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We investigate the fluctuations induced by time-dependent interchange

between the Bardeen–Cooper–Schrieffer and Bose–Einstein condensation

regimes in the ultracold gas of fermion atoms. Such crossover can be trig-

gered by varying the external magnetic field across the Feshbach resonance.

Experimental realization is usually done via very fast switching which leads

to the nonequilibrium effects. In this paper we focus on the ground state

properties. In particular, we analyze time dependence of the wave function

and consider fluctuations of the order parameters.
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1. Introduction

Ultracold fermion atoms, such as 40K or 6Li, are recently used to achieve a
new kind of superfluidity where effective interactions are tuned via the magnetic
field. In two-component systems made of the fermion atoms in two (or more) dif-
ferent hyperfine states it is possible to produce the weakly bound molecules with
binding energy almost three orders of magnitude smaller than the helium dimers
(the weakest bound pairs in the solid state physics) [1]. Such small size molecules
get formed in presence of the magnetic field B < B0, where the characteristic
Feshbach resonance value B0 depends on specific atoms and their Zeeman con-
figurations [2]. At ultralow temperatures T ∼ TF (for 105 trapped atoms with
concentration 1013 cm−3 the typical Fermi temperature is TF ≈ 100 nK) these
weakly bound molecules have been observed to undergo the Bose–Einstein con-
densation (BEC) [3].

Above the Feshbach resonance molecules are no longer bound. However, the
virtual exchange of atoms into molecules generates an effective scattering potential
V ∝ 1

B0−B [4] which for B > B0 is attractive. This mechanism leads again to pair
formation but in the momentum space. Fermion pairs, like the Cooper pairs of the
Bardeen–Cooper–Schrieffer (BCS) theory, are there considered to be large. First
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experimental evidence for the superfluidity on the BCS side has been reported
independently by several labs in 2004 [5].

Varying the magnetic field across the Feshbach resonance one can thus switch
between the different limits of pairing and superfluidity. Although the theoretical
concept of BCS to BEC crossover has a long time history [6] in the case of ultracold
gases it can be realized for the first time in a fully controllable way.

Experimentally, switching between the BEC and BCS regimes is often done
in time intervals much shorter than intrinsic scale set by the Fermi velocity vF.
Nonequilibrium effects play then essential role and their description goes beyond
the conventional frame of time-dependent Ginzburg–Landau equation. The fast
time dynamics has been recently studied in the literature analytically [7] and
numerically [8]. Unfortunately, no clear consensus has been reached concerning
the damping effects for small and large size fermion pairs. In this paper we address
this issue by considering the sinusoidal sweep between the BCS and BEC regimes.
We show that for sufficiently large frequencies there appear oscillations of the order
parameters.

2. Microscopic model for the BCS to BEC crossover
Basic physics of the fermion atoms correlated via the Feshbach resonance

can be described by a two-channel model [9]:

H(t) =
∑

k,σ

(εF
k − µ)c†kσckσ +

∑
q

[
εB
q + 2ν(t)− 2µ

]
b†qbq

+
g√
N

∑

k,q

(
b†qcq−k↓ck↑ + c†k↑c

†
q−k↓bq

)
. (1)

Similar model has been also studied [10] as a scenario for the high temperature
superconductivity. In the present context (1) refers to the fermion atoms in two
Zeeman levels which are symbolically labeled by σ =↑ and ↓. Kinetic energy of the
single atoms is εF

k = h̄2k2/2m while the energy of weakly bound molecules εB
k =

h̄2k2/2(2m) is detuned from the Feshbach resonance by parameter 2ν(t). Common
chemical potential µ ensures conservation of the total particle number ntot =∑

k,σ c†kσckσ + 2
∑

q b†qbq and the resonant scattering responsible for correlations
between atoms comes from the boson–fermion exchange g [2, 4].

In the ground state we can approximately neglect the finite momentum
bosons in (1). In that case it is possible to show [11] that the problem reduces
to the well studied (but nontrivial) Dicke toy model [12]. In order to interpolate
between the BCS and BEC limits we impose the following ansatz for the wave
function [13]:

|Φ〉 = N exp

(
Ab†0 +

∑

k

Bkc†k↑c
†
−k↓

)
|vac〉, (2)

where N is a normalization factor. The other two parameters A,Bk are time-
-dependent quantities and can be determined from a variational procedure for the
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action S[Φ] =
∫

dt 〈Φ| (i∂t−H)|Φ〉. Let us recall that time dependence enters (2)
via the detuning 2ν(t) which affects the relative populations of boson molecules
and fermion atoms.

From the functional derivatives
δS[Φ]
δA = 0,

δS[Φ]
δBk

= 0 (3)

we derive the differential equations which determine the time dependence of A(t)
and Bk(t). Physical meaning of such parameters reads

A = 〈b0〉, Bk =
1− 〈σz

k〉
2〈σ−k 〉

. (4)

We introduced here a convenient pseudospin notation [14] for the fermion pair
operators c−k↓ck↑ ≡ σ+

k , c†k↑c
†
−k↓ ≡ σ−k and for the particle number operator

c†k↑ck↑ + c†k↓ck↓ ≡ 1− σz
k.

It can be shown [13] that Eqs. (3) are equivalent to the Heisenberg equations
of motion

i
∂σ+

k

∂t
= 2ξkσ+

k + gb0σz
k, i

∂b0
∂t

= E0b0 + g
∑

k

σ+
k (5)

averaged with respect to the wave function (2). Spin 1
2 operators obey the con-

straint 4σ+
k σ−k + (σz

k)2 = 1 which additionally yields

i
∂σz

k

∂t
= 2g

(
b†0σ+

k − b0σ−k
)

. (6)

This set of Eqs. (5), (6) has been previously obtained [7, 8, 15] for studying the
dynamics of (1).

3. Numerical results

Equilibrium state of the two-component model (1) has a unique property that
the condensation of molecules is simultaneously accompanied by the coherence of
large Cooper pairs [10]. In the thermodynamic limit (N → ∞) it leads to the
spontaneous gauge symmetry breaking. To describe this phenomenon in terms
of the off-diagonal long-range order formulated by Yang [16] one introduces the
following order parameters b(t) = 〈b0〉 and χ(t) =

∑
k〈σ+

k 〉. Mean field equations
and the stationary solutions for both order parameters have been discussed in
detail in Ref. [10]. As an illustration we plot in Fig. 1 the critical temperature
versus the detuning parameter 2ν for the case of three-dimensional system with
particle concentration 〈ntot〉 = 1.

Starting from the stationary solution we now analyze time dependence of the
order parameters in response to a sinusoidal modulation of the detuning param-
eter 2ν(t) = 2ν0 sin ωt. We assume that modulations occur around the Feshbach
resonance in the energy window indicated by an arrow in Fig. 1. We consider
frequencies ω ranging from small to large values (roughly speaking it corresponds
to either the adiabatic or nonadiabatic processes).
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Fig. 1. The equilibrium value of the critical temperature Tc versus the detuning pa-

rameter 2ν for the three-dimensional version of the boson–fermion (BF) model (1) with

a total concentration ntot = 1 and fermion band width D taken as a unit for energies.

In this paper we analyze the fluctuations for the detuning parameter oscillating within

the regime indicated by the arrow.

Time dependent order parameters b(t), χ(t) as well as time dependent pop-
ulations of the molecules and fermion atoms can be determined from Eqs. (5), (6).
We solved them self-consistently using the numerical Runge–Kutta algorithm
[8, 15]. No analytical structure (like e.g. in Ref. [7]) has been imposed.

Fig. 2. Time dependence of the order parameter |χ(t)| for the detuning parameter

ν(t) = ν0 sin 2π t
T

, where ν0 = 0.1D and time t is expressed in units h̄/D. From the top

to bottom panels in the right hand side column we show that time interval corresponds

to 5, 10, 20, 40, and 80 oscillations of ν(t).
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For small frequencies the order parameters behave in a rather non-regular
way (see the top panel in Fig. 2). Due to damping effects we observe that order
parameters do not follow the modulations of ν(t). With a gradual increase in the
frequency the order parameters start to vary in a kind of oscillatory way (see the
bottom panels in Fig. 2). Oscillations clearly show up for frequencies ω ≥ 2∆0,
where ∆0 = g〈b(0)〉 is the gap of fermion spectrum in the stationary solution.
Further increase in the frequency ω smooths the envelope of the oscillations. Time
dependence of the order parameter |b(t)| is qualitatively similar to the behavior of
|χ(t)| shown in Fig. 2.

4. Conclusions

We studied dynamical variation for the ground state wave function of the
ultracold fermion atoms in response to time dependent detuning ν(t) modulated
across the Feshbach resonance. Structure of the wave function (2) is directly re-
lated to the order parameters 〈b0〉 and 〈σ+

k 〉. From our self-consistent treatment
it turns out that: (i) the order parameters have no regular behavior in the adi-
abatic limit for ω being small, while (ii) they manifest quantum oscillations for
sufficiently large frequencies ω ≥ 2∆0. We hope that such oscillations of the order
parameters could be checked experimentally for example using the radio frequency
spectroscopy [17].
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