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We study the equilibrium and non-equilibrium properties of the strongly

correlated quantum dot coupled between normal and superconducting leads.

The effect of electron pair coherence, Coulomb interactions, and d-wave

anisotropy of the order parameter are discussed with a particular account of

their influence on a charge tunneling through the quantum dot.

PACS numbers: 73.23.–b, 74.20.Fg, 74.45.+c

1. Introduction

There have been done numerous theoretical and experimental studies of the
quantum dot (QD) at an interface with the superconducting leads [1–6]. Such
issue is of a fundamental as well as practical importance and covers a rich area of
the physical aspects. It resembles, in principle, the case of a quantum impurity
(here understood as some finite system of a discrete energy spectrum) interacting
with a sea of the conduction band electrons. Impurities are usually known to have
a detrimental effect on the superconducting state (except nonmagnetic impurities
weakly interacting with s-wave superconductors).

In a configuration of the single electron transistor, where QD serves as a
charge and energy transmitter between the external electrodes, this issue becomes
even more challenging. If one or both electrodes are superconducting then one
needs to establish rather the opposite relation, i.e. of superconductor on the
impurity itself. This effect is crucial for the transport properties because the
charge and energy currents are very sensitive to energy spectrum of the QD.

According to a general description of the tunneling [7] it has been found that
besides the ordinary single electron current there can arise additional contributions
from the anomalous channels. They are activated whenever junctions involve the
superconducting lead(s) where the particle and hole excitations are mixed with
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each other. For instance, at low biases (smaller than the energy gap) the charge
transport occurs only through one of such anomalous Andreev currents [8]. Since
it requires electron pairs on the QD, therefore the correlation effects, such as the
Coulomb repulsion between electrons on the QD, become extremely important.
Indeed, Hekking et al. [9] have shown that the differential conductance of the
charge current flowing through the superconducting (S) grain has the characteristic
Coulomb blockade oscillations, whose period is 2e2/2CG (where CG is the gate
capacitance) being twice as large as for the normal (N) leads.

Besides the effect of the Coulomb interactions also the fluctuation phenom-
ena between paired electrons have a substantial influence on the transport prop-
erties, mainly in the Andreev channel [10]. In the present work we consider a
combined effect of the strong correlations together with the electron pair coher-
ence/incoherence focusing on their role for the equilibrium and non-equilibrium
properties of N–QD–S junctions. Such analysis would be relevant, when exploring
the tunneling, e.g. to the underdoped high Tc superconductors. Main aspects of
the present study could also be valid for the scanning tunneling microscopy (STM)
measurements.

2. Microscopic model

Basic properties of the QD connected to the normal (β = N) and supercon-
ducting (β = S) electrodes can be studied within the impurity-type Hamiltonian

Ĥ = ĤN + ĤS +
∑

σ

εdd̂
†
σd̂σ + Un̂d↑n̂d↓ +

∑

k,σ,β

(
Vkβ d̂†σ ĉkσβ + h.c.

)
. (1)

Operators dσ (d†σ) denote the annihilation (creation) of an electron with spin σ and
the single particle energy εd. The on-dot Coulomb repulsion U > 0 accounts for
the charging effects and, under proper conditions, can induce the Kondo resonance
at the Fermi level. Mutual interference between the localized electrons of the QD
and mobile electrons from the leads is expressed by the hybridization matrix Vkβ .

In what follows, we shall treat the normal lead electrons as free fermions
ĤN =

∑
k,σ (εkN − µN)ĉ†kσNĉkσN, whose energies belong to a wide band |εk| ≤ D

such that |VkN| ¿ D. The other (superconducting) lead will be considered in a
general form

ĤS =
∑

k,σ

(εkS − µS) ĉ†kσSĉkσS −
∑

k,k′
Uk,k′ ĉ

†
k↑Sĉ†−k↓Sĉ−k′↓Sĉk′↑S. (2)

The attractive potential Uk,k′ > 0 is responsible for a formation of the electron
pairs. Depending on the temperature T and on magnitude of the pairing potential
Uk,k′ [11, 12] these pairs can be either coherent (below Tc) or incoherent (above Tc).
In the high Tc compounds electrons are bound into the local (almost intersite)
pairs. It has been recently emphasized by Anderson [13] that in the underdoped
region such local pairs do not cease at Tc, but still exist at higher temperatures
becoming incoherent due to weakening of the phase stiffness. This is in fact not a
new idea [11]. Such kind of interpretation has been previously given more than a
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decade ago by Györffy et al. [14] who investigated the incoherent local pairs (ILP)
by the selfconsistent coherent potential approximation (CPA) method. We shall
use here some of their results which prove to be suitable for the present analysis.

3. The superconducting state

For a qualitative description of the superconducting state below Tc one can
linearize the pairing interactions reducing the Hamiltonian (2) to the exactly solv-
able BCS structure

ĤS '
∑

k,σ

(εkS − µS) ĉ†kσSĉkσS −
∑

k

(
∆kĉ†k↑Sĉ†−k↓S + h.c.

)
, (3)

with ∆k =
∑

k′ Uk,k′〈ĉ−k′↓Sĉk′↑S〉. The appearance of the order parameter
〈ĉ−k↓Sĉk↑S〉 6= 0 breaks the gauge symmetry of the initial system (2) and conse-
quently leads to a depletion of the single particle states around the Fermi energy µS.
Instead of single electrons the Cooper pairs take over the role of effective quasi-
particles. If the phase stiffness is rigid enough there establishes the off-diagonal
long-range order which marks the onset of superconductivity.

To gain some insight into the physics of N–QD–S junction let us first consider
the uncorrelated QD, omitting the Coulomb repulsion U . For description of the
proximity effect it is convenient to introduce the retarded Green function Gd(ω) =
〈〈Ψ̂ ; Ψ̂ †〉〉ω+i0+ in the Nambu representation Ψ̂ † = (d̂†↑, d̂↓), Ψ̂ = (Ψ̂ †)†. From the
Heisenberg equation of motion we obtain

G0
d(ω)−1 =

(
ω − εd 0

0 ω + εd

)
−Σ0

d(ω), (4)

where the matrix self-energy is given by

Σ0
d(ω) =

∑

k




|VkN|2
ω−ξkN

+ |VkS|2 ω+ξkS
ω2−E2

kS

|VkS|2 ∆k
ω2−E2

kS

|VkS|2 ∆∗k
ω2−E2

kS

|VkN |2
ω+ξkN

+ |VkS|2 ω−ξkS
ω2−E2

kS


 . (5)

We used a shorthand notation ξkβ = εkβ − µβ for energies measured with respect
to the chemical potential and Ek =

√
ξ2
kS + |∆k|2 for the BCS-type quasiparticle

dispersion.
The off-diagonal terms of (5) yield a nonvanishing expectation value

〈d̂↓d̂↑〉 6= 0. Physically it means that the off-diagonal order of S electrons ex-
tends onto the QD. In fact, the excitation spectrum of the QD shows up the
characteristic particle–hole features as has been previously pointed out by sev-
eral authors [6, 10]. We illustrate this in Fig. 1 showing the spectral function
ρd(ω) = − 1

π ImGd,11(ω) for the equilibrium situation µN = µS with the single
particle energy εd = µβ . We clearly notice that the Lorentzian shape (the thin
dashed line corresponding to N–QD–N junction) evolves into two peaks (the thick
solid line) for the isotropic superconducting lead. Tanaka et al. [6] have recently
explained analytically that the distance between such coherence peaks depends
merely on VkS while their broadening is controlled by VkN.
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Fig. 1. Spectral function ρd(ω) of the noncorrelated QD (for U = 0) in the equi-

librium situation, such that µN = µS = εd. We assumed the flat coupling Γβ =

2π
∑

k |Vkβ |2δ(ω − εkβ), where Γβ = 0.01D and used D as a unit for energies.

4. Effect of the phase incoherence

In electron systems with the strong pairing fluctuations driven by a small
concentration of charge carriers or due to partly reduced dimensionality the elec-
tron pairs can exist in the normal state over a certain temperature region up to T ∗.
The presence of the pairs above Tc is signified by a partial depletion of the low ly-
ing energy states in the single particle spectrum. The magnitude and temperature
extent of such pseudogap can vary from case to case. In conventional superconduc-
tors it is rather marginal [15] while in the high Tc compounds has a pronounced
effect [16].

The description of the superconducting fluctuations is a nontrivial is-
sue. Usually it is done perturbatively by including the Maki–Thompson and
Aslamazov–Larkin diagrams [17] in the response function. For the strong pair
fluctuations such approach is however insufficient, one must go beyond the pertur-
bative scheme. One of convenient methods is feasible in the Lagrangian language.
To carry out the integrals over the fermion (Grassmann) fields one can introduce
the pairing (boson) field and, via the Hubbard–Stratonovitch transformation, ex-
actly cancel out the quartic term in (2).

Instead of the two-body interactions one is then left with the fermion and
boson fields coupled into a bilinear structure. Although there is no direct trans-
lation of the effective action back to the Hamiltonian formulation we propose ad
hoc the following phenomenological model [11]:

ĤS =
∑

kσ

ξkSĉ†kσSĉkσS +
∑

j

Eb
j b̂
†
j b̂j + g

∑

k,j

(
b̂†j ĉ−k↓Sĉk↑S + h.c.

)
(6)

accounting for the mixed boson and fermion degrees of freedom. The summation
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for j runs over the spatial sites, where local pairs exist and, for simplicity, we as-
sumed the constant coupling Uk,k′ = g. The model (6) is gauge invariant because
boson operators describe the objects of a double charge 2e.

The two-component model (6) inherits a rich physics generic for the pair-
ing Hamiltonian (2) of the attractive interactions. To focus on the fluctua-
tions of the order parameter we linearize the boson-fermion term b̂†j ĉ−k↓Sĉk↑S '
〈b̂†j〉ĉ−k↓Sĉk↑S + 〈ĉ−k↓Sĉk↑S〉b̂†j thus decoupling the subsystems from one another.
The fermion part acquires again the BCS-type structure (3) with a complex order
parameter

∆j = |∆j |eiφj ≡ −g〈b̂j〉. (7)
We next assume the amplitude |∆j | to be uniform and allow only for the phase
fluctuations. As recently argued by Anderson [13] this seems to be well justified
in the underdoped high Tc materials.

Since above Tc the order parameter does not establish any long-range co-
herence it is natural to regard the phases φj as completely random. Under such
circumstances the self-energy (5) can be configurationally averaged with respect
to the orientations of φj :

Σ0
d,inc(ω) ' 〈Σ0

d(ω)〉j

=
∑

k




|VkN|2
ω−ξkN

+ |VkS|2 ω+ξkS
ω2−E2

kS

0

0 |VkN|2
ω+ξkN

+ |VkS|2 ω−ξkS
ω2−E2

kS


 . (8)

The diagonal form of the self-energy (8) does not lead to any splitting of the
Lorentzian peak (like in the superconducting state) even though the excitation
spectrum is gapped. This is a qualitative difference between the coherent and
incoherent pairs as regards their influence on the QD.

To further support the above mentioned finding we briefly consider an alter-
native way to treat the randomly oriented phases φj . We use for this purpose the
CPA method discussed at length for the negative U Hubbard model [14]. Applying
it to the present model (6) one obtains the Green function of S electrons

Gc(k, ω)−1 =
(

ω − ξkS 0
0 ω + ξkS

)
−Σ c(ω) (9)

with the dynamical, but k-independent, self-energy ΣCPA
c (ω). It has been shown

that for T > Tc the self-energy becomes diagonal [18] so, in analogy to (5), we can
write down the Green function of the QD as

Σ0
d,inc(ω)

=
∑

k




|VkN|2
ω−ξkN

+ |VkS|2
ω−ξkS−Σc,11(ω) 0

0 |VkN|2
ω+ξkN

+ |VkS|2
ω+ξkS−Σc,22(ω)


 . (10)

We checked that both Eqs. (8) and (10) give qualitatively identical results. For the
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Fig. 2. Spectral function for the same set of parameters as in Fig. 1 but in the pseu-

dogap region above Tc with randomly oriented phases of the order parameter.

transport properties (see Sect. 6) it is very important that above Tc there occurs
no proximity effect 〈d̂↓d̂↑〉 = 0. In Fig. 2 we show the resulting spectral func-
tion, where only one (partly renormalized) peak is visible instead of two coherent
peaks for the superconducting lead (Fig. 1) usually predicted in the theoretical
considerations [6].

5. Influence of the Kondo resonance

If the Coulomb interactions U 6= 0 are taken into account it becomes en-
ergetically unfavorable to have an even number of electrons on the QD. Besides
such Coulomb blockade there can appear an additional many-body Kondo effect
at sufficiently low temperatures [19]. In practical realizations it usually occurs be-
low 1 K [20], which is by far smaller than the transition temperatures of available
superconductors. Therefore, we shall investigate the Kondo state emerging deep
in the superconducting region TK ¿ Tc.

For the equilibrium or non-equilibrium Kondo effect to appear there must
be fulfilled such conditions that the hybridization Vkβ does effectively induce an
antiferromagnetic interaction between QD and the leads. In one of possible re-
alizations it happens when the single particle energy level εd is located slightly
below µβ and simultaneously the Coulomb satellite U + εd is safely far above it.
This is not a difficult constraint for junctions involving the QD because by varying
the gate voltage one can experimentally manipulate the position of εd.

Skipping unnecessary details we write down the modified Green function for
the extreme limit U →∞, when the doubly occupied QD states are projected out
by means of the slave boson approach taking care of the constraint quantization [5]

Gd(ω)−1 = G0
d(ω)−1/ (1− nd↑)− Σ I(ω). (11)

The additional term Σ I(ω) is explicitly expressed by Eq. (24) in Ref. [5]. For
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Fig. 3. Spectral function of the strongly correlated QD (for the limit U = ∞) coupled to

a normal lead and isotropic superconductor (T < Tc). We used the symmetric coupling

constants Γβ = 0.01D and assumed εd to be located below the Fermi level within the

energy gap of S electrons |εd| < ∆.

T ∼ TK it gives a narrow resonance at µβ . In Fig. 3 we show the spectral function
in the equilibrium situation when the single particle energy is located inside the
energy gap of superconducting lead |εd| < ∆.

Besides the Kondo peak at ω = 0+ we notice that the particle–hole features
(flat maxima at ω ' ±εd) are still preserved. The off-diagonal structure of the
Green function (11) guarantees that the strongly correlated QD absorbs the off-
-diagonal ordering of S electrons. On a microscopic level such mechanism of the
hybridization induced pairing has been given by SpaÃlek [21] to explain supercon-
ductivity of the heavy fermion compounds.

6. Non-equilibrium transport

In a presence of the external bias V there are induced the charge and
energy flows between the electrodes. To calculate quantitatively the charge
current J(V ) = −e d

dt

∑
k,σ〈ĉ†kNσ ĉkNσ〉 it is necessary to work with the non-

-equilibrium formalism. Using the time evolution equation we find that J(V ) =

2 e
h̄Re

{∑
k,σ VkNG<

d,kN

}
. The mixed Green function G<

d,kN can be determined via

the Schwinger–Keldysh contour integration. The standard procedure [19] adopted
here to the N–QD–S junction gives the following expression for the steady cur-
rent [5]:

J = J11 + J12 + J22 + JA. (12)
The first term in Eq. (12) describes the single particle tunneling

J11(V ) =
2eΓN

h

∫
dω

(
−ImΣ r

11,S |G11|2
)

[f(ω − eV )− f(ω)] , (13)
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where f(ω) = [1 + exp(ω/kBT )]−1 is the Fermi distribution and we used the
constant coupling ΓN =

∑
k |VkN|2δ(ω − εkN). When both leads are normal

then (13) reduces to the well known Landauer–Büttiker formula [19] J11(V ) =
2e
h

∫
dωρd(ω) ΓN(ω)ΓS(ω)

ΓN(ω)+ΓS(ω) [f(ω − eV )− f(ω)].
The other three components in Eq. (12) represent the anomalous channels

specific for junctions with the superconducting leads [7]. They can be expressed
in the following way [5]:

J12(V ) =
4eΓN

h

∫
dω

(−ImΣ r
12,SRe [G11G

∗
12]

)
[f(ω − eV )− f(ω)] , (14)

J22(V ) =
2eΓN

h

∫
dω

(
−ImΣ r

22,S |G12|2
)

[f(ω − eV )− f(ω)] , (15)

JA(V ) =
2eΓN

h

∫
dω

(
−ImΣ r

22,N |G12|2
)

[f(ω − eV )− f(ω + eV )] . (16)

The last term describes the Andreev current when electron from the N electrode
is transformed into the Cooper pair in superconducting lead with a simultaneous
reflection of a hole back into the N electrode. Such anomalous current enables the
charge transfer for the external bias |eV | ≤ ∆.

In Figs. 4 and 5 we show the differential conductance computed numerically
for the superconducting (the solid line), pseudogap (the long dashed curve) and
normal state (the thin dashed line). Figure 4 describes the situation when εd = 0,
so that the applied voltage shifts the chemical potentials to µN = eV/2, µS =
−eV/2, therefore the conductance becomes symmetric with respect to V (in this
case the Kondo peak does not appear). A finite value of G(V ) at small voltages

Fig. 4. The differential conductance G(V ) = dJ/dV of N–QD–S junction expressed in

the units of G(0)|∆=0. We used ∆ = 0.1D and εd = 0. The solid line corresponds to the

coherent electron pairs (T < Tc) while the dashed curve describes the incoherent pairs

(above Tc).
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Fig. 5. The same as in Fig. 4 but for a different single energy level εd = −0.08D in

the Kondo regime (see Fig. 3). Let us note a residual zero bias enhancement due to the

effect of the Kondo peak on the Andreev current.

|eV | < ∆ is due to the anomalous Andreev current. There can be noted two
maxima of such Andreev current coinciding with the coherence peaks of the QD
spectrum shown in Fig. 1. In the pseudogap region these peaks are absent hence
there is no maximum inside the pseudogap region.

If the single particle level is located below µβ then the Kondo peak builds
up and it gives a tiny enhancement of the zero bias conductance. Obviously
it is contributed by the Andreev current. Such enhanced conductance is much
smaller than the unitary limit value 2e2/h predicted and observed in the N–QD–N
junction [20].

7. Effect of d-wave anisotropy

In the high temperature superconductors pairing occurs in the quasi-two-
-dimensional CuO2 planes, practically between electrons on neighboring lattice
sites. The underdoped samples are there characterized by a weak phase stiffness
because of a close neighborhood to the insulating state as well as competition
with other kinds of the local order (magnetic stripes, charge density waves, etc.).
Upon increasing the temperature to Tc electron pairs become incoherent rather
than dissociate into the single species. In this section we give an account of the
other important property, namely the d-wave anisotropy of the order parameter
∆k = ∆[cos kx − cos ky]. It reflects the fourfold symmetry of CuO2 planes and in
consequence gives the gapless (V -shape) energy spectrum of the high Tc supercon-
ductors.

Due to the symmetry reasons the Green function of the QD coupled to
the d-wave superconductor cannot have any off-diagonal terms. Independently
of the Coulomb interactions the matrix self-energy Σd(ω) becomes diagonal after
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integrating over momentum k = (kx, ky) since ∆k varies its sign. In a way this
situation resembles the pseudogap case discussed in Sect. 4.

Figure 6 shows the spectral function ρd(ω) for the equilibrium case. Coher-
ence peaks of the d-wave superconductor (see the inset) are here not divergent like
the square root singularities of the isotropic superconductor therefore the kinks of
QD spectrum at ω = ±∆(T ) become quite shallow. The Lorentzian peak is a bit
deformed in the present case due to ω-dependence of the imaginary part ImΣd(ω)
which is responsible for a width. We also clearly notice a substantial reduction of
the Kondo peak because of the partly depleted states in the superconductor for
|ω| ≤ max {∆k}.

Fig. 6. Spectral function ρd(ω) of the quantum dot (in the limit U = ∞) coupled

to a normal lead and d-wave superconductor. The thin dashed line corresponds to

∆ = 0 while the thick solid curve to ∆ = 0.1D. We used εd = −0.08D, Γβ = 0.01D,

∆(T ) = 0.1D, and temperature T < TK ¿ Tc. The inset shows the density of states of

the d-wave superconducting electrode.

Nevertheless, it has been pointed out by Borkowski and Hirschfeld [22] and
more recently by other authors [23] that gapless superconductivity does not pre-
clude appearance of the Kondo resonance. We show in Fig. 6 such Kondo res-
onance obtained at low temperatures for the QD symmetrically coupled to the
d-wave superconductor. However, without the off-diagonal terms in Gd(ω) there
is no contribution of the anomalous channels to the tunneling. One may thus ask
whether the Kondo peak is going to enhance the differential conductance in very
much the same way as it does when both leads are normal [20] or one of them is the
isotropic superconductor [10]. There is no simple answer to this question [24]. We
shall discuss it separately using the sophisticated methods to account for feedback
of the Kondo state on energy spectrum of the d-wave superconducting lead.
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8. Conclusions

We studied the thermodynamic and transport properties of the quantum dot
coupled to normal and superconducting electrodes. We show that the isotropic su-
perconductor induces a proximity effect in the QD. It does no longer occur above Tc

when electron pairs lose their long-range coherence, even though the energy gap
is preserved. Measurements of the non-equilibrium charge current through the
quantum dot could thus be a sensitive tool for probing the superconducting fluc-
tuations. For the superconducting state below Tc we find evidence for a marginal
zero bias anomaly of the differential conductance due to the Kondo effect. Further
studies are needed for the d-wave superconductors where, due to the symmetry
reasons, the proximity effect is inefficient. Eventual resonant states inside the V -
shaped gap [24] might have nontrivial effects distinguishing the regions of coherent
from incoherent electrons pairs.
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[5] M. Krawiec, K.I. Wysokiński, Supercond. Sci. Technol. 17, 103 (2004).

[6] Y. Tanaka, N. Kawakami, A. Oguri, cond-mat/0701570.

[7] G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

[8] G. Deutscher, D. Feinberg, Appl. Phys. Lett. 76, 486 (2000).

[9] F.W. Hekking, L.I. Glazman, K.A. Matveev, R.I. Shekhter, Phys. Rev. Lett. 70,

4138 (1993).
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