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Spectroscopic Bogoliubov features near the unitary limit
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We analyze the single-particle excitation spectrum of the ultracold fermion atom system close to the unitary
limit where there has been found experimental evidence for the Bogoliubov quasiparticles below as well as above
the transition temperature Tc. We consider the short-range correlations originating from the preformed pairs and
try to discuss the experimental data adapting phenomenological self-energy previously used for description of
the antinodal spectra of the underdoped cuprate superconductors. We show that this ansatz qualitatively accounts
for the momentum-resolved rf spectroscopic data obtained for 40K atoms.
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I. INTRODUCTION

Spectroscopic tools such as the Bragg scattering tech-
nique [1], the rf-pulse spectrometry [2], and its k-resolved
improvement [3] were able to provide a clear-cut evidence for
the superfluid nature of the ultracold fermion atom systems. Es-
pecially intriguing among the obtained data is the quasiparticle
back-bending dispersion near the Fermi momentum observed
below and above the superfluid transition temperature Tc [4].
This fact indicates that the Bogoliubov-type quasiparticles
survive even in a normal state where the long-range coherence
between fermion pairs no longer exists.

Similar fingerprints of the dispersive Bogoliubov quasi-
particles have been previously detected above Tc also in the
underdoped cuprate superconductors by the angle-resolved
photoemissionspectroscopy (ARPES) [5] and Fourier-
transformed scanning tunnelling microscopy (STM) [6] mea-
surements. They confirmed expectations motivated by the
Uemura scaling Tc ∝ ns [7] and later on supported by the
residual Meissner rigidity seen above Tc in the tera-Hertz [8]
and the torque magnetometry [9] experiments. It hence seems
that superconducting transition of the underdoped cuprates is
controlled not by the pair formation, but rather by onset of the
phase coherence. This point is, however, still a controversial
issue.

In the present paper, we consider the spectroscopic
Bogoliubov features common above Tc for the ultracold
fermion gases and underdoped cuprate materials taking into
account the short-range correlations driven by preformed
fermion pairs. Such a problem is currently widely discussed
in the literature [10–14] (for a comprehensive discussion, see,
e.g. [15] and other references cited therein). We shall present
the results obtained for the single-particle excitations using the
self-energy motivated by the local solution of the Feshbach
coupling and suggested also by perturbative studies of the
pairing fluctuations [15–17].

We start with analysis of the exact solution for the local
Feshbach scattering problem. We next discuss how this
result can be cast for the itinerant case. Introducing the
phenomenological scattering rate, we then try to analyze
the single-particle spectra at temperatures corresponding to
the experiment of the Boulder group [4]. Summarizing
our results, we point out the problems relevant for future
studies.

II. LOCAL SCATTERING ON PAIRS

The momentum-resolved spectroscopic measurements of
the Boulder group [4] have been done using 40K atoms equally
populated in the hyperfine states |9/2,−9/2〉 and |9/2,−7/2〉
(we shall denote them symbolically as σ =↑ and σ =↓).
By applying the magnetic field, the atoms were adiabatically
brought to the vicinity of the unitary limit, slightly on the
BEC side (kF a)−1 = 0.15. Under such conditions, energies
of the atoms are nearly degenerate with the weakly bound
molecular configurations; thereby, single atoms and molecules
are strongly scattered from each other through the conversion
processes.

At a given position r in the magneto-optical trap, such
Feshbach resonant interactions can be described by the
following local Hamiltonian [18]:

Ĥloc(r) =
∑

σ=↑,↓
ε(r)ĉ†σ (r)ĉσ (r) + E(r)b̂†(r)b̂(r)

+ g[b̂†(r)ĉ↓(r)ĉ↑(r) + ĉ
†
↑(r)ĉ†↓(r)b̂(r)], (1)

where g denotes the s-wave channel scattering strength,
ĉ(†)
σ (r) are fermion operators of the single atoms in two

hyperfine states σ = ↑, ↓, and operators b̂(†)(r) correspond
to the molecular state. Spatial variations of the energies ε(r),
E(r) come from the trapping potential and usually take the
parabolic dependence with some characteristic radial and axial
frequencies.

Hilbert space of the local Hamiltonian (1) is spanned by
four fermion configurations |F 〉 = |0〉, |↑〉, |↓〉, |↑↓〉 and two
molecular ones |B) = |0), |1)—altogether eight states. Six of
these states |F 〉 ⊗ |B) are eigenfunctions of Eq. (1) and two
vectors |↑↓〉 ⊗ |0) and |0〉 ⊗ |1) get mixed by the Feshbach
interaction. With the suitable unitary transformation, we can
determine the true eigenfunctions,

|ψA〉 = u|0〉 ⊗ |1) + v|↑↓〉 ⊗ |0), (2)

|ψB〉 = −v|0〉 ⊗ |1) + u|↑↓〉 ⊗ |0), (3)

where u2,v2 = 1
2 [1±(ε−E/2)/

√
(ε−E/2)2 + g2] and the

eigenvalues are given by ε+E/2 ±
√

(ε−E/2)2 + g2. Equa-
tions (2) and (3) are reminiscent of the Bogoliubov-Valatin
transformation of the standard BCS problem, where true
quasiparticles are represented by linear combinations of the
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FIG. 1. (Color online) Temperature dependence of the scattering
rate γ (T ) introduced in Eq. (11) similar to Ref. [17]. Inset shows the
residue Z(T ) of the nonbonding state (4). Solid lines correspond to
r = 0 and dashed ones to |r| = 0.5RF .

particle and hole states. In our present case, the additional
degree of freedom related to the molecular state causes
qualitative differences discussed below.

Using the spectral Lehmann representation, we can exactly
determine the single-particle Green’s function Gloc(r,τ )=
−T̂τ 〈ĉσ (r,τ )ĉ†σ (r,0)〉. Its Fourier transform takes the three-
pole structure

Gloc(r,iωn) = [1 − Z(T )]

(
u2

iωn − ε+
+ v2

iωn − ε−

)

+ Z(T )

iωn − ε
, (4)

where ε± = E/2 ±
√

(ε − E/2)2 + g2 and the weight Z(T )
[19] is shown in the inset of Fig. 1. Let us now focus on
E = 0, i.e., the unitary limit case. The single-particle spectral
function − 1

π
Im{Gloc(r,ω + i0+)} consists of (a) a remnant of

the free particle state at ω = ε with the temperature-dependent
residue Z(T ), and (b) Bogoliubov-type quasiparticles at ω =
±

√
ε2 + g2, whose spectral weights are [1 − Z(T )]u2 and

correspondingly [1 − Z(T )]v2.
The free particle residue Z(T ) is sensitive to temperature.

For instance, at ε = 0 we have Z(T ) = 2
3 + cosh (g/kBT ) [19],

which vanishes exponentially when T → 0. It means that
at low temperatures only the Bogoliubov-type quasiparticles
are present. Upon increasing temperature, the amount Z(T )
of a spectral weight is transferred from the Bogoliubov
quasiparticles to the free fermion state (see Fig. 1), effectively
filling in the gapped spectrum.

III. SIMILARITY TO OTHER STUDIES

Our exact solution of the local Feshbach scattering problem
(1) coincides with physical conclusions obtained by Senthil
and Lee [17], who have explored influence of the incoherent
pairs (preformed above Tc) on the single-particle spectrum.
The local pair operator F̂ (r,t) ≡ ĉ↓(r,t)ĉ↑(r,t) can be formally
represented through the amplitude and phase

F̂ (r,t) = χ̂ (r,t) eiφ̂(r,t). (5)

Since above Tc the pairs need not be dissociated χ 
= 0 their
phase φ(r,t) is randomly oriented, precluding any off-diagonal

long-range order 〈F̂ (r,t)〉=0. To account for superconducting
fluctuations, the authors [17] assumed certain temporal τφ

and spatial ξφ scales, over which the pairs remain short-range
correlated,

〈F̂ †(r,t)F̂ (0,0)〉 ∝ |χ |2exp

(
−|t |

τφ

− |r|
ξφ

)
. (6)

Taking into account the pairing field (6) by means of the
lowest order perturbative scheme, they have determined
the single-particle Green’s function G(k,iωn) = [iωn − εk −
�(k,iωn)]−1, interpolating it by [17]

�(k,iωn) = −2 iωn − εk

ω2
n + ε2

k + π�2
, (7)

where  ∝ |χ | is a magnitude of the energy gap due to pairing
and parameter � is related to the in-gap states. At low energies
(i.e., for |ω| � ) a dominant contribution of the spectrum
comes from the in-gap quasiparticle residue Z≡ (1 + 2

π�2 )−1,
whereas at higher energies the BCS-type quasiparticles are
formed. All these features are present in our exact solution (4)
of the local Feshbach scattering problem (1), for which we
obtain

�loc(iωn) = −[1 − Z(T )]g2 iωn − ε

ω2
n + ε2 + Z(T )g2

. (8)

IV. PHENOMENOLOGICAL PAIRING ANSATZ

Combining the local physics (1) with the itinerancy T̂kin(r)
of fermions and molecules is a nontrivial task. Certain aspects
of the complete Hamiltonian

Ĥ =
∫

dr[T̂kin(r) + Ĥloc(r)] (9)

have been addressed so far by the self-consistent per-
turbative treatment [20], dynamical mean-field theory
[21], self-consistent T -matrix approach [22], conserv-
ing diagrammatic approximations [15], renormalization
group (RG) approach [23], path integral formulation for
the bond operators [24], and several other techniques.
Some of these studies directly [23,24] or indirectly
[15] pointed at the Bogoliubov quasiparticles surviving
above Tc.

Here we would like to focus on the qualitative outcomes,
which could be relevant to the experimental situation of
the Boulder group [4]. For this purpose, we apply the
phenomenological self-energy,

�(k,ω) = 2

ω + εk + iγ (T )
− i�0, (10)

which, according to the argumentation outlined in Sec. III in
Ref. [17], originates from Eq. (7) and, similarly, Eq. (8). The
particular structure (10) has been suggested also by previous
studies for the precursor pairing in the cuprates [16,25] and
ultracold gasses [15]. The essential effects are here provided by
temperature-dependent parameter γ (T ) related to scattering
caused by the preformed pairs and responsible for filling in
the low-energy states (instead of closing the energy gap as in
classical superconductors). Its role is hence similar to Z(T ) of
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FIG. 2. (Color online) Evolution of the spectral function A(k,ω)
at the Fermi momentum k = kF for temperature regime 0 � T �
3Tc. The gapped superconducting spectrum smoothly evolves into
the single peak structure near 1.5Tc.

the local solution (4). Another parameter �0 merely controls
the line broadening, so we simply take it as a structureless
constant.

For specific numerical computations, we used �0 = , as-
suming  = const. Such an assumption seems reasonable for a
temperature region exceeding Tc as long as the binding energy
of preformed pairs stays constant [26,27] (this constraint can
be modified, if necessary). We obtained some resemblance
to the experimental data [4] using the following temperature
dependence:

γ (T ) = 4kBT Z(T ). (11)

At low temperatures, γ (T ) is predominantly governed by an
exponential decay due to Z(T ), while at higher temperatures it
acquires a linear relation limt→∞ γ (T ) ∝ T suggested by var-
ious studies [16,17]. To establish some correspondence with
a temperature scale, we have imposed the ratio 2/kBTc = 6
which, according to the recent quantum Monte Carlo (QMC)

studies [28], seems to be realistic for the ultracold superfluids
when approaching the unitarity limit. Since γ (T ) has indirect
relation to the critical temperature (see the solid line in Fig. 1),
we can treat Eq. (11) as a starting guess, which can be verified
a posteriori. We use  as a convenient unit for energies.

Energy dependence of the single-particle excitation
spectrum A(k,ω) = − 1

π
Im[ω − (εk − μ) − �(k,ω)]−1 at the

Fermi momentum kF is shown in Fig. 2. Up to this point, we
have neglected the trapping potential; therefore, strictly speak-
ing, such function A(k,ω) describes the spectrum at a center of
the trapping potential r = 0. Using the constant pairing energy
, we obtain at low temperatures the characteristic BCS-type
gapped structure. With increasing temperature, it gradually
evolves into the singly peaked spectrum for T � 1.5Tc.

In Fig. 3, we show the momentum dependence of the
spectral function A(k,ω) at temperatures T/Tc = 0.76, 1.24,
1.47, and 2.06. The two-peak shape of A(kF ,ω) versus ω

is always accompanied by the presence of the Bogoliubov
quasiparticle branches with their characteristic bending-down
(for ω < 0) and bending-up features (for ω > 0), the latter
unfortunately hardly accessible by ARPES and k-resolved
rf measurements. This effect comes from preexisting pairs,
which above Tc remain correlated over some short-range
scales. The Bogoliubov quasiparticles have been, in fact,
detected in the underdoped cuprates by the diamagnetic
response [9], the large Nernst effect, and the single-particle
spectroscopy [5,6].

Let us emphasize that evolution of the Bogoliubov branches
above Tc is not followed by similar behavior of the local density
of states ρ(ω,r = 0) = ∑

k A(k,ω). This effect is illustrated
in Fig. 4. For temperatures above 1.5Tc, when the spectral
function acquires the singly peaked structure (Figs. 2 and
3), the local density of states is still clearly depleted around
ω ∼ 0, even for temperatures up to 3Tc. Such a property
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FIG. 3. (Color online) Momentum and energy dependence of the spectral function A(k,ω) for the set of temperatures reported experimentally
by the Boulder group [4]. We can notice that the Bogoliubov quasiparticle features (bending-down dispersion) are preserved to nearly 1.5Tc.

023634-3
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FIG. 4. (Color online) Evolution of the local density of states
ρ(ω,r = 0) in the center of the harmonic trap.

might apparently reflect the known discrepancy between large
values of T ∗ (signaling opening of the pseudogap) and actual
estimations of T ∗

sc at which the short-range superconducting
correlations set up [9].

V. EFFECTS OF SPATIAL INHOMOGENEITY

rf spectroscopic measurements probe the tunneling current
of atoms transmitted from one hyperfine state σ to another
configuration |3〉 induced by an external field. Such a current
is in practice contributed by atoms originating from all
parts of the harmonic trap V (r); thereby the inhomogeneity
aspects become meaningful. We can treat the effects of the
trapping potential applying the local density approximation.
The chemical potential is then effectively replaced by μ(r) =
μ − V (r) and in k space the relative energies ξk(r) = εk −
μ(r) become spatially dependent. Since our objective here is
to investigate the qualitative features caused by the short-range
superconducting correlations, we focus simply on the isotropic
case V (r)/kBTF = |r|2/R2

F .
Harmonic potential V (r) enters the local Hamiltonian (1)

via the fermion ε(r) and molecular energies E(r); therefore, the
single-particle Green’s functionGloc(r,τ ) can be still expressed
by Eq. (4) with r-dependent spectral weight Z(T ,r) and
quasiparticle energies. We can infer the spatial dependence
of Z(T ,r) from the matrix elements |〈f |ĉ(†)

↑ (r)|i〉|2 of the
free-particle excitations Ef − Ei = ε(r), which occur only
for |0〉 ⊗ |0) → |↑〉 ⊗ |0) and |↓〉 ⊗ |1) → |↑↓〉 ⊗ |1). This
r-dependent spectral weight is found as [19]

Z(T ,r) = 1 + e−βε(r) + e−β[ε(r)+E(r)] + e−β[2ε(r)+E(r)]

Q(T ,r)
, (12)

with β = 1/kBT and the partition function given
by Q(T ,r) = 1 + 2e−βε(r) + 2e−β[ε(r)+E(r)] + e−β[2ε(r)+E(r)] +
2 cosh{β

√
[ε(r) − E(r)/2]2 + g2}e−β[ε(r)+E(r)/2].

Influence of the trapping potential V (r) on the spectral
weight (12) and the related damping rate (11) is shown for
|r| = 0.5RF by the dashed lines in Fig. 1. We notice that,
outside the center of the trapping potential, Z(T ,r) increases
with respect to temperature, reducing the spectral weights of
the bonding and antibonding states. Since the corresponding
damping parameter γ [which acquires r dependence via
Z(T ,r)] is also enhanced (see the main panel of Fig. 1),
we expect a partial suppression of the energy gap upon
increasing |r|.
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FIG. 5. (Color online) Spatial dependence of the spectral function
A(k,ω,r) at temperature T = 1.2Tc for k = kF .

To analyze spectroscopic consequences of the inhomo-
geneity, we determine the spectral function A(k,ω,r) =
− 1

π
Im[ω − ξk(r) − �(k,ω,r)]−1 using the phenomenological

self-energy (10) with r-dependent damping rate (11). In
Sec. IV, we have shown that A(k,ω,r = 0) develops, at low
temperatures, the gapped structure with the characteristic Bo-
goliubov peaks. Away from the trap center, these Bogoliubov
peaks move closer to each other as marked by the filled
points in Fig. 5. At some temperature-dependent critical radius
rc(T ), the Bogoliubov features finally merge into the single
peak. Figure 6 illustrates such an |r|-dependent energy gap
determined for a number of representative temperatures.

We notice that the effective pairing gap is quite flat with
respect to r and has a rapid drop approaching rc(T ). This
is related to the fact that, for increasing temperature and/or
radius, the spectral gap is “filled in” instead of closing, as
would be characteristic for the BCS systems. Pair fluctuations
(responsible for disordering the phase of the order parameter)
cause the missing low-energy states to be bit by bit filled in
until T ∗ (as illustrated in Fig. 4) or rc(T ) (Fig. 6), when the
pairs dissociate and the related energy gap finally closes.

The rf spectroscopy provides information on the occupied
part (i.e., ω<0) of the spatially averaged single-particle
excitation spectrum. Neglecting the final-state effects [29] and
using the linear response theory, the current can be expressed
as a convolution of the spatially dependent spectral function
A(k,ω,r) and the Fermi distribution [13,30]

I (|k|,�) = �
4
3πR3

F

∫
dr

|k|2A(k,ξk − �,r)

exp
(

ξk−�

kBT

)
+ 1

, (13)
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FIG. 6. (Color online) Spatial variation of the effective energy
gap pg(r) (in units of kBTF ) for several temperatures as indicated.
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FIG. 7. (Color online) Energy- and momentum-resolved profiles
of the rf current obtained for temperatures 0.76Tc and 1.47Tc reported
in the experimental data [4]. The filled circles show positions of the
energy distribution curve (EDC) maxima.

where � is the detuning frequency, RF denotes the Thomas-
Fermi radius, and � corresponds to the tunneling matrix, which
we assume as a constant.

Integrating Eq. (13) with respect to r, we have determined
the energy distribution curves for several temperatures cor-
responding to the experimental situation [4]. In Fig. 7, we
show two examples of the obtained results. Integration of
the spectral function convoluted with the Fermi distribution
practically yields the negative ω < 0 region of the spatially
averaged spectrum; therefore, only the lower part of the
Bogoliubov excitation branch remains visible. Furthermore,
we notice that the quasiparticle peaks become smeared and
a magnitude of the effective gap is suppressed in com-
parison to pg(r = 0). Such a result is rather obvious if
we recall that pairing effects weaken aside from the trap
center (the energy gap of atoms contributing to the EDC
curve decreases versus |r| as shown in Fig. 6). Nevertheless,
the k-resolved rf profiles exhibit the characteristic bending-
down feature manifesting the BCS properties not only below
Tc, but also clearly preserved over the temperature region
up to ∼1.5Tc.

VI. SUMMARY AND OUTLOOK

Transition to the superconducting-superfluid state is near
the unitary limit [26] accompanied by a number of the
prepairing signatures [31] showing up above Tc. Among
such hallmarks, there are the Bogoliubov-type quasiparticles
representing the mixed particle and hole entities characteristic
for the symmetry broken BCS state. Recent experimen-
tal data obtained for the underdoped cuprate oxides [5]
and the ultracold fermion gasses [4] unambiguously show
that such Bogoliubov quasiparticles survive even beyond
the superconducting-superfluid domes. The origin of these
features is related to the preformed pairs, which above
Tc remain correlated over some finite spatial and/or tem-

poral distances (the long-range coherence establishes only
below Tc).

Preformed pairs affect the single-particle spectra via the
interconversion processes (1). In this paper, we have ex-
amined the influence of the preformed pairs on the single-
particle excitation spectrum guided by the exact solution
(4) of the local Feshbach scattering problem (1). We have
shown that, upon increasing temperature, the free fermion
states emerge gradually out of the Bogoliubov quasiparticles
[strictly speaking from the bonding and antibonding states (2)
and (3)]. We have next incorporated the local correlations
and itinerancy of atoms or molecules through the pairing
ansatz (10).

Our phenomenological analysis based on the self-energy
(10) with the temperature-dependent pair-damping parameter
γ was motivated by the perturbative studies of the short-range
superconducting correlations [17] and by the rigorous solution
(4) of the local atom-molecule scattering (1). It turns out
that, on a qualitative level, our results seem to agree with
the predictions obtained by other sophisticated techniques,
such as a diagrammatic t-matrix approximation, where the
fermionic self-energy includes the pairing fluctuations [30],
the crossover studies taking into account the condensed and
noncondensed pairs (especially the scheme using one bare
and one dressed Green’s functions) [10], the quantum cluster
expansion [32], the ladder approximation for the hard-sphere
Fermi gas [12], the conserving (�-derivable) approach for the
interacting fermion system following Luttinger and Ward [14],
ab initio QMC simulations [26,28], the dynamical cluster
QMC [27], etc.

We hope that the self-energy (10) originally proposed for
reproducing the ARPES spectra of the underdoped cuprates
[16] and considered in various self-consistent treatments [15]
could be derived in a systematic way, using nonpertubative
tools like, for instance, the contractor method [33] or the flow
equation procedure [23]. Our study indicates that Eq. (10)
can describe the spectroscopic data of the ultracold fermion
atom superfluids. Similar BCS-type self-energy has been
recently shown to be applicable also in the STM studies of
the low-Tc superconducting material Bi2Sr2CuO6+δ , where
d-wave pairing features appear in a close neighborhood of the
van Hove singularity and where the pseudogap region extends
all over the superconducting dome, including the overdoped
regime [34].

As a complementary technique to the momentum-resolved
rf spectroscopy [4], we would like to suggest for future
studies the Andreev tunneling [35]. If feasible in the ultracold
fermion systems, such Andreev spectroscopy could very
precisely establish the temperature region over which the
short-scale superconducting-superfluid correlations survive
above Tc.
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