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We explore the Andreev tunnelling through the strongly correlated

quantum dot embedded between the normal and superconducting electrodes.

For a small external voltage |eV | < ∆s the electron arriving from the normal

lead can be converted into a pair on the quantum dot and further propagates

in the superconducting lead while simultaneously the hole is reflected back

to the normal electrode. Conductance of such anomalous current is very sen-

sitive to the particle–hole mixing of the quantum dot spectrum. We analyze

the influence of the proximity effect and the Coulomb interactions on the

differential Andreev conductance focusing on the extreme limit ∆s →∞.

PACS numbers: 73.23.−b, 74.20.Fg, 74.45.+c

1. Introduction

The recent technological progress of nanoscopic devices with ultrasmall is-
lands of atoms where a number of electrons can be varied in a controlled way has
attracted a considerable interest. The Coulomb interactions along with the Pauli
principle have there a strong influence on the charge and heat currents transmitted
through such zero-dimensional quantum dots (QDs). Upon applying an external
bias V the differential conductance was found to have an oscillating behavior due
to the Coulomb blockade. Moreover, the correlations can lead to formation of
the low temperature Kondo resonance showing up by the perfect unitary limit
conductance.

In case when the QD is placed at interface with the superconducting electrode
there arise some qualitatively new effects related to the collective behavior of
electrons bound in the Cooper pairs. We address here such issue. In particular,
we show that the order parameter of the superconducting electrode extends onto
the QD and at low voltages |eV | ¿ ∆s this allows for a charge transport via the
Andreev reflections. The differential conductance of such current takes either the
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two-peak (for U = 0) or four-peak (when U 6= 0) structure because the particle
and hole excitations are mixed on the QD. Our study here is complementary to
some previous works on this subject [1–5].

2. The single impurity model

For description of the QD hybridized with one normal (β = N) and one
superconducting (β = S) electrode we exploit the single impurity model

Ĥ = ĤN + ĤS +
∑

σ

εdd̂
†
σd̂σ + Un̂d↑n̂d↓ +

∑

k,σ,β

(
Vkβ d̂†σ ĉkσβ + h.c.

)
, (1)

where dσ (d†σ) are the annihilation (creation) operators of the electron with spin
σ =↑ or ↓. The energy level is denoted by εd, U > 0 corresponds to the on-dot
Coulomb repulsion and the last terms in (1) describe a hybridization of the QD
with itinerant electrons of the leads.

We shall treat here the normal lead as a reservoir of free fermions

ĤN =
∑

k,σ

(εkN − µN) ĉ†kσNĉkσN (2)

with their chemical potential µN. For simplicity we focus on the wide band limit
|VkN| ¿ D where |εk| ≤ D. The other superconducting electrode can be described
by the BCS Hamiltonian

ĤS =
∑

k,σ

(εkS − µS) ĉ†kσSĉkσS −
∑

k

(
∆kĉ†k↑Sĉ†−k↓S + h.c.

)
(3)

assuming the isotropic energy gap ∆k = ∆s.
Electrons of the superconducting lead are bound in the Cooper pairs and

appearance of the off-diagonal order parameter 〈ĉ−k↓Sĉk↑S〉 is responsible there
for a dissipationless motion of the charge carriers. Below we show that the hy-
bridization VkS transmits such off-diagonal order also onto the QD. To describe
this proximity effect we introduce the matrix Green function

Gd(ω) = −
(

T̂τ 〈d̂↑(τ)d̂†↑〉 T̂τ 〈d̂↑(τ)d̂↓〉
T̂τ 〈d̂†↓(τ)d̂†↑〉 T̂τ 〈d̂†↓(τ)d̂↓〉

)
(4)

(where T̂τ denotes the time ordering operator) and express the Fourier transform
of the Green function (4) by the Dyson equation

Gd(ω)−1 =

(
ω − εd 0

0 ω + εd

)
−Σ0

d(ω)−ΣU
d (ω), (5)

where Σ0
d(ω) accounts for the hybridization of the QD to both electrodes and

ΣU
d (ω) comes from the Coulomb interactions U . The self-energy has been so far

estimated by a number of authors using various methods (see e.g. citations in
Ref. [4]).

To start our analysis we first recall that the imaginary part of Σ0
d(ω) is given

by [6]:
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Im
{
Σ 0

d (ω)
}

=




−ΓN ΓS∆s
Θ(|ω|−∆s)√

ω2−∆2
s

−ΓS∆s
Θ(|ω|−∆s)√

ω2−∆2
s

−ΓN


 , (6)

where Γβ stands for the hybridization couplings defined by

2π
∑

k

|Vkβ |2δ(ω − εkβ) ≡
{

Γβ for−D < ω < D,

0 elsewhere.
(7)

One can determine the real part using the Kramers–Krönig relation and we have
illustrated its ω-dependence in Fig. 3 of our paper [6]. For a simple understanding
of the relevant physics we now follow Tanaka et al. [5] and focus on the extreme
limit of the large energy gap ∆s. For energies deep inside the superconducting gap
∆s À |ω| we obtain

Σ0
d(ω) =


 −iΓN −ΓS

2
π atan

(
D
∆s

)

−ΓS
2
π atan

(
D
∆s

)
−iΓN


 , (8)

where the off-diagonal terms simplify to −Γs [5] when ∆s ¿ D. Substituting this
result to the Dyson equation (5) we can analytically determine the matrix Green
function of the noninteracting QD. We obtain the BCS-structure

Gd,11(ω) =
1
2 (1 + εd/E)
ω + iΓN − E

+
1
2 (1− εd/E)
ω + iΓN + E

, (9)

Gd,12(ω) =
−Γs/2E

ω + iΓN − E
+

Γs/2E

ω + iΓN + E
(10)

with E =
√

ε2
d + Γ 2

s . The spectral function ρd(ω) = − 1
π ImGd,11(ω) is thus char-

acterized by two peaks because the particle and hole excitations on the QD become
mixed with one another [6]. In Fig. 1 we show ρd(ω) for the energy level located
in the center of the superconductor gap εd = µβ . Distance between the peaks
depends on ΓS, the broadenig on ΓN [5] and the weights of the peaks change upon
varying εd as shown in Fig. 4 in Ref. [6].

The BCS structure of the Green function (10) leads to apppearance of the
off-diagonal order parameter 〈d̂↓d̂↑〉 (see the left part in Fig. 2). This means
that the proximity effects convert the QD into a superconducting grain. For the
equilibrium situation we estimate

〈d̂↑d̂↓〉 =
Γs

2E
[F (E)− F (−E)] , (11)

where F (E) =
∫ D

−D
dω
π

ΓN
(ω−E)2+Γ2

N

(
1 + eE/kBT

)−1
. In Fig. 2 we show that optimal

conditions for the off-diagonal order parameter (11) as well as for a magnitude of
the zero bias Andreev conductance correspond to εd located near the center of the
energy gap.

3. The generalized Schrieffer–Wolf transformation

To have an independent evidence signifying the appearance of the order
parameter on the QD we can construct the canonical transformation
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Fig. 1. Splitting of the QD spectral function because of the proximity effect determined

in the equilibrium situation εd = µN = µS for several values of the hybridization coupling

Γβ = 2π
∑

k |Vkβ |2δ(ω − εkβ). We used for calculations ∆ = 0.1D, U = 0 and set D as

a unit for energies.

Fig. 2. Left part: The off-diagonal order parameter 〈d̂↓d̂↑〉 of the uncorrelated QD with

ΓN = 0.001D, ΓS = 0.01 in the limit ∆s → ∞. To carry out the statistical average we

assumed the equilibrium situation V = 0. Right part: The zero bias conductance of the

in-gap Andreev current (20) in units of 4e2/h.

Ĥ −→ ˆ̃H = eŜĤe−Ŝ (12)
eliminating the hybridization Vk,S up to quadratic terms. For this purpose we
extend the Schrieffer and Wolf treatment [7] which has been originally designed
for the impurity embedded in a conduction band. We choose the following anti-
-Hermitian operator Ŝ = (Ŝ0 + ŜU )− (Ŝ0 + ŜU )†, where

Ŝ0 =
∑

k

VkS

[
ξk + εd

E2
k − ε2

d

(
ĉ†k↑d̂↑ + ĉ†k↓d̂↓

)
+

∆∗
s

E2
k − ε2

d

(ĉk↑d̂↓ − ĉ−k↓d̂↑)
]

, (13)
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where Ek =
√

ξ2
k + |∆s|2. The other term ŜU (whose explicit form will be dis-

cussed elsewhere) comes from the Coulomb correlations U and is crucial for de-
scription of the effective exchange interactions leading to the Kondo effect [7].
Because of a lack of space we postpone such aspects for the separate publication.
Here we briefly focus on studying the terms which are distinct from the usual

Schrieffer–Wolf result [7]. In the transformed Hamiltonian ˆ̃H we obtain the fol-
lowing change of the QD part:

Ĥd → ˆ̃Hd =
∑

σ

ε̃dd̂
†
σd̂σ + Un̂d↑n̂d↓ − (∆∗

dd̂↓d̂↑ + ∆dd̂
†
↑d̂
†
↓), (14)

where

∆d =
∑

k,σ

|VkS|2 ∆s

E2
k − ε2

d

. (15)

We notice that indeed the QD can be treated as a superconducting grain with an
effective gap parameter ∆d. For the case of large ∆s we estimate

∆d ' −ΓS
1
π

∫ D

−D

∆s

ε2 + ∆2
s

= −ΓS
2
π

atan
(

D

∆s

)
, (16)

which is identical with the off-diagonal terms of the self-energy (8). Furthermore,
for D À ∆s our result (16) reduces to −ΓS as has been independently pointed out
by Tanaka et al. [5].

4. Influence of the Coulomb interactions

In a presence of the Coulomb interactions we must take into account the
matrix self-energy ΣU

d (ω). It has been proved by Affleck et al. [10] and by Oguri
et al. [11] that in the limit ∆s →∞ the effect of U affects only the diagonal parts
of the self-energy. In other words, the Coulomb interactions do not modify the
on-dot energy gap ∆d. Following such argumentation we propose here to use a
simple substitution for ΣU

d (ω) based on the atomic solution

ΣU
11(ω) =

U〈ndσ〉 (ω − εd)
ω − εd − U + U〈ndσ〉 = −ΣU

22(−ω) (17)

and ΣU
12(ω) = 0. This yields the following Green function:

Gd,11(ω) =
Gat,22(ω)−1

Gat,11(ω)−1Gat,22(ω)−1 − Γ 2
S

, (18)

Gd,12(ω) =
ΓS

Gat,11(ω)−1Gat,22(ω)−1 − Γ 2
S

, (19)

where Gat,11(ω) = 1−〈nd↓〉
ω+iΓN−εd

+ 〈nd↓〉
ω+iΓN−εd−U and Gat,22(ω) = −Gat,11(−ω). This

result shows that the Coulomb interactions have a strong effect on the spectral
function. The two peak spectrum of the uncorrelated QD (see Fig. 1) is replaced
by the four-peak structure. This kind of result has been previously obtained by
Sun et al. [8] using a different method. In a forthcoming paper we shall discuss
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in some more detail the issue of correlations, in particular explaining also their
influence on the Kondo resonance.

5. The in-gap charge current

To compute the charge current J(V ) = −e d
dt

∑
k,σ〈ĉ†kNσ ĉkNσ〉 one needs to

use the nonequilibrium Keldysh–Green functions. Following the standard proce-
dure [9] we determine J(V ) focusing on the limiting case when |eV | ¿ ∆s. The
in-gap current can be transmitted only through the Andreev reflections. Physi-
cally this happens when the incident electron from the normal lead converts into a
pair on the QD and further propagates to the superconducting lead with a simul-
taneous reflection of the hole back to the normal electrode. The Andreev current
is formally given by [2]:

JA(V ) =
2eΓ 2

N

h

∫
dωTA(ω) [f(ω − eV )− f(ω + eV )] , (20)

where f(x) = [1 + exp(x/kBT )]−1. The corresponding transmittance depends on
the off-diagonal Green function

TA(ω) = |Gd,12(ω)|2 . (21)
Thus calculated Andreev conductance for the uncorrelatedquantum dot is illus-
trated in Fig. 3.

Fig. 3. Differential conductance of the Andreev current (20) expressed in units of 4e2/h.

We have done the calculations using U = 0, ΓN = 0.001D and ΓS = 0.01D.

In Fig. 4 we show the differential conductance GA(V ) = dJA(V )/dV com-
puted for the correlated QD whose single energy εd = −U/2. For this symmetric
case 〈ndσ〉 = 0.5 we obtain that the Andreev conductance has a four-peak struc-
ture, similarly as the corresponding QD spectrum [8]. These peaks result from a
combined effect of the particle–hole mixing along with the Coulomb interactions.
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Fig. 4. Voltage dependence of the in-gap Andreev conductance GA(V ) for the corre-

lated quantum dot U = 0.05D with the single energy level εd = −U/2 and the coupling

constants ΓS = 0.01D, ΓN = 0.001D. The conductance is expressed in units of 2e2/h.

6. Conclusion

We have studied the in-gap charge transport through the quantum dot hy-
bridized with one normal and one superconducting lead. At low voltages the
current flows through the anomalous Andreev channel owing to the proximity ef-
fect. We have shown that the uncorrelated QD (U = 0) is characterized by the
two-peak differential conductance due to the mixed particle hole excitations of the
QD. The distance between such peaks depends solely on the hybridization ΓS, a
specific value of the energy gap ∆s is irrelevant there. In presence of the Coulomb
interactions the Andreev conductance splits into the four-peak structure. Corre-
lations are expected to have an additional influence on GA(V ) upon entering the
Kondo regime [6] but this subtle issue is beyond the scope of the present work.
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