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We study the interplay between the single-particle and fermion-pair features in the boson fermion model,
both above and below the transition temperatlige using the flow equation method. Upon lowering the
temperature the single-particle fermionic spectral funct@mgradually develops a depletion of the low-energy
states(pseudogapfor T* >T>T, and a true superconducting gap o T, and(b) exhibits a considerable
transfer of spectral weight between the incoherent background and the narrow coherést sigakying
long-lived quasiparticle features. The Cooperon spectral function consisté-fafrction peak, centered at the

renormalized boson energy=E, and a surrounding incoherent background which is spread over a wide
energy range. When the temperature approa¢hdéom above, this peak fog=0 moves tow=0, so that the

static pair susceptibility diverggdhouless criterion for the broken symmetry phase transitidpon decreas-

ing the temperature belov, the Cooperon peak becomes the collecti@ldstong mode E,|q| in the
small-momentum region and simultaneously splits off from the incoherent background states which are ex-
pelled to the high-energy secttw|=2A,(T). We discuss the smooth evolution of these features upon ap-
proachingT. from above and consider its feedback on the single-particle spectrum where a gradual formation
of damped Bogoliubov modggboveT,) is observed.
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[. INTRODUCTION erons become good quasiparticles. The appearance of fer-
mion pairs aboveT, affects the single-particle spectrum,
The boson fermion modegBFM) was initially invented |eading to the emergence of the Bogoliubov shadow
for a description of the conduction-band electrons coupled t@ranches as has been recently discussed by us in Ref. 2.
the lattice vibrations in the region of intermediate electron- Let us recall that the single-particle spectrum of classical
phonon couplind. The underlying physics emerges from the superconductors is gapped only for temperatufesT..
assumption that in the crossover region the electrons exi@CS theory predicts the quasiparticle dispersil&iﬁ"CS
partly in the form of bound pairghard-core bosonsand  =sgre,— )/ (e~ u)?+|Asd?, where the excitation gapg,
partly as quasifree particldééermiony. Many-body correla- progressively increases for a lowering temperature. How-
tions of such a two-component system are induced due tever, the total single-particle spectral function contains two
charge exchange processes converting the fermion pairs intntributions uZ&(w—EFCS +v28(w+EES with the BCS
the hard-core bosons and vice versa. The initially very heavgpectral WeightSUﬁ=%[1+|sk—ﬂ|/EEC5]=l—v§. The exis-
bosons effectively increase their mobility and, at the criticaltence of these two branches signifies that near the Fermi
temperaturel,, undergo a Bose-Einste(BE) condensation energy the true quasiparticles are mixtures of electron and
while the fermions are simultaneously driven to a superconpgle excitations. One peak occurringast EECScorresponds
ducting state. to what is left of the single-particle state with initial energy
Upon approaching from above there are several precur- g, — . The second branch, at=—E2CS is a kind of mirror
sor features of superfluidity and superconductivity showingeflection of the former and we will further call it tHgogo-
up in the system. In this paper we address these precurs@fibov shadowbranch. The two-peak structure of the single-
effects by means of a renormalization group scheme which iparticle spectral function is a direct consequence of the
outlined in some detail in Sec. Il. We will show that, the BCS-type wave functiohand indeed it has been experimen_
pseudogap phas€T<T*) and in superconducting state tally confirmed for conventional and uncoventional
(T<T,), the single- and two-particle properties become superconductors.
strongly interdependentn the pseudogap phase this is seen, Besides this single-particle feature there are also other
for instance, through a gradual destruction of the singleproperties(showing up, e.g., in the Andreev reflection, Jo-
particle stategnear the Fermi surfagevhich is accompanied sephson tunneling, ejcwhich unambiguously characterize
by a simultaneous emergence of fermion-pair features. Fethe new type of quasiparticl€€ooperons A detailed study
mion pairs with total zero momentum show up in the normalof the pair propagation in superconductors has been investi-
state only as damped entities which propagate over a finitgated by many authors. For instance, Thouless indicated that
time and/or spatial scales. However, we find that there is ge static pair susceptibility becomes divergenfTatn the
certain critical momenturg,;;(T) above which fermion pairs long-wavelength limit(this is now often used as a criterion
become long-lived quasiparticleghey become separated for transition temperature itsglf Anderson, on the other
from the incoherent background as discussed in SecAtl  hand, explained that superconducting state breaks up the glo-
the phase transitiog.;(T.) — 0 and belowT all the Coop-  bal U(1) symmetry and hence there should emerge a gapless
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sound-wave branchGoldstone modgein the pair spectrum extending our previous wofk based on thdlow equation
which in the usual charged systems is pushed to the plasmanethod?® Our former study focused on a diagonalization of
frequencies. In this work we explore whether the spectral the Hamiltonian and determination of the renormalized fer-
function of the fermion-pair propagator shows @goperon  mion and boson energié.In the present paper we derive
peaks(seen as narrow peaks which do not overlap with thehe Green’s functiongdynamic quantitieswhich determine
incoherent backgroundalready above. the propagation of single fermions, single bosons, and of
We expect that approachinlg, there should be a smooth fermion pairs. From these functions we obtain the corre-
evolution from the pseudogapped to the fully gapped singlesponding excitation spectra. The methodological virtue of the
particle spectrum where the Bogoliubov featufeaused by ¢, equations method is that, besides treating the single-
the existence of the fermion pajrare present below as well 5,4 o particle entities on equal footing, it distinguishes

as abover,. In the superconducting state, we moreover find - " I
that the interdependence between the single- and two-particﬁaetween the contribution of long-lived and damped quasipar

properties leads to the characteristic peak-dip-hump Struc_cles in the spectrum. The former are usually represented by

ture. Similar conclusions have recently been reached indeﬁ—'fumtIon peaks with a given spectral weight while the latter

pendently by Pieret al® although in a different theoretical are given in form of a broad incoherent background.

approach. For our study we use the Hamiltonfan
As has been widely emphasized by UemUthere are a B + +
number of very convincing experimental indications for pre- H= k% (£ = 14)CioCror * % (Ag — 21)bgbg

cursor phenomena in the underdoped high-temperature su-
perconducting (HTS) cuprates. Whether the whole v +
pseudogap phase can be exclusively attributed to such pre- * \_Nk% (BgCq-i Gy + H-C), (1)
cursor effects is still under debate. Nevertheless, for tempera- ’
tures sufficiently close td,, (in the underdoped samplethe  where the operatonsl(, (cy,) refer to the creatiofannihila-
existence of fermion pairs, being correlated on a small spatidion) of fermions with energy, andbg (bg) correspondingly
and temporal scale, was confirmed by measurements of thte bosons in localized statés,. The boson-fermion coupling
optical conductivity in the terahertz regirfeOn the other v will be taken here as isotropic, although for real HTS sys-
hand, static experiments measuring the Nernst coeffftientems it should be used withcawave prefactot®-18For sim-
gave indications for the existence of “moving pairs” with a plicity we neglect here also the hard-core property of bosons,
certain phase slippage aboVe. These facts together with which is justified as long as the concentration of bosons is
the peak-dip-hump structure found by angle-resolved photosmall.
emission spectroscof}(ARPES acquire here a natural ex-
planation within precursor phenomena which are intrinsic to
the BFM or similar scenarios, accounting for strong pair
fluctuations. A. Generalities
On a more general basis, the BFM is often believed to

: : We apply a canonical transformatio®l) in order to
capture essential aspects of the crossover physics betwegfi]minate the interaction between the boson and fermion sub-
weakly coupled and strongly paired lattice electrdns.

. . . . systems. This transformation will be carried out in a continu-
Various unconventional properties of the superconductin y

state have been investigated within this model by sever us way(l denotes the continuoutow parametey so that

groupst®-16Several authors concluded according to phenomaE e transformed Hamiltoniahi())=e%"He™*" reduces to a

enological consideratios!® that the BFM can serve as an manageable form for further analysis. The more generally

effective model for the description of quasi-two—dimensionallt(nOWn Crll‘f"sﬁ'cal ?lngle-st'(fr;]) transfct)rtrnanon prolectts gu'i'the
strongly correlated cuprate superconductérs. erms which are linear with respect to a given perturbation.

The crossover issue and the BEM turned out to be ot(-|ere we demand much more stringent constraints on a trans-
particular interest also in atomic physi&22where a reso- ormed Hamiltonian going beyond such a standard perturba-

nant Feshbach scattering is induced between trapped alkam/e scheme.. . . .
atoms. such a&% or 6Li.g By applying external mggnetic The evolution of the Hamiltoniahi(l) with respect to the

fields the effective interaction between atoms can be varietf&™Y'N9 ﬂ.OW parametef is determined through the differen-

from the weak(BCS) to the strong couplingBE) limits. tial equation

Under optimal conditions eesonant superconductivitg ex- dH()/dl = [ 5(1),H(1)], 2)

pected to arise af,~ 0.5T¢,2? which is presently routinely

observed in several research laboratotfehis very general subject to the initial conditiofi(0)=H. A generating opera-

scenario of the Feshbach resonance can be theoretically eter is defined byz(l) = (de"/dl)e 0.

pressed via the BFM, as was recently shown by one dfus. In principle, one can transform the Hamiltonian in many
It has been frequently stressed in the literad(r@that a  different ways by choosing various operatos8) [or S(1)].

self-consistent and conserving treatment of single-particl&ome particularly efficient schemes have been proposed by

and pair correlations has a crucial importance for the descripAVegnef® and independently by Wilson and GtaZgkjoing

tion of the HTS cuprates. In this paper we study the mutuaback to the RG approach ide#sThrough a continuous

interdependence between such single- and two-particle propransformation of the Hamiltonian one effectively renormal-

erties(paying special attention to the precursor featutes  izes itscoupling constantsvhile keeping a given constrained

Il. METHOD
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structure. In other words, the parameters of the Hamiltonian air 1 -
such as the energies, the two-body potentials and so on are GP(q,7) = @E (e (7)Cqk1(7);CqpiCp - (10)
assumed to bédependent. kp

In some distinction from the RG approach one does note will next investigate the structure of these spectral func-
integrate out the high-energy states, but instead they anmgons and discuss their related physical properties.
renormalized in the initial part of the transformation util
~(Ag)™2.32 Subsequently, states with small energy differ-
ences start to be renormalized and finally, fer «, the
transformed HamiltonianH(>) eventually reduces to a A. Flow of the boson operators

(block-ydiagonal strugturé? In our previous work® we have In the course of such a continuous transformation, the
derived such a continuous canonical transformation for thenitial boson operatobq becomes convoluted fdr>0 with

BFM. Some details which are important for the present worke fermion-paiCooperoi operator. This can be seen from
are summerized in Appendix A. the 1=0 derivative

IIl. BOSONS AND COOPERONS

B. Dynamical quantities

dby _ -1
In this work we focus on determining thermal equilibrium d ~ [7(0),bg]= \ﬁ% k(00 Cqrtcr- - (1D)

Green’s functions of the form
Physically this means that while disentangling the boson

((01(7);02)) = =(T,04(7)Oy), (3 from fermion subsystem we obtain some new quasiparticles
made out of the initial bosons and cooperdgiike in the
BCS theory where the quasiparticles are composed of elec-
trons and holes

Guided by the structure of Eq1l) it is judicious to
choose the following superposition for thelependent boson
operator:

where the time evolution of the operators is given®fr)
=eMOe ™, with 7e(0,8) and B=1/kgT. As usual,7 de-
notes ordering with respect to the imaginary timweit.

The computation of the thermal average§--)
=Tr{ePH---}/Tr{e P} is easiest to carry out using the trans-
formed HamiltonianH(«~) because of itgblock-)diagonal
structure. Due to the invariance of the trace under the unitary _ 1
transformation, we can write ba(1) = Aq(Dbg + \_ﬁg Ba k()¢ Cq-x1» (12)

-BHOY = TrfeSDaBHOa S = Tfa-BH() . .
Tr{e#"'0} = T{e™e™M0oe ™V} = Trie™Vo()},  (4) whereAy(l) andBg (1) are some complex functions with the
whereO(1)=eSV0e SV, Hence, if we want to use the trans- initial condition A,(0)=1 and B, ,(0)=0. Substituting Eq.

formed HamiltoniarH(I =) in the Boltzmann factoe ", (12) into the flow equatior{5) we obtain

we ought to transform the observal@detoo. For the continu- dA (1) 1

ous transformation this is, however, a nontrivial problem be- A = a-k(DFi gk Bq k(D). (13)

cause, in order to gedD(«), one must analyze the whole dl N° ’ '

transformation process. The evolution of the arbitrary ob-

servableO(l) with respect td must be deduced on a basis of dBq k()

the differential equation T ay q-k(DAg(1), (14)
do(h/di=[(1),00]. (5 where we introduced the shorthand notation

For the HamiltoniarO=H it thus is given by Eq(2) which fp=1 ‘nEl i (15)

was already discussed previously byur this model. P

In the next sections we study tHedependence of the From Egs.(13) and(14) we notice the invariance
individual boson and fermion operators and fermion-pair op- 1
e_rators. By Iooklng at the limit— oo, we shall derive effec- IAq(I)|2+ _2 |Bq,k(|)|2fk,q—k =1, (16)
tive spectral functions N“

i 1 i which guarantees that the commutation relations between the
F,B,pair P F,B,pair
A (k, ) T Im G (k, ), 6) I-dependent boson operat({t@(l),bg(l)]=8q,p are correctly
— (Bt . . , preserved.
Where, G(k,w)=[od7e™G(k,7) with the single-particle The parametrizatio12) which follows from the flow
Green'’s functions equation(5) for the operatoib(1) yields the boson spectral
G®(d,7) = ((bg(D);b), (7)  function (6):
~ 1
Gh(k, ) = (o (7)icf)), 8) A(q,0) = | Aq()*8w - Bg) + N% fic g-kIBax ()
Gk, 1) = ((Ciey(7) 56k ))), 9 X 3w =8 —8qk)- (17
and the two-particle pair propagator given by The first term in Eq(17) describes the coherent part of the
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FIG. 1. The boson spectral functigk®(q=0, ) for three rep-
resentative temperaturesT=0.02>T* (top), T=0.007<T*
(middle), and the ground-state superconducting phs® (bot-
tom). The BFM parameters amg,=1, v=0.1, andAg=-0.6 (ener-
gies are expressed in units of the initial fermion bandwidts 1).
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single-particle fermion spectrugmiddle pane), and the su-
perconducting state at=0 (bottom panel In this paper we
have chosen the same set of parameters as preVidusleg.,
Ag=0.4,n=1, v=0.1—such that the temperature at which
the pseudogap begins to open up is roughty~0.1.

Our study of the superconducting phagellowing the
previous work® is based on a three-dimensional system
with a BCS type of approach, as far as the fermionic sub-
systems is concerned, and a BE condensation approach for
free bosons, as far as the bosonic subsystem is concerned.
We notice that in this phase there is a perfect separation of
the coherent partdescribing the long-lived quasiparticjes
from the incoherent part of the spectrum. Moreoyay,the
coherent peak is pinned at=0, allowing for a macroscopic
occupancy of the zero-momentum state by a certain fraction
n ~qOf the BE condensed bosons, giwithe incoherent part

%:C(q_,w) exists only outside an energy windog@qual to
2v\ng,4as will be explained in Sec. IV D Owing to such
behavior, the condensed bosons are not damped and they are
able to establish a long-range order parameter in the boson
subsystem. On the other hand, in the normal phase aBove
the coherent and incoherent parts overlap with each other
and consequently the boson quasiparticles are damped. This
damping is caused by some very reduced remanent interbo-
son interaction of the order ef*, which arises in this renor-
malization proceduré

boson spectral function corresponding to the long-lived qua- The pseudogap phagmiddie panel of Fig. Lrepresents
siparticles with renormalized enerdy,. The second contri- some intermediate situation, where we notice that the inco-
bution describes some incoherent background of the bosaferent background is partly pushed away from the coherent
spectral function which represents the states of a relativelpeak. Thus the zero-momentum bosons start to emerge as

short lifetime.
We solve the flow equationgl3) and (14) fully self-

better and better quasiparticles upon approacHindgrom
above. Yet the zero-momentum boson state is macroscopi-

consistently, applying a numerical procedure based on thgyly occupied only below..

Runge-Kutta algorithm. For any value lofve discretized the

In the BFM there is a strict relation between the single-

coefficientsAq(l) and B, (1) using a mesh of 4000 equidis- particle boson and fermion-pair excitation spedsae Egs.

tant points for representing the vectdsandq in the Bril-

(24) and(25) in the next sectioh By inspecting Fig. and

louin zone. Due to computational limitations, we restrict our-gig. 3 presented belowwe conclude that zero-momentum
selves to a bare one-dimensional tight-binding dispersiofermion pairs gradually emerge in the pseudogap phase
ex(I=0)=-2t cogk.a) and throughout this paper use the (T+ >T). Upon lowering the temperature, the surrounding
bandwidthD=4t as a unit for energies and for the tempera-incoherent background fades away and thus effectively leads

ture. Starting from the initial valugl,(0)=1 thel-dependent
coefficients are calculated via the schemg(l +dl)=Aq(l)
+0l dAq()/dl, where the derivative is given in EGL3). The

to increase of the lifetime of the zero-momentum bosons and
fermion pairs. FoIT<T,, these entities acquire an infinite
lifetime. Experiments, sensitive to the short-lived Cooper

coefficients, () are determined in the same way. Since thepairs, should be able to detect their presence afgv&his

renormalizations of both these coefficiefigs well as other
quantities such as energieg(l), E4(l) and boson-fermion

type of a precursor phenomenon was indeed observed for the
HTS cuprates using the alternating magnetic fields in the

couplinguy ,(1)] occur at the initial steps of the transforma- terahertz frequencies regirfé residual Meissner effect was

tion procedure, we adjust the incremetitin the following
way: 8=0.01 (for I<5), 81=0.1 (for 5<I<10?), 8=1.0
(for 10°<1=<10%), and 81 =10 (for 10*<|=<10%, where both
| and 8l are expressed in uni®~2. The asymptotiqfixed)
points are obtained already arouhg 500 but the transfor-

seen there up to nearly 25 K above the transition temperature
T, and which is an indication that propagating fermion pairs
exist there on a corresponding short-time scale.

In Fig. 2 we compare the boson spectral functditq, w)
for several momentaj=|q| at two different temperatures:

mation procedure is continued up to a good convergence-above (column on the left and belowT* (column on the

ie.,l=10"

right). We notice that at finite momenta there is is a qualita-

Figure 1 shows the results obtained numerically for thetive difference between these spectra. At temperaflire3*

single-particle boson spectral functid®(q, ) in the long-

the coherent peak is always covered by the incoherent back-

wavelength limitg=0. We illustrate three distinct situations ground, signaling that these components are convoluted with

corresponding to the normal phase abd%etop pane), the

each other. On the contrary, at temperatures beldwthe

normal phase with the pseudogap structure present in theoherent boson peak separates from the incoherent states.
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3 ] d 1
 g/n=0 k q/n=0 _ T S A Oy (18)
. . . \ . In accordance with the previous substitutid®) we propose
_F 1 - the ansatz
2| 0.01 }IL 0.01 13 .
= , g S = =2 My q()Gy Cqui + Ng(Dbg,  (19)
< < W
F 1 ] with the initial conditionsM,,(0)=1 and\,(0)=0. After
 0.05 K 0.05 L substituting the expressiqi9) into Eq.(5) we get
———— dM g ()
: . ; i . — = ag gk (DNG(D), (20)
\E 4 dl
o5 0.10 0.10 {os (I)
0 e e 0 | E e qcDfegiMal).  (21)
~0s 02 0 02 0z 0 o2 -03
' () ' ()] We recognize that the flow equatiof20) and(21) for the

unknown coefficientsMy (1) and Ny(l) have a structure
identical to that given by Eq$13) and(14). There is only a
difference in the initial conditions which in this case lead to
the invariance

FIG. 2. Variation of the boson spectral functiéf(q,») with
respect to changing momentuny at high temperatureT
=0.02>T* (panels on the left-hand sigand low temperaturd
=0.004 (panels on the right-hand sidecorresponding to the
pseudogap regiof* >T>T.. The lattice constant is taken as a 1
unita=1. N2+ NE fr gk Mar(D]?=1-ne. (22)

k

Such a splitting off is very sensitive to moderate temperaturén the right-hand sideRHS) of Eq. (22) we made use of the
changes and—for example, @t=0.004—occurs above a property thatN™=, f, o =1-ng, wherens=N"1%, nf de-
critical momentumg;;=0.01X 7/a. This critical value de- notes the total concentration of fermions. Equati@g) as-
creases with decreasing temperature and firglly(T.;) — 0. sures the proper statistical relatlon between the Cooperon
We thus see that for momenta> qe(T) the coherent boson operatorgS; (1), §;(1)]=N" (1 ~c]_;Cq-i; —Cf G ), which
states, representing the long-lived propagating modes, aan be approximated by thenumber=1- —NE.
not scattered by the incoherent background. With the ansatz19) and using its Hermitian conjugate
Our finding that under certain conditions the boson peal&(l) we can now determine the two-particle fermion Green’s
becomes well separated from the background of incoherertinction GP"(k , 7) defined in Eq.(10). The corresponding
states AP (q,») means that in the pseudogap regimespectral function6) becomes
(T* >T>T,) the finite-momentum bosons are well-defined
quasiparticles with infinite lifetime. Since bosons are closely  APA(q, w) = IVy ()28 - Eq) +— 2 fi.g-kIMq K()[?
related to the fermion Cooper pairs, we further conclude that
for > qi:(T) there exist infinite-lifetime Cooperons above o~ ~
the transition temperatur€.. According to the Heisenberg X Ol = ok~ Fqk) 23
principle, experiments measuring the pair-pair correlationg’he Cooperon spectral function turns out to have a structure
restricted to a spatial distance smaller thix~1/q.(T)  similar to AB(q, w), expressed in Eq17). This is a general
(of the order of several lattice constanghould be able to feature of the BFM which, in particular, implies, that bosons
detect such fermion pairs. And indeed, such long-livedcondense simultaneously with the fermion pairs driven to
“moving” fermion pairs were observed up to very high tem- superconductivity®
peratures abové, by applying a thermal gradient and mea- We limit our quantitative discussion of the Cooperon
suring the Nernst coefficient in underdoped HTS matefials.spectral functiori23) by only presenting in Fig3 a distribu-
tion of the occupied coherent and incoherent states in the
long-wavelength limitg=0. Above T* almost all the Coop-
B. Flow of the Cooperon operators erons exist as incoherent objects. Upon decreasing the tem-
perature more and more incoherent pairs are converted into
We have seen in the previous section that the boson ogoherent ones. Yet because of their overlap with the incoher-
erators get mixed fof>0 with the fermion pair operators. ent background, the Cooper pairs can propagate only on a
Now we expect that, in turn, also the latter become convoshort-time scale.
luted with by during such a transformation. By calculating ~ The fact that the overall structure of the Cooperon spec-
the initial (I 0) derivative of the Cooperon operatogg tral function APa"(q,w) is to great extent similar to the
=N~ Ekcklcq _k; We obtain single-particle boson functioA®(q, ) is not surprising. Us-
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T=0.02 104 IV. FERMIONS
=z 1.0 _ A. Flow of the single-particle fermion operators
T ] . . . .
o 05} = Some aspects of the effective single-particle fermion ex-
1l c oo ; :
O o0 - o M citations were already discussed in our recent Létie
= T=0.007 1o = focused our discussion there on the single-particle fermion
5 ° 1 = spectrum for a narrow region around the Fermi surfkce
< « ~Kkg. We have shown that the pseudogap is accompanied by
05 the appearance of Bogoliubov-like branches. The shadow
'-:- 0 J - AV g ': part of these Bogoliubov modes is visible aboVg as a
| T=0.004 o1 | broad structure which narrows upon approachipgBelow
%m 1 %a: T. both branches become infinitely narrow, signaling that
== el — Bogoliubons become then the true, long-lived quasiparticles.
' This result is herewith confirmed from our present direct
O o =5 550 st_udy of the boson and fermion pair spectra, illustrated in
® 0 Figs. 1-3

In this section we would like to present a detailed deriva-
FIG. 3. The Cooperon occupancy [expw/kgT) tion of the diagonal and off-diagonal part;n a Nambu
-1]7'AP"(q, w) of the zero-momentum cohere(itHS panej and  spinor representatigrof the single-particle fermion Green’s
incoherentRHS panel states for three representative temperaturesunction. We will discuss the diagonal and off-diagonal parts
T=0.02(aboveT*) andT=0.007, 0.004belowT*). With lowering  studying their structure over the whole Brillouin zone above
temperature the _incoherent fermion pairs are converted into the cgyng belowT,.
herent quasiparticles. Let us briefly recapitulate the main properties of the fer-
mion operatorscl(, and ¢, resulting from the continuous
ing, for instance, the equation-of-motion technique for thecanonical transformation. At the initial stepe., for |=0)
Green’s functions one can prove the important idefiity their derivatives read

G®(q,®) = G§(q, ») + v?Gg(d, 0)GP¥(q, ) G(d, w), _do,
(24) di

where G5(q, w)=[w—Ag+2u]™ denotes the single-particle (26)
boson Green’s function of the naninteracting system. Bothhere the negative sign correspondsrte] and the positive
Green's functionsP*'(q, ) and G*(q, ) have thus com-  gjon 1 ;= | . The first term on the RHS of Eq26) shows
mon poles and their spectral functions are correspondinglyhat the fermion particles get mixed with the fermion holes.

b 1
= a—k,k(O)J_ECik,—a = E aq—k,k(o)chg—k,-w
VN VNg=0

related via The last term in Eq(26) corresponds tacatteringof fermi-
_ (0—Ag+2u)2 ons on bosons with finite momentum.
APA(q, ) = 2 AB(q, ). (25) As a consequence of E¢6) we imposed the following
v

parametrization of thé-dependent fermion operators:

For g=0, when the single-particle boson Green’s function 1
develops a pole ab=0, the two-particle Cooperon propaga- (D =Py + Rk(l)cfl<l + = > [pk,q(l)bgcqm
tor is characterized by the same pole—although with a dif- VNg=o
fere_nt W§|ght. Th|s_ a_qtomatlcally causes a d|ver_ger_10e of the + rk’q(”chg_kl]’ 27
static pair susceptibility and via the Thouless criterion leads
to the phase transition into a superconducting state. 1

We want to stress that all our conclusions concerning the ¢!, (1) = =R, (I)cy; + P(Dch | = —= 2 [y 4(Db{Cqus
evolution of the boson spectral functiok(q,») are also VNg+0
valid for AP3"(q, w). In particular, we emphasize that in the — ot (bS] (29)
pseudogap regiod* >T>T, there exist fermion Cooper kot /margk L
pairs. Fermion pairs with total zero momentum are convodn this case, the initial conditions redd(0)=1, R,(0)=0
luted with incoherent background states and therefore themnd py 4(0)=0, r 4(0)=0. As we have stated previously,
lifetime is finite. They can be detected experimentally onlyEgs. (27) and (28) generalize the standard Bogoliubov-
via some short-time impulses. On the other hand, long-lived/alatin transformatio#f in a twofold way:(a) the initial par-
fermion pairs can safely exist if their total momentum ex-ticle and hole operators are transformed into Cooperons
ceeds the critical valug>q.;(T). In this case correlations (Bogoliubon3 through a continuous transformation afig
between the fermion pairs can possibly extend over the spdhe scattering of finite-momentum Cooper pairs is addition-
tial distance up taAx~ 1/q.. A possibility to observe cor- ally taken into account via terms containing the coefficients
relations between the fermion pairs aboligover a short  p, o(I) andry 4(1).
spatial and temporal scale had been previously suggested by From Eg.(5) one can derive the set of differential equa-
Tchernyshyov! tions for a determination of thedependent coefficients ap-
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pearing in Eqgs(27) and(28). Because of their importance, Al (k,w) = P () Ry (%) 8w + 7, ) — 8w — 5y )]
for our further discussion we repeat them here again

1 ~
+ N > Pr,g(*)rk q()H{ @ + Eg = Eq4p)

dP(I) 1
= VEondck (R + 5 2 eyl a0
#0 = |~
. ‘* X[E + ] = O~ B + Bqu) [0+ 1,
X (g + 0k i), (29 (34
drR) _ 1 > which conserves the sum rufdwA(k ,»)=0. This func-
da VNeondt k(D Pill) = N -y quill) tion consists also of thé peaks and some fraction distrib-
a uted over a wide energy region. In what follows below we
><(ng’+ng+m)pk,q(l), (30 shall study the properties of the diagonal and off-diagonal
spectral functions in various temperature regions.
dpyq(D
a\ _
da - i grk(DRc(l), (32) B. Normal phase spectrum
Above the critical temperatur€, there is no boson con-
drigq) _ P (32) densaten® =0 and in such a case the flow equatig@s)
dil - Geak A and(32) become decoupled from Eg80) and(31). Conse-

quently the coefficient®,(I) andpy 4(1) do not change their
n2 . denotes the concentration of the BE condensed bosorisitial zero values—i.e.,
and nﬁz(babcp is the distribution of finite-momentung

#0 bosons. Equation&9)—32) properly preserve the fer- Rx() =0, peq(l)=0. (35
mionic anticommutation relation{i:kT(I),cm(l)’f}zék,p and
{Cko(l), Cpor (D}=0. This property(35) has a strong influence on both fermion

The single-particle fermion Green's function can be easilyspectral functions. The off-diagonal part identically vanishes
obtained in the limi — < when the fermions are no longer Agd(k,w)=0, which implies that abovd, there exists no
coupled to the boson subsysteny,(«2)=0. We have shown |ong-range order parameter in the fermion system.
previously that the diagonal part reads The spectral function of the diagonal part is described by

ALK, ) = [P()[28(0 = B) + [Ric(2) 28w + 54 L
1 - , _ Aﬁ(k,w):|Pk(oc)|25(w—5k)+N2 (ng +nfy)
+ ngo (nq + nq+kT)|pk,q(°°)| o+ Eq - 8q+k) q#0
1 5 X |rk,q(w)|25(w - Eq +Eq—k)- (36)
+ = E (I’lg + ng—ki)|rk,q(m)|25(w - Eq +Eq—k) . . .
Ng=o We thus have just one branch of long-lived fermion states
(33) described by the dispersid, and which can be obtained
from the renormalization scheme discussed by us in Ref. 25

and that it correctly satisfies the sum rqldef,(k,w):l. For a clear understanding of the _resulting Iow—engrgy physics
The spectral function Eq(33) consists of thes-function ~ We show the temperature evolution of this quantity in Fig. 4
peaks which represent the long-lived quasiparticles and a réogether with the corresponding spectral weigRj(>)[?.
maining incoherent backgroundf;, (k,w) of the damped Below a certain characteristic temperatde (in this case
fermion states. It should be mentioned that a similar resulf * ~0.1) we observe a tendency to form the pseudogap.
was obtained by Lannert, Fisher, and Sefttior the two- ~ Simultaneously there occurs a partial transfer of the spectral
dimensional Hubbard model with a fractionalized structure Weight from the quasiparticle peak to the incoherent back-
Those authors considered the spinon and chargon degrees@Pund stategsee the bottom panel of Fig).4 _
freedom coupled to &, gauge field. At low temperatures the ~ Such a transfer of the spectral weight is responsible for
spinons and chargons are confined. Their deconfinement bi® appearance of the Bogoliubov shadow band, as shown
comes possible at finite temperatures by overcoming the gdpom the self-consistent numerical calculations in Ref. 2. We
of “vison” excitations. From an analysis of the low-energy Will prove this result here analytically. When the temperature
excitations those authors derived the effective spectral func@Pproachesl, from above, bosons tend to_occupy macro-
tion for physical electrons which took exactly the same formscopically the lowest-lying states of energigg=0. These
as our result(33). Apart from a common structure of the states are spread over the momentum reffidss A with the
spectral functions, the remaining discussion and interpretaeutoff A being a fraction of the inverse lattice spaciag-

tion for both models are different. Since the boson occupancy of low momenta is much larger
The spectral function for the off-diagonal part of the fer- than the fermion populatiorﬁ_k, we can simplify Eq(36) to
mion Green'’s functio(c,;(7);c_,)) becomes the form
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FIG. 4. Dispersion of the effective single-particle fermion en-  FIG. 5. Diagonal part of the single-particle fermion spectral
ergys, for several temperaturgspper pangland spectral weights function (36) for a large part of the Brillouin zone af=0.007.
of the coherent and incoherent parts Tor0.02 and 0.004bottom  Vertical bars represent the coherent paft., (k,®) while the
pane). Momentum is expressed in unitsal/ shaded area correspondsA@mc(k,w). Besides only a close vicin-
ity of the Fermi surfacgéconsult Eq(38) or see Fig. 1 in Ref. xhis
Ag(k,w) _ |Pk(0°)|2§(w—5k) N |rk,q=o(°°)|2 spectral function is rather weakly affected by temperature.
energy regimaw; they exist even for momenta quite distant
from k. This result agrees well with previous studies based
on self-consistent perturbative thedsee the third reference
(37) of Ref. 15. The presence of the substantial incoherent back-
ground states might possibly be related to the experimental

F —N-L F 2 =
where Ad'”gid(k’_w)._N E‘Q‘an‘kl“'f*q(m.n Ho+eq _signal observed in the ARPES measurements for the HTS
—E,) represents a rigid background which is weakly sensicompoundg?

tive to varying temperature. Integrating over the small-
momentum boson statg¢whose energies are negligibkg, C. Long-lived quasiparticles belowT,
=0) we obtain a partly broadened peak with its maximum  gejow the critical temperaturd, there exists a finite

occurring atw=-¢,. This additional branch of fermion exci- 5mount of the BE condensed bosmﬁndi 0. This has im-
tations can well be fitted by the Lorentzian shape portant effects on the fermionic spectrum. Using the flow

B
n _ ~
X 2 J&(w e~ Eq) + Ag,rigid(k’w)’
lal=<A

nB _ o r equation method we have shown analytic&llfthat &
> Ho(w+E—Ey) = ———F—— (38) =sgre,—w(ex—w)?+v°nE,; In the superconducting
lal=<A 7 (0 +%)° + T

phase the effective dispersion is thus characterized by the

— B
with n® being the concentration of bosons. FBE T, Eq.  'U€ 9apAs(T) =v\Ngond ). _
(38) shrinks tol'—0. Similar Bogoliubov shadow bands _ For a finite condensate fractianf,,4 we can see from
were also indicated for the normal phase of the:0 Hub-  Eds.(30) and(31) that the coefficients?y andpy 4 become
bard model using the quantum Monte Carlo stutfiesd the finite too. The long-lived fermion excitations are then repre-
conserving diagrammatic treatment of Vilk and Tremby. Sented by the two sharp Bogoliubov branches
In our case the Bogoliubov-like branches are characterized ,r _ 2o~ 2 ~
by the pseudogap dispersiorgtshown here in Fig. 4. Adcorfk, @) = [Pi(e=)*8le = &) + [Ric(2) Folw + 2.
Above T, the shadow branctcorresponding to the—sigtis (39
broad as discussed in our L.et%er. . Similarly, the coherent part of the off-diagonal spectral func-
Far away from the Fermi surface the renormalized ener:;
. ~ tion (34) reads
gies are nearly equal to the bare valiégs ¢, — u. The long-
lived qqasipa_rticle contains, howe\_/er, only part of the spec- Agd,coh(k'w) =P (@) Ry () X [8w +Ey) — 8w —Ey)].
tral weight—i.e.,|Py()|?<1. In Fig. 5 we illustrate the (40)
coherent and incoherent contributions of the single-particle
fermion spectral functio36) in a large part of the Brillouin  Equations (39) and (40) resemble the BCS-type results
zone. The damped fermion states are spread over the largehich usually appear in mean-field studies of this
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model3-15Let us stress that in distinction to these we obtain - 1
here the total spectral weight engaged in the coherent partsto ~ Aodinc(K, @) == N 2 Prg(®) ()

be2 q#0

[Pue)2+ R ()2 < 1. (41 XL0G + M) S+ Eq = gu)
The rest of the weight is redistributed over the damped fer- —(nB+nf ) ow-Eq+3q)].  (47)
mionic states. This will be discussed separately in the next

It is instructive to consider first the incoherent spectral

section. functions (46) and (47) for the ground statel=0. Finite-
In order to show the correspondence of our present analy-

sis to the previous results for this BF model we prove inMomentum bo_sons havg,.o>0, ngh that all bosons are
Appendix B that upon neglecting the incoherent backgroung®ndensed ar=0 and we can pub;=0 for anyq+ 0. On

states of Eqs(33) and (34) one obtains exactly the usual the other hand, fermions occupy only the states below the
BCS coherence factors Fermi surface—i.en; = 6(=,)nt,.. Therefore, the first term

on the RHS of Eq(46) gives rise to the appearance of inco-

1 le = ul herent fermion states at negative energies. It can be written
PP = 5<1+ i )= 1-[R(=)2, (4D e d J
k

N 1 ~

B F I F 2 ~

Vn AbindK, 0 <0)== > NP ()2l + (Eq + [Equl)].

pk(oo)Rk(oo):_v?&‘;m‘, (43 inc N;, = Mok Pl atleqs

“ (48)

where &'F= (e, —n)?+A2. By neglecting the incoherent _ _
parts, the flow equation procedure reproduces exactly theimilarly, the last term in Eq(46), which corresponds to

standard mean-field equatidps® incoherent states at positive energies, becomes
t 1 gk~ M 'l F _1 F 2 =
o =5 1= e 2| | @a) Agndko>00= 0 3 I dw - Eq +Eq-d)
k B sq_k<0
B MF (49)
—_ UNcond gk . . . .

(Cok Chp) = 2 tan KT/ (45 The off-diagonal spectral functio@7) can be derived in the

k

same manner. From inspecting their structure we notice that
We shall generalize these equatigid) and(45) in the next (i) no damped fermion states are allowed to occur within the
section, taking into account the contribution from thesuperconducting energy gap windojw| <A, because

damped fermion states. |§q¢k| = Ag.and(ii) even outside the superconducting gap, in
a close vicinity of the coherence peal8®), there is a partial
D. Damped quasiparticles belowT, suppression of the damped fermion states due to fifjta

The finite-lifetime (dampeql states do participate in the EdS-(48) and(49). As shown in our earlier studi€s®the
fermionic excitation spectrum both aboteg as well as be- width of such a boson band is rather small and of the order
low it. Nevertheless, their presence does not spoil a long? /D. ) i
range coherent behavior between the fermion pairs which is Th€ incoherent fermion states can thus be formed only
necessary for superconductivity to occur. In Sec. Il we sawPutside the superconducting gép| > A and yet they are
that boson as well as the fermion pair spectra are charactelrongly suppressed over some small energy regubrthe

. o . = »5  orderv?/D from the coherence peaks
ized belowT, by long-lived collective modes witE, = |q, To summarize our results of the last two sections, we
which becomes separated from the surrounding background

of incoherent states by the gap g2 We show below that in C’o??gciI:((j:ﬁatrgittetrri]zeejlinngltﬁ_epzslcekrac;iroﬂc(z)t?n Spiﬁ;ﬂ.;%gtlon
the single-particle excitation spectrum the incoherent state(s P 9p

can exist only outside the gak,. around the Fermi energy. presence of narrow  quasiparticlepeaks at
e [ 22 . . .
The contribution from the dr:mped fermionic states is de—_iV(e"_"’“)ZJrASC’ (b) the partial suppression of the fermi-

scribed by the following part of the spectral functi(88): onic states very CIOS‘? to the coherence peaks, giying rise 1o
y gp P @8 the appearance of thip-like structure, andc) the existence

Afindk, 0) = Aj(K,w) = A7 (K,w) of a broad incoherent background spectrum with its flat
1 maximum (hump situated fairly away from the Fermi en-
==> [(ng + ngm) ergy. Upon increasing the temperature we expecdtbéike
Ng= structure to be gradually filled in via absorbing part of the

5 -~ B F spectral weight from the coherent Bogoliubov peaks. Our
X|py q()|*8l@ + Eq = Equi) + (Ng + Ngi|) expectation is motivated here by the fact that the spectral

2y T~ weights |Py(«)[?, |R()|? of the coherent peaks are very
X[Neq(=)*d@ = Eq +Eq-)] (46) sensitive to temperature because i, (T) appearing in
and, similarly in case of the off-diagonal functi¢g4), their flow equationg29) and(30).
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within the BF model(1). We investigated their interdepen-
dence occurring in the superconducting phase below the
critical temperature and in the pseudogap region abyve
Many-body effects were treated by means of the continuous
canonical transformatiéh originating from a general frame-
work of the renormalization group technigéfe.

We have earlier reportétithat, upon approaching, from
above, there is a partial suppression of the single-particle
fermion states near the Fermi enelgygeudogap Here, we
supplement this picture by showing that the pseudogap fea-
ture is accompanied by a subsequent emergence of the
fermion-pair properties. Such pairs can show up in the

FIG. 6. Schematic view of the single-particle fermion spectralpseudogap region as long-lived entities provided that their
function Aj(kg,0<0) in the ground state of the boson fermion total momentum is finite and larger than a certajg(T).
model. Energyw is expressed in units of the superconducting gapFor T— T, the critical momentum ig);=0; therefore, all

which is roughly scaled viag.=v\nS 4

Our theoretical prediction concerning the single-particle
spectrum of the superconducting phase is in qualitativ<.g
agreement with the experimental data known for the High-
underdoped cupratgsee Fig. §. The direct photoemission

spectroscopy probes the occupied spectréf(k,w)[1

+expw/ksgT)]™L. Photoemission measurements indeed r

vealed the appearance of suclpeak-dip-humgstructuret®

e

the fermion pairs become good quasiparticles. The zero-
momentum fermion pairs exist aboig only as the damped
objects because of their overlap with the incoherent back-
round. However, upon lowering the temperature such an
overlap gradually diminishes which effectively leads to an
increase in their lifetime.

Although aboveT, there exists no off-diagonal long-range
order (ODLRO) we predict nevertheless the possibility to
observe some ordering on a restricted spatial and temporal
scale. Experiments using terahertz frequericiid indeed

This issue has been so far interpreted in terms of the bSO, i the existence of preformed pairs in underdoped HTS

resonant mode to which the single-particle excitations are -:arials up to 25°
coupled. Several candidates have been proposed in the liter.

ture for such boson modé%:*’> The BF model(1) is an

abov@.. We moreover suspect that
Fnoving” fermion pairs(on the basis of our study expected
to have the infinite lifetimghave been observed in measure-

alternative scenario, where bosons represent nearly localizgflants of the Nernst coefficieht

electron pairs.

Concluding this discussion on the coherent and incohere

As far as the single-particle excitations are concerned we

rHrovided here the analytical arguments for the appearance of

single-particle spectra, let us stress that the expectation v

Bogoliubov-type bands in the pseudogap phase. Upon ap-
ues for the particle distributionlfg at arbitrary temperature g yp P gap p P P

proachingT, from above the shadow branch absorbs more

can be obtained by integrating over the expresg&3) after
having been multiplied by the Fermi Dirac functidi(x)
=(1+e’ksT)1—je.,

ne, = f ’ dwA](k,»)f(w). (50)

Similarly, the order parameter determined via E84) is

and more spectral weight and simultaneously narrows as was
previously indicated by us from the self-consistent numerical
study? Below T, the shadow branch shrinks to the usual
S-function peak and marks the appearance of infinite-lifetime
Cooperons. In distinction to the conventional BCS supercon-
ductors we find that the quasiparticle peaks occurring at
=+\/(g—w)?+AZ, become slightly separated from the rest

of the spectrum which is present in the form of a incoherent
background. This effectively leads to the formation of the
intriguing peak-dip-humpstructure which has been well
documented experimentally by ARPES measurements. In our
scenario such a structure is a consequence of the pair corre-
lations (see also the similar conclusion in Rej. 6

In a future study we plan take into consideration an an-
isotropic two-dimensional version of this model which is
more realistic for describing the HTS cuprates. The boson-
rfgrmion couplingv should then be appropriately factorized
l5y the d-wave form factor. Another important aspect which
has not been fully explored so far concerns the doping de-
pendence of the pseudogap and other related precursor fea-
tures discussed above. Such a study requires a proper treat-
ment of the hard-core nature of the local electron pairs,
which is an issue which is rather nontrivial. Preliminary re-
sults were so far obtained using a perturbative apprdach

In the present paper we studied the mutual relations beand from exact-diagonalization studésAs we realized, the
tween the single-particle and the pair excitation spectrarossover between the BCS type superconductivity and BE

given by

1
(Ciq ) = Pl Ricl)[L = @]+ 5 2 Pra()rial*)
q#0
XL + 1) TG = Bg) = (NG + N )
X (=g + Eg)]- (51)

which generalizes the mean-field equatigfb). Unfortu-
nately, at the present stage we are not able to solve nume
cally these equation&0) and (51) for some realistiad> 2
system whenT;>0. We will try to address this problem in
the future by applying some approximate treatment.

V. CONCLUSIONS
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condensation of preformed pairs was addressed by Eagles farmions approximated bii™ () :Ek,,EkcEUck(, with effec-
Ref. 45. tive energy
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APPENDIX A

In our previous work® we have derived the continuous APPENDIX B
canonical transformation for block diagonalization of the
BFM. The transformed Hamiltonian was constrained to the Neglecting the incoherent background states of the single-

structureH(I) =Ho(l) +Hin(l), where particle functionsAfj(k , ) andAF (k, ) is equivalent to the
assumption thap, ,(1)=0 andr, ,(1)=0. In such a case the
- t t : -
Ho(l) = kE (ek(1) = WS Co + 2 (Eq(l) = 21)b}bg flow equationg29) and(30) simplify to
T q
1 dP(l —
+ Nkz Us,p.a(1)ek €5, Cq Cusp-ar s (A1) oll(l( ) VB i (DR (1), (B1)
p.a
1
Hi() = —= (b, ceiCor + H.C). A2 dR (1) I
)= 52 kalDOpuciatyr +HE). (A2 = = Vgt 4 (DP). (82)

For eliminating H;(I) we follow an idea proposed by
Wegne?6 who showed tha‘[7 upon using 77(') We will now assume that both functioﬂ%ﬂ) ande(l) are

=[Ho(1),Hine(1)], one obtains lim...H;,(1)=0. In this case,  real(this requirement does not restrict the generality of our
considerations We rewrite Eq(B1) as
__ 1 T
7](') - \'_Nkzp ak,p(l)(bp+kaLCpT - HC), (A3) d,Pk(I) =
Y I 0) = Neong—k k(D dl (B3)

where oy p(1) =[x (1) +p(1) — Exip() Jvi p(1). All 1-dependent
parameters of the HamiltonigAl) and(A2) are determined ) ) . e )
via a set of the flow equationd6)«21) given in Ref. 25. and integrate both sides of E@3) in the I|m|tsf,=Q. Using
They are obtained from the operator equatidnby reducing the_Sum rule 10 of Ref. 2 we can substituf(l)

the higher-order interactions through normal orderitig- = V1-P%(l). Upon integration we get, for the LHS,
earization.

Since atl=c the bosons are no longer hybridized with 1= dP(l)
fermions, we essentially obtain theemjfree subsystems - m=‘ar00$ﬂ(wﬂ (B4)

with renormalized effective spectra. Only the fermion part
contains the long-range Coulomb interactidp, 4 which in hecause arce®, (0)]=0.

some cases can play an important role. For instance, in th X _
g=p channel one obtaiA$a resonant-type amplitude of the Integration of the RHS of E_c(B3) requires knowledge Of.
a_y k(1) for the superconducting phase. First, let us notice

potentialUy , ,() for e +&,=E,.. This corresponds to the . X
resonan(Feps?lbachscatteripng lgetween electrons when theirthat fro:n the general deflnltlc_m of this parameter we have
total energy is equal to energy of the bound gamrd-core oy () =2 ey (1)~ oy k(l). Using Eq.(43) of Ref. 25 we
boson.20 In the context of HTS such unusual scattering isC@n further write
also important, leading to the particle-hole asymmetry of the
low-energy spectrum both, in the pseudogap and supercon- v (Dl = - do_y k(1) (B5)
ducting phase¥t ok e () - pu]

One should remember that the amplitude of the induced
Coulomb potentially , (<) is finite for any channel. It was In the superconducting phase we can additionally make use
estimated to be residual, of the ord€t?® In the following  of the invariance shown in E¢51) of Ref. 25:
we will thus treat the transformed Hamiltonian

H(0) = HF(c0) + HB(e0) (A4) e = = 2V(ED2 -8, p2 (), (B6)

as Eomposed of two contributions~ from bosoh(«)  where +=sgfe,—u). By substituting Eqs(B5) and (B6)
:EqEqb];bq with their effective energye,=E,()-2u and  into the RHS of Eq(B4) we obtain
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e =0C
B dl I — \”ncBond I dv—k,k(l)
VNcond a—k,k( )=- —
0 2 Jizo &) -n
_ I_l\,/nB ° dv_y k
- /!lcond
2 v \'/(fy F)2 - n?onovgk,k
1 v\nB
T /
=+= ——arco<%’) . (B7)
212 &k

In the second line of EqB7) we applied the initial condition
v_kk(0)=v and also the final resuit () =0 when chang-
ing the integration variable frordl to dv_y (1).

By comparing the resultB4) and(B7) we obtain

r’ B
Uy ncond
EMF

F2 arcofPy(=)] = g - arco:{
k

), (B8)

PHYSICAL REVIEW B70, 184503(2004)

- ul
&'"

} =1-Ri(). (B9)

In this way we also know that the magnitude of the product
is |Pk(m)Rk(oo)|:v\/ﬁd/2§“{'F. Hence, assuming tha, (1)

is positive(in particular also fot =), then on a basis of the
flow equation (B2) we conclude thatR,(l)=-sgr(e

- )| Ry ()| and thus finally

B
UNNeond

Pr(©)Ry () = = T
k

(B10)

and by taking the cosine function on both sides, we get

2P2(00) — 1 =|ey — u|/ EF, which leads to the usual BCS co-
herence factors

This product(B10) enters the off-diagonal Green’s function
and in consequence yields Ed5) for the order parameter.
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