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The signature of superfluidity in bosonic systems is a sound-wave-like spectrum of the single particle
excitations which in the case of strong interactions is roughly temperature independent. In Fermionic systems,
where Fermion pairing arises as a resonance phenomenon between free Fermions and paired Fermionic states
(examples are: the atomic gases of6Li or 40K controlled by a Feshbach resonance, polaronic systems in the
intermediary coupling regime,d-wave hole pairing in the strongly correlated Hubbard system), remnants of
such superfluid characteristics are expected to be visible in the normal state. The single particle excitations
maintain a sound-wave-like structure for wave vectors above a certainqminsTd where they practically coincide
there with the spectrum of the superfluid phase forT,Tc. Upon approaching the transition from above this
region inq space extends down to small momenta, except for a narrow region aroundq=0 where such modes
change into damped free particle like excitations.

DOI: 10.1103/PhysRevB.70.184513 PACS number(s): 03.75.Kk, 03.75.Ss, 03.75.Mn, 03.75.Hh

I. INTRODUCTION

Approaching the transition to a superconducting or super-
fluid state from above, one can(under certain conditions)
observe incipient macroscopic features which are caused by
the emergence of an order parameter. In classical supercon-
ductors such features, related to spatial order parameter fluc-
tuations, are restricted to only an extremely narrow tempera-
ture region around the superconducting critical temperature
Tc, and in practice are hard to detect. Such fluctuations how-
ever are visible in systems with real space pairing or, more
generally, when the overlap between the pair wave functions
is small and we are in the crossover regime between a BCS
type superfluidity of Cooperons and a superfluid phase of
tightly bound Fermions which behave as bosons. Remnants
of superfluidity, sometimes termedlocalized superfluidity,
aboveTc have been observed1 in the form of finite range
phase correlations in purely bosonic systems such as liquid
4He in porous media of vicors and aerogels, with a charac-
teristic disorder and confinement. Similar features have been
seen for Fermionic systems such as3He in aerogels2 and
superconducting heterostructures.3 Solution to the theoretical
questions raised in this connection lies in a formulation ca-
pable of describing on equal footing a BCS-type supercon-
ductivity in a system of weakly coupled Fermions and a
Bose-Einstein condensation(BEC) of strongly bound Fer-
mion pairs. Early attempts to do that go go back to the work
of Leggett4 and Nozières and Schmitt-Rink5 and rely on
crossover scenarios where electron pairing is given by some
unspecified effective attraction between them.

Fermionic systems where the binding between Fermions
comes about from an exchange interaction between free itin-
erant Fermions and two-Fermion bound states, present a dif-
ferent scenario to examine the crossover regime between a
BCS-type superfluidity and a condensed states of tightly
bound pairs. Such systems have moreover the advantage that

sometimes, in real systems, the crossover can be tuned ex-
perimentally. An example for such scenarios are Many Po-
laron systems in the intermediary coupling regime where
free itinerant electrons engage in a resonant scattering pro-
cess with weakly bound bipolaronic states when their respec-
tive energy difference is small.6 This leads to long lived elec-
tron pairs which ultimately can condensate. An other
example, now widely studied in the literature in connection
with their condensation,7 are gases of Fermionic atomic
(such as6Li and 40K atoms) which can be brought into such
resonant Fermionic pair states via a so called Feshbach reso-
nance mechanism8 which involves hyperfine spin–flip pro-
cesses between the nuclear and the electronic spins of the
atoms together with their molecular counterparts. Finally,
also in the highly debated scenarios for the high temperature
superconductors(HTSC) resonant pairing betweend-wave
holes has been invoked. It has been suggested that such pair-
ing arises from an exchange between itinerant holes and
bound hole pairs in plaquette RVB states on finite clusters.9

In all those systems resonant pairing leads to long lived
electron pairs which ultimately are driven into a superfluid
phase. Furthermore such systems are characterized by
strongly interdependent dynamics of single- and two-particle
excitations which, upon approaching and passing through the
superconducting phase transition, simultaneously undergo
qualitative changes. Thus, the opening of a pseudogap in the
single particle spectrum, whenTc is approached from above,
occurs concomitantly with a changeover from single particle
Fermionic transport to one ensured by bosonic molecular
entities.10 The observed transient Meissner effect11 and a
Nernst effect12 in the normal phase in HTSC can be consid-
ered to be signatures of that. In the atomic gases the physics
is more involved because of the strong inhomogeneous char-
acter of those trapped gases, leading to radial and axial
breathing modes13 instead of the usual sound-wave- like ex-
citation spectrum known in translational invariant homoge-
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neous superfluids. Nevertheless, corresponding manifestation
of superfluid fluctuations in the normal state should also be
expected in those systems.

In this paper we will analyze the molecular(and/or
Fermion-pair) excitation spectrum of such a general class of
systems which can be described in terms of resonating pairs
of Fermions and discuss how, on a finite length scale, super-
fluid phase fluctuations can emerge upon approachingTc
from above. We restrict ourselves here to the study of homo-
geneous systems, leaving the more complex structures to be
expected for remnant collective modes in inhomogeneous
atomic gases in optical traps to a future work. The simplest,
and generally adopted approach to study such systems, is on
the basis of a phenomenological Boson–Fermion model.

Pairing in such a model can be viewed as the Andreev
scattering processes between itinerant carriers and bosonic
bound pairs on small clusters. One then is faced on one hand
with local intracluster phase correlations between pairs of
itinerant Fermions and Bosonic bound Fermion pairs and on
the other hand with nonlocal intercluster phase
correlations.14,15 The first ones play the role of local density
fluctuations and the second ones of effective intersite Joseph-
son coupling. This physics, which is an intrinsic ingredient
of the various representative examples cited above and
which are effectively realized in nature, is qualitatively dif-
ferent from that of the standard crossover scenarios based on
effective attractive interparticle interactions. It leads to fea-
tures such as superfluid–insulator transitions, and lets one
envisage the possibility of normal state bose metals and ex-
otic elementary as well as collective excitations which re-
main to be fully explored.15

II. THE MODEL

The following boson Fermion model(BFM) Hamiltonian
for resonant pairing

H = o
k,s

«kcks
† cks + vo

k,q
sbq

†cq−k↓ck↑ + h.c.d

+ o
q

sEq + 2ndbq
†bq. s1d

is currently employed in studies of the abovementioned sys-
tems. The operatorscks

† scksd correspond, according to the
physical system we are studying, to the creation(annihila-
tion) of either free electrons, or free itinerant holons or Fer-
mionic atoms in one of two possible hyperfine configura-
tions, denoted symbolically bys=↑ ands=↓. The energy«k
of those Fermions is measured with respect to the chemical
potentialm. Correspondingly,bq

†sbqd refer to bound diatomic
molecules of bosonic character(either localized bipolarons,
or bound hole pairs on plaquette RVB states or weakly bound
pairs of atoms in a triplet configuration), having an energyEq
being measured with respect to 2m. The parameter 2n
=Eq=0−2«kF

(wherekF is the Fermi momentum), denotes the
difference in energy of the weakly bound Fermion pairs and
the single Fermion scattering states. Ifn is small, pairing will
be introduced among the uncorrelated fermions via reso-
nance scattering, tantamount to a Boson-Fermion pair ex-

change with coupling strengthv. Tuning the value ofn, one
can cover the whole regime between Cooper pairs and lo-
cally bound pairs and their corresponding condensed phases.

Such a BFM(1) has been introduced originally in solid
state theory many years ago, in an attempt to describe the
situation of intermediary electron-lattice coupling16 and has
been intensively studied over the last decade, mainly in con-
nection with the pseudogap phenomenon in the HTSC. As
shown recently,17 this model does indeed capture the
resonant-type scattering between Fermions due to the Fesh-
bach mechanism and has been widely studied in connection
with several issues of the atomic gas superfluidity.18

Our main objective here is to study the two-Fermion dy-
namical correlation functions when thedetuningn from the
resonance is small, thus putting ourselves in the center of the
crossover regime between a superfluid ground state of BCS
characteristics and one corresponding to tightly bound Fer-
mion pairs of bosonic character. The Green’s function de-
scribing the Fermion pairsGpairsq ,vd is related to the
single particle boson propagator viaGBsq ,vd=G0

Bsq ,vd
+v2G0

Bsq ,vdGpairsq ,vdG0
Bsq ,vd, where G0

Bsq ,vd=fv−Eq
−2ng−1. This implies that the excitation energies of the bound
molecules and Fermionic diatomic pairs areidentical. Only
the spectral weights differ as can be seen from the relation
between their spectral functions, i.e.,Apairsq ,vd=v−2sv−Eq
−2nd2 ABsq ,vd. It is thus sufficient to determine one of these
functions in order to derive the excitation spectra for both.

III. THE PROCEDURE

The interdependence between the single- and two-particle
correlations is required to treat them on equal footings. For
that purpose we employ a continuous renormalization group
procedure19 which, through a set of infinitesimal canonical
transformations, reduces the initial Hamiltonian(1) to an es-
sentially diagonalizable form, containing the relevant physics
which we want to describe, plus additional terms which can
be treated as small perturbations. Contrary to standard renor-
malization group techniques, where one integrates out the
high energy states and subsequently derives an effective low
energy Hamiltonian, in this method both, the high and low
energy sectors, are renormalized and kept throughout the
whole transformation process.

The specific construction of such a procedure for the
BFM was given previously,20 where also the single particle
spectrum of the Fermionic atoms, pointing to Bogoliubov-
like excitations below as well as aboveTc was studied.21 We
apply here this procedure for the study of the boson spectral
function. In the course of diagonalizing the Hamiltonian, the
boson operators evolve toward a form given by

b̃q = Ãqbq +
1

ÎN
o
k

B̃q,kck↓cq−k↑, b̃q
† = sb̃qd†. s2d

The two complex coefficients appearing in Eq.(2) are calcu-
lated in the limit of the convergence of the renormalization

flow procedure liml=`Aqsld=Ãq and liml=`Bq,ksld=B̃q,k,
wherel denotes the continuous flow parameter. We base our-
selves on the general relations which describe the evolution
of operators21
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dOsld/dl = fhsld,Osldg s3d

with h being judiciously chosen19 as

hsld =
1

ÎN
o
k,p

ak,psldscp↑
† ck↓

† bp+k − h.c.d, s4d

and ak,psld=f«ksld+«psld−Ek+psldgvk,psld.20 Coefficients
Aqsld andBq,ksld satisfy the renormalization equations

dAqsld
dl

= −
1

N
o
k

ak,q−ksldfk,q−kBq,ksld, s5d

dBq,ksld
dl

= ak,q−ksldAqsld, s6d

with the initial conditionsAqs0d=1, Bq,ks0d=0, and fk,p=1
−nk↓

F −np↑
F .

This procedure leads finally to the following form of the
spectral function for the bosonic molecules

ABsq,vd = uÃqu2dsv − Ẽqd +
1

N
o
k

fk,q−kuB̃q,ku2

3dsv − «̃k − «̃q−kd. s7d

The first term of Eq.(7) describes long-lived quasiparticles

with the renormalized energyẼq
20 and whose spectral weight

is uÃqu2. The second term describes the incoherent back-
ground extending over the region determined by the renor-
malized Fermion energies«̃k.20 From Eqs.(5) and (6) we

derive the following sum ruleuÃqu2+1/NokuB̃q,ku2fk,q−k =1
which correctly preserves the total spectral weight
e−`

` dvABsq ,vd=kfbq ,bq
†gl=1.

IV. THE PAIR EXCITATION SPECTRUM BELOW Tc

At a certain critical temperatureTc the static pair suscep-
tibility ok,pe0

bdtetvkck↑
† stdcq−k↓

† stdcq−p↓cp↑luv→0u becomes di-
vergent forq=0 and, due to the Thouless criterion, the sys-
tem undergoes a phase transition to a superfluid state. For
T,Tc two order parameters appear which are proportional to
each other:xF;kc−k↓ck↑l for the Fermions andxB;kbq=0l
for the bosons(atom molecules).

Near the Fermi energy, the single particle Fermionic ex-
citations become gaped:«̃k =sgnh«kjÎs«kd2+svxBd2. In con-
sequence, no Fermionic states, neither coherent nor incoher-
ent, exist within the energy windowuvuøvxB.21 This
simultaneously affects the incoherent part of bosonic spec-
trum, as can be seen from Eq.(7). For the long wavelength
limit q→0 the incoherent background is pushed up to ener-
gies uvu.2vxB and thus permits long-lived excitations,
which correspond to collective modes, known asfirst sound
for interacting bosonic systems in the superfluid state(see
Fig. 1). The temperature dependence of these modes has pre-
viously been studied for this BFM23 in the superfluid phase
within a framework of the dielectric formalism with use of
the Ward identities, currently employed in the theory of in-
teracting bose gases. A behavior similar to that of the strong

coupling limit of interacting bose gases24 was found, show-
ing a sound velocity being little dependent on temperature as
one traverses the superfluid transition, but whose spectral
weight in the boson single particle spectral function disap-
pears upon approachingTc.

Such sound wave-like modes are not realized in charged
superconducting systems because of the long range Coulomb
interaction which pushes them up to the generally huge
plasma frequency.25 For electrically neutral atoms, such as
the trapped atomic gases, this is no longer the case and hence
one can realistically expect collective sound-wave-like
modes, although appropriately modified due to the inhomo-
geneous structure of the gas density.13

V. THE PAIR EXCITATION SPECTRUM ABOVE Tc

Decreasing the temperature in the normal state below a
certainT* s.Tcd one expects precursor pairing effects which
show up in the single particle Fermionic excitations spec-
trum in the form of a pseudogap which opens up near the
chemical potential.20–22AboveT* the low energy part of the
pair excitations has the usual parabolic dispersion. However,
upon decreasing the temperature and approachingTc, phase
coherence gradually sets in on a finite length and time scale,
which becomes visible in form of a linear inq dispersion of
the single boson(respectively, Fermion pair) excitation for
smallq vectors, in an intervalfqminsTd ,qmaxsTdg (see Fig. 2).
There, the derivative of the effective Bose single particle

energy spectrumdẼq/dq shows a flat portion, which, when
extrapolated toq=0, practically coincides with the corre-
sponding quantity in the superfluid phase atT=0. We ob-
serve that, as the temperature is decreased,qminsTd decreases
toward zero, but always leaving a small interval inq space
f0,qminsTdg where one clearly observes a free particle like
spectrum with an effective mass which decreases asT de-
creases. This is in accordance with an earlier study on this
subject using self-consistent perturbation theory.22 For T
ùT* the coherent boson mode overlaps with an incoherent

FIG. 1. The characteristic sound-wave modeẼq=vuqu of the
long-lived boson and/or Fermion pair excitation spectrum in the
superfluid state atT=0. The shaded regions show the incoherent
background, which is energetically separated from the collective
excitation branch. Atq=0 the incoherent background exists for en-
ergies larger than 2vxB (twice the value of the single particle Fer-
mion gap). We used the following dispersions«k =−D /2 cossauk ud
andEq=−D /4 cossauqud such that the massmB=2mF and the poten-
tial v=0.1D. We further set the lattice constanta=1 and use the
bandwidthD as a unit for energies.
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background in the single particle boson spectral function(see
Fig. 3, bottom panel). However, upon decreasing the tem-
perature to belowT*, we observe that this incoherent back-
ground moves away from the position of the coherent con-
tribution (upper panel of Fig. 3) which ensures that a linear
in q branch of the boson spectrum is well defined in the
corresponding interval ofq vectors. This strongly suggests
that remnants of the first sound still can exist as part of the
single particle boson spectrum above the superfluid phase
transition for a limited region of wave vectors due to a per-
sistence of superfluid phase correlations aboveTc on a finite
length and time scale.

VI. CONCLUSIONS

We studied the qualitative changes of the excitation spec-
trum for the resonant Fermion pairs which occur upon vary-
ing the temperature. We found that quantum fluctuations play
a crucial role when detuningn from the Feshbach resonance
is small. Fluctuations manifest themselves in the pseudogap
regimeT* .T.Tc.

Far aboveTc the off-diagonal long range order is not es-
tablished. The pair excitation spectrum for smallq vectors is
then characterized by a parabolic branch(see Fig. 2) and
overlaps with the incoherent background(see the bottom
panel of Fig. 3) such as to effectively destroy any bosonic
quasiparticle features.

This situation changes dramatically when the temperature
drops belowT* where resonant pairing sets in. Phase corre-
lations start to build up on a finite spatial and temporal scale
as the temperature decreases and approachesTc.

26 The single
particle Fermion spectrum reveals then a partial suppression
of states(pseudogap) around the Fermi energy,20–22which is
accompanied by qualitative changes in the pair excitation
spectrum. Quantum fluctuations lead to emergence of the

collective sound-wave mode which aboveTc exists in a finite
momentum intervalfqminsTd ,qmaxsTdg. Upon decreasing the
temperature the long-lived branch of the pair spectrum
gradually splits off from the incoherent background(upper
panel in Fig. 3) and spreads over a wider and wider momen-
tum region, withqminsTd steadily decreasing as we approach
Tc. We note however that invariably the linear inq dispersion
changes into a damped free particle like behavior in the close
vicinity of q=0.

The sound-wave mode has been so far measured aboveTc

in the liquid helium by ultrasonic techniques27 as well as by
neutron scattering measurements.1 In the case of the trapped
Fermionic atoms the corresponding mode is expected to be
compressional density waves and, similar to the present
study, one should expect remnants of those modes in the
normal state. In principle, such modes can be experimentally
checked by the Bragg spectroscopy.28 Indirect methods for
detecting the collective modes which rely on measuring the
magnetic susceptibility and density–density correlation func-
tions have been discussed(although only forT,Tc) in Ref.
29. In some future work we shall discuss how collective
modes can possibly be observed in measurements of the
magnetic susceptibility in the pseudogap regime aboveTc.

FIG. 2. Comparison of the dispersionẼq of the coherent part of
the boson spectral function at temperatures corresponding to the
superfluid sT=0d, pseudogap(0.007, 0.01) and the normal phase

aboveT* (0.02). Upper panel shows the derivativedẼq /dq of these
curves. The insets contain correspondingly: the low momentumq

limit of the dispersionẼq and the temperature dependence of
chemical potential(the marked points correspond to four tempera-
turesT=0.02, 0.01, 0.007, and 0 chosen in this work).

FIG. 3. The boson spectral functionABsq ,vd for the low energy
pair excitations. The upper panel corresponds toT=0.007 being
close toTc in the pseudogap regionT* .T.Tc. The bottom panel
refers to the normal stateT=0.02 (aboveT* ). In the pseudogap
phase a propagating coherent contribution given by thed-function
peak and an incoherent background, given by the shaded regions,
get separated above some relatively small critical momentumqmin.
This is no longer the case forT.T*.
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