 1.4FN.

We investigated the influence of quantum interference
on the energy spectrum of the correlated quantum dot
coupled to superconductor. For the case of the single
quantum dot (¢ = 0) we noticed that in presence of
the superconducting electrode both initial energy levels
(£U/2) of the interfacial QD are split by an induced en-
ergy gap Aq = I's/2. In Fig. 6 we show that additional
coupling to the upper quantum dot (with energy €2) in-
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duces the Fano superstructures appearing in the energy
spectrum near w = tes.

6. Conclusions

We have analyzed the energy spectrum and charge
transport properties of the double quantum dot coupled
to the metallic and superconducting leads, focusing on
the deep subgap regime A, > |eV|. We noticed that the
superconducting order induced in the interfacial quan-
tum dot may extend onto the side-attached quantum dot
which has no direct contact with superconductor. For a
weak interdot hoping we observe the Fano-type interfer-
ence in the spectral function and in the Andreev conduc-
tance, while for ¢t ~ I'y the quantum interference leads to
the additional quasiparticle peaks. We have explored the
differential conductance in the regime |eV| < A, where
electron transport is possible only through the Andreev
reflection. We have found a remarkable influence of the
interference effects on the transport properties, whenever
the source-drain voltage is close to the energy of the side-
attached quantum dot. Finally, we have given some qual-
itative insight to the interplay between correlation effects
and quantum interference in presence of the proximity in-
duced energy gap.
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