
Interplay between single-particle and collective features in the boson fermion model

T. Domański1,2 and J. Ranninger1

1Centre de Recherches sur les Très Basses Températures, CNRS, 38-042 Grenoble Cedex 9, France
2Institute of Physics, M. Curie Skłodowska University, 20-031 Lublin, Poland

(Received 17 February 2004; revised manuscript received 11 May 2004; published 9 November 2004)

We study the interplay between the single-particle and fermion-pair features in the boson fermion model,
both above and below the transition temperatureTc, using the flow equation method. Upon lowering the
temperature the single-particle fermionic spectral function(a) gradually develops a depletion of the low-energy
states(pseudogap) for T* .T.Tc and a true superconducting gap forT,Tc and (b) exhibits a considerable
transfer of spectral weight between the incoherent background and the narrow coherent peak(s) signifying
long-lived quasiparticle features. The Cooperon spectral function consists of ad-function peak, centered at the

renormalized boson energyv=Ẽq and a surrounding incoherent background which is spread over a wide
energy range. When the temperature approachesTc from above, this peak forq=0 moves tov=0, so that the
static pair susceptibility diverges(Thouless criterion for the broken symmetry phase transition). Upon decreas-
ing the temperature belowTc the Cooperon peak becomes the collective(Goldstone) mode Eq~ uqu in the
small-momentum region and simultaneously splits off from the incoherent background states which are ex-
pelled to the high-energy sectoruvuù2DscsTd. We discuss the smooth evolution of these features upon ap-
proachingTc from above and consider its feedback on the single-particle spectrum where a gradual formation
of damped Bogoliubov modes(aboveTc) is observed.
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I. INTRODUCTION

The boson fermion model(BFM) was initially invented
for a description of the conduction-band electrons coupled to
the lattice vibrations in the region of intermediate electron-
phonon coupling.1 The underlying physics emerges from the
assumption that in the crossover region the electrons exist
partly in the form of bound pairs(hard-core bosons) and
partly as quasifree particles(fermions). Many-body correla-
tions of such a two-component system are induced due to
charge exchange processes converting the fermion pairs into
the hard-core bosons and vice versa. The initially very heavy
bosons effectively increase their mobility and, at the critical
temperatureTc, undergo a Bose-Einstein(BE) condensation
while the fermions are simultaneously driven to a supercon-
ducting state.

Upon approachingTc from above there are several precur-
sor features of superfluidity and superconductivity showing
up in the system. In this paper we address these precursor
effects by means of a renormalization group scheme which is
outlined in some detail in Sec. II. We will show that,in the
pseudogap phasesT,T* d and in superconducting state
sT,Tcd, the single- and two-particle properties become
strongly interdependent. In the pseudogap phase this is seen,
for instance, through a gradual destruction of the single-
particle states(near the Fermi surface) which is accompanied
by a simultaneous emergence of fermion-pair features. Fer-
mion pairs with total zero momentum show up in the normal
state only as damped entities which propagate over a finite
time and/or spatial scales. However, we find that there is a
certain critical momentumqcritsTd above which fermion pairs
become long-lived quasiparticles(they become separated
from the incoherent background as discussed in Sec. III). At
the phase transitionqcritsTcd→0 and belowTc all the Coop-

erons become good quasiparticles. The appearance of fer-
mion pairs aboveTc affects the single-particle spectrum,
leading to the emergence of the Bogoliubov shadow
branches as has been recently discussed by us in Ref. 2.

Let us recall that the single-particle spectrum of classical
superconductors is gapped only for temperaturesT,Tc.
BCS theory predicts the quasiparticle dispersionEk

BCS

=sgns«k−mdÎs«k−md2+ uDscu2, where the excitation gapDsc
progressively increases for a lowering temperature. How-
ever, the total single-particle spectral function contains two
contributions uk

2dsv−Ek
BCSd+vk

2dsv+Ek
BCSd with the BCS

spectral weightsuk
2= 1

2f1+u«k−mu /Ek
BCSg=1−vk

2. The exis-
tence of these two branches signifies that near the Fermi
energy the true quasiparticles are mixtures of electron and
hole excitations. One peak occurring atv=Ek

BCScorresponds
to what is left of the single-particle state with initial energy
«k −m. The second branch, atv=−Ek

BCS, is a kind of mirror
reflection of the former and we will further call it theBogo-
liubov shadowbranch. The two-peak structure of the single-
particle spectral function is a direct consequence of the
BCS-type wave function3 and indeed it has been experimen-
tally confirmed for conventional and uncoventional
superconductors.4

Besides this single-particle feature there are also other
properties(showing up, e.g., in the Andreev reflection, Jo-
sephson tunneling, etc.) which unambiguously characterize
the new type of quasiparticles(Cooperons). A detailed study
of the pair propagation in superconductors has been investi-
gated by many authors. For instance, Thouless indicated that
the static pair susceptibility becomes divergent atTc in the
long-wavelength limit(this is now often used as a criterion
for transition temperature itself). Anderson, on the other
hand, explained that superconducting state breaks up the glo-
bal U(1) symmetry and hence there should emerge a gapless
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sound-wave branch(Goldstone mode) in the pair spectrum
which in the usual charged systems is pushed to the plasmon
frequencies.5 In this work we explore whether the spectral
function of the fermion-pair propagator shows anyCooperon
peaks(seen as narrow peaks which do not overlap with the
incoherent background) already aboveTc.

We expect that approachingTc there should be a smooth
evolution from the pseudogapped to the fully gapped single-
particle spectrum where the Bogoliubov features(caused by
the existence of the fermion pairs) are present below as well
as aboveTc. In the superconducting state, we moreover find
that the interdependence between the single- and two-particle
properties leads to the characteristic peak-dip-hump struc-
ture. Similar conclusions have recently been reached inde-
pendently by Pieriet al.6 although in a different theoretical
approach.

As has been widely emphasized by Uemura,7 there are a
number of very convincing experimental indications for pre-
cursor phenomena in the underdoped high-temperature su-
perconducting (HTS) cuprates. Whether the whole
pseudogap phase can be exclusively attributed to such pre-
cursor effects is still under debate. Nevertheless, for tempera-
tures sufficiently close toTc (in the underdoped samples) the
existence of fermion pairs, being correlated on a small spatial
and temporal scale, was confirmed by measurements of the
optical conductivity in the terahertz regime.8 On the other
hand, static experiments measuring the Nernst coefficient9

gave indications for the existence of “moving pairs” with a
certain phase slippage aboveTc. These facts together with
the peak-dip-hump structure found by angle-resolved photo-
emission spectroscopy10 (ARPES) acquire here a natural ex-
planation within precursor phenomena which are intrinsic to
the BFM or similar scenarios, accounting for strong pair
fluctuations.

On a more general basis, the BFM is often believed to
capture essential aspects of the crossover physics between
weakly coupled and strongly paired lattice electrons.11,12

Various unconventional properties of the superconducting
state have been investigated within this model by several
groups.13–16Several authors concluded according to phenom-
enological considerations17,18 that the BFM can serve as an
effective model for the description of quasi-two-dimensional
strongly correlated cuprate superconductors.19

The crossover issue and the BFM turned out to be of
particular interest also in atomic physics,20–22 where a reso-
nant Feshbach scattering is induced between trapped alkali
atoms, such as40K or 6Li. By applying external magnetic
fields the effective interaction between atoms can be varied
from the weak(BCS) to the strong coupling(BE) limits.
Under optimal conditions aresonant superconductivityis ex-
pected to arise atTc,0.5TF,22 which is presently routinely
observed in several research laboratories.23 This very general
scenario of the Feshbach resonance can be theoretically ex-
pressed via the BFM, as was recently shown by one of us.24

It has been frequently stressed in the literature27–29 that a
self-consistent and conserving treatment of single-particle
and pair correlations has a crucial importance for the descrip-
tion of the HTS cuprates. In this paper we study the mutual
interdependence between such single- and two-particle prop-
erties(paying special attention to the precursor features) by

extending our previous work25 based on theflow equation
method.26 Our former study focused on a diagonalization of
the Hamiltonian and determination of the renormalized fer-
mion and boson energies.25 In the present paper we derive
the Green’s functions(dynamic quantities) which determine
the propagation of single fermions, single bosons, and of
fermion pairs. From these functions we obtain the corre-
sponding excitation spectra. The methodological virtue of the
flow equations method is that, besides treating the single-
and two-particle entities on equal footing, it distinguishes
between the contribution of long-lived and damped quasipar-
ticles in the spectrum. The former are usually represented by
d-function peaks with a given spectral weight while the latter
are given in form of a broad incoherent background.

For our study we use the Hamiltonian1

H = o
k,s

s«k − mdcks
† cks + o

q
sDB − 2mdbq

†bq

+
v

ÎN
o
k,q

sbq
†cq−k↓ck↑ + H.c.d, s1d

where the operatorscks
† scksd refer to the creation(annihila-

tion) of fermions with energy«k andbq
† sbqd correspondingly

to bosons in localized statesDB. The boson-fermion coupling
v will be taken here as isotropic, although for real HTS sys-
tems it should be used with ad-wave prefactor.16–18For sim-
plicity we neglect here also the hard-core property of bosons,
which is justified as long as the concentration of bosons is
small.

II. METHOD

A. Generalities

We apply a canonical transformationSsld in order to
eliminate the interaction between the boson and fermion sub-
systems. This transformation will be carried out in a continu-
ous way(l denotes the continuousflow parameter) so that
the transformed HamiltonianHsld=eSsldHe−Ssld reduces to a
manageable form for further analysis. The more generally
known classical single-step transformation projects out the
terms which are linear with respect to a given perturbation.
Here we demand much more stringent constraints on a trans-
formed Hamiltonian going beyond such a standard perturba-
tive scheme.

The evolution of the HamiltonianHsld with respect to the
varying flow parameterl is determined through the differen-
tial equation

dHsld/dl = fhsld,Hsldg, s2d

subject to the initial conditionHs0d=H. A generating opera-
tor is defined byhsld;sdeSsld /dlde−Ssld.

In principle, one can transform the Hamiltonian in many
different ways by choosing various operatorshsld [or Ssld].
Some particularly efficient schemes have been proposed by
Wegner26 and independently by Wilson and Głazek30 going
back to the RG approach ideas.31 Through a continuous
transformation of the Hamiltonian one effectively renormal-
izes itscoupling constantswhile keeping a given constrained
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structure. In other words, the parameters of the Hamiltonian
such as the energies, the two-body potentials and so on are
assumed to bel dependent.

In some distinction from the RG approach one does not
integrate out the high-energy states, but instead they are
renormalized in the initial part of the transformation untill
,sD«d−2.32 Subsequently, states with small energy differ-
ences start to be renormalized and finally, forl →`, the
transformed HamiltonianHs`d eventually reduces to a
(block-)diagonal structure.33 In our previous work25 we have
derived such a continuous canonical transformation for the
BFM. Some details which are important for the present work
are summerized in Appendix A.

B. Dynamical quantities

In this work we focus on determining thermal equilibrium
Green’s functions of the form

kkO1std;O2ll = − kTtO1stdO2l, s3d

where the time evolution of the operators is given byOstd
=etHOe−tH, with tP k0,bl and b=1/kBT. As usual,T de-
notes ordering with respect to the imaginary timet= it.

The computation of the thermal averagesk¯l
=Trhe−bH

¯ j /Trhe−bHj is easiest to carry out using the trans-
formed HamiltonianHs`d because of its(block-)diagonal
structure. Due to the invariance of the trace under the unitary
transformation, we can write

Trhe−bHOj = TrheSslde−bHOe−Ssldj = Trhe−bHsldOsldj, s4d

whereOsld=eSsldOe−Ssld. Hence, if we want to use the trans-
formed HamiltonianHsl =`d in the Boltzmann factore−bHsld,
we ought to transform the observableO too. For the continu-
ous transformation this is, however, a nontrivial problem be-
cause, in order to getOs`d, one must analyze the whole
transformation process. The evolution of the arbitrary ob-
servableOsld with respect tol must be deduced on a basis of
the differential equation

dOsld/dl = fhsld,Osldg. s5d

For the HamiltonianO=H it thus is given by Eq.(2) which
was already discussed previously by us25 for this model.

In the next sections we study thel dependence of the
individual boson and fermion operators and fermion-pair op-
erators. By looking at the limitl →`, we shall derive effec-
tive spectral functions

AF,B,pairsk,vd = −
1

p
Im GF,B,pairsk,vd, s6d

where Gsk ,vd=e0
bdtetvGsk ,td with the single-particle

Green’s functions

GBsq,td = kkbqstd;bq
†ll, s7d

Gd
Fsk,td = kkck↑std;ck↑

† ll, s8d

God
F sk,td = kkck↑std;c−k↓ll, s9d

and the two-particle pair propagator given by

Gpairsq,td =
1

N2o
k,p

kkck↓stdcq−k↑std;cq−p↑
† cp↓

† ll. s10d

We will next investigate the structure of these spectral func-
tions and discuss their related physical properties.

III. BOSONS AND COOPERONS

A. Flow of the boson operators

In the course of such a continuous transformation, the
initial boson operatorbq becomes convoluted forl .0 with
the fermion-pair(Cooperon) operator. This can be seen from
the l =0 derivative

dbq

dl
= fhs0d,bqg =

1
ÎN

o
k

ak,q−ks0dck↓cq−k↑. s11d

Physically this means that while disentangling the boson
from fermion subsystem we obtain some new quasiparticles
made out of the initial bosons and cooperons(like in the
BCS theory where the quasiparticles are composed of elec-
trons and holes).

Guided by the structure of Eq.(11) it is judicious to
choose the following superposition for thel-dependent boson
operator:

bqsld = Aqsldbq +
1

ÎN
o
k

Bq,ksldck↓cq−k↑, s12d

whereAqsld andBq,ksld are some complex functions with the
initial condition Aqs0d=1 andBq,ks0d=0. Substituting Eq.
(12) into the flow equation(5) we obtain

dAqsld
dl

= −
1

N
o
k

ak,q−ksldfk,q−kBq,ksld, s13d

dBq,ksld
dl

= ak,q−ksldAqsld, s14d

where we introduced the shorthand notation

fk,p = 1 −nk↓
F − np↑

F . s15d

From Eqs.(13) and (14) we notice the invariance

uAqsldu2 +
1

N
o
k

uBq,ksldu2fk,q−k = 1, s16d

which guarantees that the commutation relations between the
l-dependent boson operatorsfbqsld ,bp

†sldg=dq,p are correctly
preserved.

The parametrization(12) which follows from the flow
equation(5) for the operatorbqsld yields the boson spectral
function (6):

ABsq,vd = uAqs`du2dsv − Ẽqd +
1

N
o
k

fk,q−kuBq,ks`du2

3dsv − «̃k − «̃q−kd. s17d

The first term in Eq.(17) describes the coherent part of the
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boson spectral function corresponding to the long-lived qua-
siparticles with renormalized energyẼq. The second contri-
bution describes some incoherent background of the boson
spectral function which represents the states of a relatively
short lifetime.

We solve the flow equations(13) and (14) fully self-
consistently, applying a numerical procedure based on the
Runge-Kutta algorithm. For any value ofl we discretized the
coefficientsAqsld andBq,ksld using a mesh of 4000 equidis-
tant points for representing the vectorsk andq in the Bril-
louin zone. Due to computational limitations, we restrict our-
selves to a bare one-dimensional tight-binding dispersion
«ksl =0d=−2t cosskxad and throughout this paper use the
bandwidthD=4t as a unit for energies and for the tempera-
ture. Starting from the initial valueAqs0d=1 thel-dependent
coefficients are calculated via the schemeAqsl +dld=Aqsld
+dl dAqsld /dl, where the derivative is given in Eq.(13). The
coefficientsBq,ksld are determined in the same way. Since the
renormalizations of both these coefficients[as well as other
quantities such as energies«ksld, Eqsld and boson-fermion
couplingvk,psld] occur at the initial steps of the transforma-
tion procedure, we adjust the incrementdl in the following
way: dl =0.01 (for l ø5), dl =0.1 (for 5, l ø102), dl =1.0
(for 102, l ø103), anddl =10 (for 103, l ø104), where both
l and dl are expressed in unitsD−2. The asymptotic(fixed)
points are obtained already aroundl .500 but the transfor-
mation procedure is continued up to a good convergence—
i.e., l =104.

Figure 1 shows the results obtained numerically for the
single-particle boson spectral functionABsq ,vd in the long-
wavelength limitq=0. We illustrate three distinct situations
corresponding to the normal phase aboveT* (top panel), the
normal phase with the pseudogap structure present in the

single-particle fermion spectrum(middle panel), and the su-
perconducting state atT=0 (bottom panel). In this paper we
have chosen the same set of parameters as previously25—i.e.,
DB=0.4, ntot=1, v=0.1—such that the temperature at which
the pseudogap begins to open up is roughlyT* ,0.1.

Our study of the superconducting phase(following the
previous work25) is based on a three-dimensional system
with a BCS type of approach, as far as the fermionic sub-
systems is concerned, and a BE condensation approach for
free bosons, as far as the bosonic subsystem is concerned.
We notice that in this phase there is a perfect separation of
the coherent part(describing the long-lived quasiparticles)
from the incoherent part of the spectrum. Moreover,(a) the
coherent peak is pinned atv=0, allowing for a macroscopic
occupancy of the zero-momentum state by a certain fraction
ncond

B of the BE condensed bosons, and(b) the incoherent part
Ainc

B sq ,vd exists only outside an energy window(equal to
2vÎncond

B as will be explained in Sec. IV D). Owing to such
behavior, the condensed bosons are not damped and they are
able to establish a long-range order parameter in the boson
subsystem. On the other hand, in the normal phase aboveT*
the coherent and incoherent parts overlap with each other
and consequently the boson quasiparticles are damped. This
damping is caused by some very reduced remanent interbo-
son interaction of the order ofv4, which arises in this renor-
malization procedure.25

The pseudogap phase(middle panel of Fig. 1) represents
some intermediate situation, where we notice that the inco-
herent background is partly pushed away from the coherent
peak. Thus the zero-momentum bosons start to emerge as
better and better quasiparticles upon approachingTc from
above. Yet the zero-momentum boson state is macroscopi-
cally occupied only belowTc.

In the BFM there is a strict relation between the single-
particle boson and fermion-pair excitation spectra[see Eqs.
(24) and(25) in the next section]. By inspecting Fig. 1(and
Fig. 3 presented below) we conclude that zero-momentum
fermion pairs gradually emerge in the pseudogap phase
sT* .Td. Upon lowering the temperature, the surrounding
incoherent background fades away and thus effectively leads
to increase of the lifetime of the zero-momentum bosons and
fermion pairs. ForT,Tc, these entities acquire an infinite
lifetime. Experiments, sensitive to the short-lived Cooper
pairs, should be able to detect their presence aboveTc. This
type of a precursor phenomenon was indeed observed for the
HTS cuprates using the alternating magnetic fields in the
terahertz frequencies regime.8 A residual Meissner effect was
seen there up to nearly 25 K above the transition temperature
Tc and which is an indication that propagating fermion pairs
exist there on a corresponding short-time scale.

In Fig. 2 we compare the boson spectral functionABsq ,vd
for several momentaq= uqu at two different temperatures:
above (column on the left) and belowT* (column on the
right). We notice that at finite momenta there is is a qualita-
tive difference between these spectra. At temperaturesT.T*
the coherent peak is always covered by the incoherent back-
ground, signaling that these components are convoluted with
each other. On the contrary, at temperatures belowT*, the
coherent boson peak separates from the incoherent states.

FIG. 1. The boson spectral functionABsq=0,vd for three rep-
resentative temperaturesT=0.02.T* (top), T=0.007,T*
(middle), and the ground-state superconducting phaseT=0 (bot-
tom). The BFM parameters arentot=1, v=0.1, andDB=−0.6 (ener-
gies are expressed in units of the initial fermion bandwidthD;1).
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Such a splitting off is very sensitive to moderate temperature
changes and—for example, atT=0.004—occurs above a
critical momentumqcrit .0.013p /a. This critical value de-
creases with decreasing temperature and finallyqcritsTcd→0.
We thus see that for momentaq.qcritsTd the coherent boson
states, representing the long-lived propagating modes, are
not scattered by the incoherent background.

Our finding that under certain conditions the boson peak
becomes well separated from the background of incoherent
states Ainc

B sq ,vd means that in the pseudogap regime
sT* .T.Tcd the finite-momentum bosons are well-defined
quasiparticles with infinite lifetime. Since bosons are closely
related to the fermion Cooper pairs, we further conclude that
for q.qcritsTd there exist infinite-lifetime Cooperons above
the transition temperatureTc. According to the Heisenberg
principle, experiments measuring the pair-pair correlations
restricted to a spatial distance smaller thanDx,1/qcritsTd
(of the order of several lattice constants) should be able to
detect such fermion pairs. And indeed, such long-lived
“moving” fermion pairs were observed up to very high tem-
peratures aboveTc by applying a thermal gradient and mea-
suring the Nernst coefficient in underdoped HTS materials.9

B. Flow of the Cooperon operators

We have seen in the previous section that the boson op-
erators get mixed forl .0 with the fermion pair operators.
Now we expect that, in turn, also the latter become convo-
luted with bq during such a transformation. By calculating
the initial sl =0d derivative of the Cooperon operatorsSq

−

;N−1okck↓cq−k↑ we obtain

dSq
−

dl
= −

1
ÎN

o
k

ak,q−ks0dfk,q−kbq. s18d

In accordance with the previous substitution(12) we propose
the ansatz

Sq
−sld =

1
ÎN

o
k

Mk,qsldck↓cq−k↑ + Nqsldbq, s19d

with the initial conditionsMq,ks0d=1 andNqs0d=0. After
substituting the expression(19) into Eq. (5) we get

dMq,ksld
dl

= ak,q−ksldNqsld, s20d

dNqsld
dl

= −
1

N
o
k

ak,q−ksldfk,q−kMq,ksld. s21d

We recognize that the flow equations(20) and(21) for the
unknown coefficientsMq,ksld and Nqsld have a structure
identical to that given by Eqs.(13) and(14). There is only a
difference in the initial conditions which in this case lead to
the invariance

uNqsldu2 +
1

N
o
k

fk,q−kuMq,ksldu2 = 1 −nF. s22d

On the right-hand side(RHS) of Eq. (22) we made use of the
property thatN−1ok fk,q−k =1−nF, wherenF=N−1ok,snks

F de-
notes the total concentration of fermions. Equation(22) as-
sures the proper statistical relation between the Cooperon
operatorsfSq

−sld ,Sq
+sldg=N−1oks1−cq−k↑

† cq−k↑−ck↓
† ck↓d, which

can be approximated by thec number.1−nF.
With the ansatz(19) and using its Hermitian conjugate

Sq
+sld we can now determine the two-particle fermion Green’s

function Gpairsk ,td defined in Eq.(10). The corresponding
spectral function(6) becomes

Apairsq,vd = uNqs`du2dsv − Ẽqd +
1

N
o
k

fk,q−kuMq,ks`du2

3dsv − «̃k − «̃q−kd. s23d

The Cooperon spectral function turns out to have a structure
similar to ABsq ,vd, expressed in Eq.(17). This is a general
feature of the BFM which, in particular, implies, that bosons
condense simultaneously with the fermion pairs driven to
superconductivity.35

We limit our quantitative discussion of the Cooperon
spectral function(23) by only presenting in Fig. 3 a distribu-
tion of the occupied coherent and incoherent states in the
long-wavelength limitq=0. Above T* almost all the Coop-
erons exist as incoherent objects. Upon decreasing the tem-
perature more and more incoherent pairs are converted into
coherent ones. Yet because of their overlap with the incoher-
ent background, the Cooper pairs can propagate only on a
short-time scale.

The fact that the overall structure of the Cooperon spec-
tral function Apairsq ,vd is to great extent similar to the
single-particle boson functionABsq ,vd is not surprising. Us-

FIG. 2. Variation of the boson spectral functionABsq ,vd with
respect to changing momentumq at high temperatureT
=0.02.T* (panels on the left-hand side) and low temperatureT
=0.004 (panels on the right-hand side) corresponding to the
pseudogap regionT* .T.Tc. The lattice constant is taken as a
unit a;1.
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ing, for instance, the equation-of-motion technique for the
Green’s functions one can prove the important identity35

GBsq,vd = G0
Bsq,vd + v2G0

Bsq,vdGpairsq,vdG0
Bsq,vd,

s24d

where G0
Bsq ,vd=fv−DB+2mg−1 denotes the single-particle

boson Green’s function of the noninteracting system. Both
Green’s functionsGpairsq ,vd and GBsq ,vd have thus com-
mon poles and their spectral functions are correspondingly
related via

Apairsq,vd =
sv − DB + 2md2

v2 ABsq,vd. s25d

For q=0, when the single-particle boson Green’s function
develops a pole atv=0, the two-particle Cooperon propaga-
tor is characterized by the same pole—although with a dif-
ferent weight. This automatically causes a divergence of the
static pair susceptibility and via the Thouless criterion leads
to the phase transition into a superconducting state.

We want to stress that all our conclusions concerning the
evolution of the boson spectral functionABsq ,vd are also
valid for Apairsq ,vd. In particular, we emphasize that in the
pseudogap regionT* .T.Tc there exist fermion Cooper
pairs. Fermion pairs with total zero momentum are convo-
luted with incoherent background states and therefore their
lifetime is finite. They can be detected experimentally only
via some short-time impulses. On the other hand, long-lived
fermion pairs can safely exist if their total momentum ex-
ceeds the critical valueq.qcritsTd. In this case correlations
between the fermion pairs can possibly extend over the spa-
tial distance up toDx,1/qcrit. A possibility to observe cor-
relations between the fermion pairs aboveTc over a short
spatial and temporal scale had been previously suggested by
Tchernyshyov.27

IV. FERMIONS

A. Flow of the single-particle fermion operators

Some aspects of the effective single-particle fermion ex-
citations were already discussed in our recent Letter.2 We
focused our discussion there on the single-particle fermion
spectrum for a narrow region around the Fermi surfacek
,kF. We have shown that the pseudogap is accompanied by
the appearance of Bogoliubov-like branches. The shadow
part of these Bogoliubov modes is visible aboveTc as a
broad structure which narrows upon approachingTc. Below
Tc both branches become infinitely narrow, signaling that
Bogoliubons become then the true, long-lived quasiparticles.
This result is herewith confirmed from our present direct
study of the boson and fermion pair spectra, illustrated in
Figs. 1–3

In this section we would like to present a detailed deriva-
tion of the diagonal and off-diagonal parts(in a Nambu
spinor representation) of the single-particle fermion Green’s
function. We will discuss the diagonal and off-diagonal parts
studying their structure over the whole Brillouin zone above
and belowTc.

Let us briefly recapitulate the main properties of the fer-
mion operatorscks

† and cks resulting from the continuous
canonical transformation. At the initial step(i.e., for l =0)
their derivatives read

7
dcks

dl
= a−k,ks0d

b0

ÎN
c−k,−s

† +
1

ÎN
o
qÞ0

aq−k,ks0dbqcq−k,−s
† ,

s26d

where the negative sign corresponds tos=↑ and the positive
sign to s=↓. The first term on the RHS of Eq.(26) shows
that the fermion particles get mixed with the fermion holes.
The last term in Eq.(26) corresponds toscatteringof fermi-
ons on bosons with finite momentum.

As a consequence of Eq.(26) we imposed the following
parametrization of thel-dependent fermion operators:

ck↑sld = Pksldck↑ + Rksldc−k↓
† +

1
ÎN

o
qÞ0

fpk,qsldbq
†cq+k↑

+ rk,qsldbqcq−k↓
† g, s27d

c−k↓
† sld = − Rk

* sldck↑ + Pk
* sldc−k↓

† −
1

ÎN
o
qÞ0

frk,q
* sldbq

†cq+k↑

− pk,q
* sldbqcq−k↓

† g. s28d

In this case, the initial conditions readPks0d=1, Rks0d=0
and pk,qs0d=0, rk,qs0d=0. As we have stated previously,2

Eqs. (27) and (28) generalize the standard Bogoliubov-
Valatin transformation36 in a twofold way:(a) the initial par-
ticle and hole operators are transformed into Cooperons
(Bogoliubons) through a continuous transformation and(b)
the scattering of finite-momentum Cooper pairs is addition-
ally taken into account via terms containing the coefficients
pk,qsld and rk,qsld.

From Eq.(5) one can derive the set of differential equa-
tions for a determination of thel-dependent coefficients ap-

FIG. 3. The Cooperon occupancy fexpsv /kBTd
−1g−1Apairsq ,vd of the zero-momentum coherent(LHS panel) and
incoherent(RHS panel) states for three representative temperatures
T=0.02(aboveT* ) andT=0.007, 0.004(belowT* ). With lowering
temperature the incoherent fermion pairs are converted into the co-
herent quasiparticles.
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pearing in Eqs.(27) and (28). Because of their importance,
for our further discussion we repeat them here again2:

dPksld
dl

= Încond
B a−k,ksldRksld +

1

N
o
qÞ0

aq−k,ksld

3snq
B + nq−k↓

F drk,qsld, s29d

dRksld
dl

= − Încond
B ak,−ksldPksld −

1

N
o
qÞ0

a−k,q+ksld

3snq
B + nq+k↑

F dpk,qsld, s30d

dpk,qsld
dl

= a−k,q+ksldRksld, s31d

drk,qsld
dl

= − ak,q−ksldPksld. s32d

ncond
B denotes the concentration of the BE condensed bosons

and nq
B;kbq

†bql is the distribution of finite-momentumq
Þ0 bosons. Equations(29)–(32) properly preserve the fer-
mionic anticommutation relationshck↑sld ,cp↑sld†j=dk,p and
hckssld ,cps8sldj=0.

The single-particle fermion Green’s function can be easily
obtained in the limitl →` when the fermions are no longer
coupled to the boson subsystemvk,ps`d=0. We have shown
previously2 that the diagonal part reads

Ad
Fsk,vd = uPks`du2dsv − «̃kd + uRks`du2dsv + «̃−kd

+
1

N
o
qÞ0

snq
B + nq+k↑

F dupk,qs`du2dsv + Ẽq − «̃q+kd

+
1

N
o
qÞ0

snq
B + nq−k↓

F durk,qs`du2dsv − Ẽq + «̃q−kd

s33d

and that it correctly satisfies the sum ruleedvAd
Fsk ,vd=1.

The spectral function Eq.(33) consists of thed-function
peaks which represent the long-lived quasiparticles and a re-
maining incoherent backgroundAd,inc

F sk ,vd of the damped
fermion states. It should be mentioned that a similar result
was obtained by Lannert, Fisher, and Senthil37 for the two-
dimensional Hubbard model with a fractionalized structure.
Those authors considered the spinon and chargon degrees of
freedom coupled to aZ2 gauge field. At low temperatures the
spinons and chargons are confined. Their deconfinement be-
comes possible at finite temperatures by overcoming the gap
of “vison” excitations. From an analysis of the low-energy
excitations those authors derived the effective spectral func-
tion for physical electrons which took exactly the same form
as our result(33). Apart from a common structure of the
spectral functions, the remaining discussion and interpreta-
tion for both models are different.

The spectral function for the off-diagonal part of the fer-
mion Green’s functionkkck↑std ;c−k↓ll becomes

Aod
F sk,vd = Pks`dRks`dfdsv + «̃kd − dsv − «̃kdg

+
1

N
o
qÞ0

pk,qs`drk,qs`dhdsv + Ẽq − «̃q+kd

3fnq
B + nq+k↑

F g − dsv − Ẽq + «̃q−kdfnq
B + nq−k↓

F gj,

s34d

which conserves the sum ruleedvAod
F sk ,vd=0. This func-

tion consists also of thed peaks and some fraction distrib-
uted over a wide energy region. In what follows below we
shall study the properties of the diagonal and off-diagonal
spectral functions in various temperature regions.

B. Normal phase spectrum

Above the critical temperatureTc there is no boson con-
densatencond

B =0 and in such a case the flow equations(29)
and(32) become decoupled from Eqs.(30) and(31). Conse-
quently the coefficientsRksld andpk,qsld do not change their
initial zero values—i.e.,

Rksld = 0, pk,qsld = 0. s35d

This property(35) has a strong influence on both fermion
spectral functions. The off-diagonal part identically vanishes
Aod

F sk ,vd=0, which implies that aboveTc there exists no
long-range order parameter in the fermion system.

The spectral function of the diagonal part is described by

Ad
Fsk,vd = uPks`du2dsv − «̃kd +

1

N
o
qÞ0

snq
B + nq−k↓

F d

3urk,qs`du2dsv − Ẽq + «̃q−kd. s36d

We thus have just one branch of long-lived fermion states
described by the dispersion«̃k and which can be obtained
from the renormalization scheme discussed by us in Ref. 25
For a clear understanding of the resulting low-energy physics
we show the temperature evolution of this quantity in Fig. 4
together with the corresponding spectral weightuPks`du2.
Below a certain characteristic temperatureT* (in this case
T* ,0.1) we observe a tendency to form the pseudogap.
Simultaneously there occurs a partial transfer of the spectral
weight from the quasiparticle peak to the incoherent back-
ground states(see the bottom panel of Fig. 4).

Such a transfer of the spectral weight is responsible for
the appearance of the Bogoliubov shadow band, as shown
from the self-consistent numerical calculations in Ref. 2. We
will prove this result here analytically. When the temperature
approachesTc from above, bosons tend to occupy macro-

scopically the lowest-lying states of energiesẼq.0. These
states are spread over the momentum regionuq u øL with the
cutoff L being a fraction of the inverse lattice spacinga−1.
Since the boson occupancy of low momenta is much larger
than the fermion populationnq−k

F , we can simplify Eq.(36) to
the form
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Ad
Fsk,vd . uPks`du2dsv − «̃kd + urk,q.0s`du2

3 o
uquøL

nq
B

N
dsv + «̃−k − Ẽqd + Ad,rigid

F sk,vd,

s37d

where Ad,rigid
F sk ,vd=N−1ouqu.Lnq−k↓

F u rk,qs`du2dsv+ «̃q−k

−Ẽqd represents a rigid background which is weakly sensi-
tive to varying temperature. Integrating over the small-

momentum boson states(whose energies are negligibleẼq
.0) we obtain a partly broadened peak with its maximum
occurring atv=−«̃k. This additional branch of fermion exci-
tations can well be fitted by the Lorentzian shape

o
uquøL

nq
B

N
dsv + «̃−k − Ẽqd .

nB

p

Gk

sv + «̃−kd2 + Gk
2 , s38d

with nB being the concentration of bosons. ForT,Tc, Eq.
(38) shrinks to G→0. Similar Bogoliubov shadow bands
were also indicated for the normal phase of theU,0 Hub-
bard model using the quantum Monte Carlo studies38 and the
conserving diagrammatic treatment of Vilk and Tremblay.39

In our case the Bogoliubov-like branches are characterized
by the pseudogap dispersion ±«̃k shown here in Fig. 4.
Above Tc the shadow branch(corresponding to the–sign) is
broad as discussed in our Letter.2

Far away from the Fermi surface the renormalized ener-
gies are nearly equal to the bare values«̃k =«k −m. The long-
lived quasiparticle contains, however, only part of the spec-
tral weight—i.e., uPks`du2,1. In Fig. 5 we illustrate the
coherent and incoherent contributions of the single-particle
fermion spectral function(36) in a large part of the Brillouin
zone. The damped fermion states are spread over the large

energy regimev; they exist even for momenta quite distant
from kF. This result agrees well with previous studies based
on self-consistent perturbative theory(see the third reference
of Ref. 15). The presence of the substantial incoherent back-
ground states might possibly be related to the experimental
signal observed in the ARPES measurements for the HTS
compounds.10

C. Long-lived quasiparticles belowTc

Below the critical temperatureTc there exists a finite
amount of the BE condensed bosonsncond

B Þ0. This has im-
portant effects on the fermionic spectrum. Using the flow
equation method we have shown analytically25 that «̃k

=sgns«k −mdÎs«k −md2+v2ncond
B . In the superconducting

phase the effective dispersion is thus characterized by the
true gapDscsTd=vÎncond

B sTd.
For a finite condensate fractionncond

B , we can see from
Eqs.(30) and (31) that the coefficientsRk andpk,q become
finite too. The long-lived fermion excitations are then repre-
sented by the two sharp Bogoliubov branches

Ad,coh
F sk,vd = uPks`du2dsv − «̃kd + uRks`du2dsv + «̃kd.

s39d

Similarly, the coherent part of the off-diagonal spectral func-
tion (34) reads

Aod,coh
F sk,vd = Pks`dRks`d 3 fdsv + «̃kd − dsv − «̃kdg.

s40d

Equations (39) and (40) resemble the BCS-type results
which usually appear in mean-field studies of this

FIG. 4. Dispersion of the effective single-particle fermion en-
ergy «̃k for several temperatures(upper panel) and spectral weights
of the coherent and incoherent parts forT=0.02 and 0.004(bottom
panel). Momentum is expressed in units 1/a.

FIG. 5. Diagonal part of the single-particle fermion spectral
function (36) for a large part of the Brillouin zone atT=0.007.
Vertical bars represent the coherent partAd,coh

F sk ,vd while the
shaded area corresponds toAd,inc

F sk ,vd. Besides only a close vicin-
ity of the Fermi surface[consult Eq.(38) or see Fig. 1 in Ref. 2] this
spectral function is rather weakly affected by temperature.
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model.13–15Let us stress that in distinction to these we obtain
here the total spectral weight engaged in the coherent parts to
be2

uPks`du2 + uRks`du2 , 1. s41d

The rest of the weight is redistributed over the damped fer-
mionic states. This will be discussed separately in the next
section.

In order to show the correspondence of our present analy-
sis to the previous results for this BF model we prove in
Appendix B that upon neglecting the incoherent background
states of Eqs.(33) and (34) one obtains exactly the usual
BCS coherence factors

uPks`du2 =
1

2
S1 +

u«k − mu
jk

MF D = 1 − uRks`du2, s42d

Pks`dRks`d = −
vÎncond

B

2jk
MF , s43d

where jk
MF=Îs«k −md2+Dsc

2 . By neglecting the incoherent
parts, the flow equation procedure reproduces exactly the
standard mean-field equations13–15

kck↑
† ck↑l =

1

2
F1 −

«k − m

jk
MF tanhS jk

MF

2kBT
DG , s44d

kc−k↓ck↑l = −
vncond

B

2jk
MF tanhS jk

MF

2kBT
D . s45d

We shall generalize these equations(44) and(45) in the next
section, taking into account the contribution from the
damped fermion states.

D. Damped quasiparticles belowTc

The finite-lifetime (damped) states do participate in the
fermionic excitation spectrum both aboveTc as well as be-
low it. Nevertheless, their presence does not spoil a long-
range coherent behavior between the fermion pairs which is
necessary for superconductivity to occur. In Sec. III we saw
that boson as well as the fermion pair spectra are character-

ized belowTc by long-lived collective modes withẼq~ uqu,25

which becomes separated from the surrounding background
of incoherent states by the gap 2Dsc. We show below that in
the single-particle excitation spectrum the incoherent states
can exist only outside the gapDsc around the Fermi energy.

The contribution from the damped fermionic states is de-
scribed by the following part of the spectral function(33):

Ad,inc
F sk,vd = Ad

Fsk,vd − Ad,coh
F sk,vd

=
1

N
o
qÞ0

fsnq
B + nq+k↑

F d

3upk,qs`du2dsv + Ẽq − «̃q+kd + snq
B + nq−k↓

F d

3urk,qs`du2dsv − Ẽq + «̃q−kdg s46d

and, similarly in case of the off-diagonal function(34),

Aod,inc
F sk,vd = −

1

N
o
qÞ0

pk,qs`drk,qs`d

3fsnq
B + nq+k↑

F ddsv + Ẽq − «̃q+kd

− snq
B + nq−k↓

F ddsv − Ẽq + «̃q−kdg. s47d

It is instructive to consider first the incoherent spectral
functions (46) and (47) for the ground stateT=0. Finite-

momentum bosons haveẼqÞ0.0, such that all bosons are
condensed atT=0 and we can putnq

B=0 for anyqÞ0. On
the other hand, fermions occupy only the states below the
Fermi surface—i.e.,nks

F =us−«̃kdnks
F . Therefore, the first term

on the RHS of Eq.(46) gives rise to the appearance of inco-
herent fermion states at negative energies. It can be written
as

Ad,inc
F sk,v , 0d =

1

N
o

«̃q+k,0

nq+k↑
F upk,qs`du2dfv + sẼq + u«̃q+kudg.

s48d

Similarly, the last term in Eq.(46), which corresponds to
incoherent states at positive energies, becomes

Ad,inc
F sk,v . 0d =

1

N
o

«̃q−k,0

nq−k↓
F urk,qs`du2dfv − sẼq + u«̃q−kudg.

s49d

The off-diagonal spectral function(47) can be derived in the
same manner. From inspecting their structure we notice that
(i) no damped fermion states are allowed to occur within the
superconducting energy gap windowuvuøDsc because
u«̃q±kuùDsc and(ii ) even outside the superconducting gap, in
a close vicinity of the coherence peaks(39), there is a partial

suppression of the damped fermion states due to finiteẼq in
Eqs. (48) and (49). As shown in our earlier studies15,25 the
width of such a boson band is rather small and of the order
v2/D.

The incoherent fermion states can thus be formed only
outside the superconducting gapuvu.Dsc and yet they are
strongly suppressed over some small energy region(of the
orderv2/D from the coherence peaks).

To summarize our results of the last two sections, we
conclude that the single-particle fermion spectral function
(33) is characterized in the superconducting phase by(a) the
presence of narrow quasiparticlepeaks at v
= ±Îs«k −md2+Dsc

2 , (b) the partial suppression of the fermi-
onic states very close to the coherence peaks, giving rise to
the appearance of thedip-like structure, and(c) the existence
of a broad incoherent background spectrum with its flat
maximum (hump) situated fairly away from the Fermi en-
ergy. Upon increasing the temperature we expect thedip-like
structure to be gradually filled in via absorbing part of the
spectral weight from the coherent Bogoliubov peaks. Our
expectation is motivated here by the fact that the spectral
weights uPks`du2, uRks`du2 of the coherent peaks are very
sensitive to temperature because ofncond

B sTd appearing in
their flow equations(29) and (30).
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Our theoretical prediction concerning the single-particle
spectrum of the superconducting phase is in qualitative
agreement with the experimental data known for the high-Tc
underdoped cuprates(see Fig. 6). The direct photoemission
spectroscopy probes the occupied spectrumAFsk ,vdf1
+expsv /kBTdg−1. Photoemission measurements indeed re-
vealed the appearance of such apeak-dip-humpstructure.10

This issue has been so far interpreted in terms of the boson
resonant mode to which the single-particle excitations are
coupled. Several candidates have been proposed in the litera-
ture for such boson modes.40–42 The BF model(1) is an
alternative scenario, where bosons represent nearly localized
electron pairs.

Concluding this discussion on the coherent and incoherent
single-particle spectra, let us stress that the expectation val-
ues for the particle distributionnks

F at arbitrary temperature
can be obtained by integrating over the expression(33) after
having been multiplied by the Fermi Dirac functionfsxd
=s1+ex/kBTd−1—i.e.,

nks
F =E

−`

`

dvAd
Fsk,vdfsvd. s50d

Similarly, the order parameter determined via Eq.(34) is
given by

kc−k↓ck↑l = Pks`dRks`df1 − 2fs«̃kdg +
1

N
o
qÞ0

pk,qs`drk,qs`d

3fsnq
B + nq+k↑

F dfs«̃q+k − Ẽqd − snq
B + nq−k↓

F d

3fs− «̃q−k + Ẽqdg. s51d

which generalizes the mean-field equation(45). Unfortu-
nately, at the present stage we are not able to solve numeri-
cally these equations(50) and (51) for some realisticd.2
system whenTc.0. We will try to address this problem in
the future by applying some approximate treatment.

V. CONCLUSIONS

In the present paper we studied the mutual relations be-
tween the single-particle and the pair excitation spectra

within the BF model(1). We investigated their interdepen-
dence occurring in the superconducting phase below the
critical temperature and in the pseudogap region aboveTc.
Many-body effects were treated by means of the continuous
canonical transformation26 originating from a general frame-
work of the renormalization group technique.31

We have earlier reported25 that, upon approachingTc from
above, there is a partial suppression of the single-particle
fermion states near the Fermi energy(pseudogap). Here, we
supplement this picture by showing that the pseudogap fea-
ture is accompanied by a subsequent emergence of the
fermion-pair properties. Such pairs can show up in the
pseudogap region as long-lived entities provided that their
total momentum is finite and larger than a certainqcritsTd.
For T→Tc the critical momentum isqcrit =0; therefore, all
the fermion pairs become good quasiparticles. The zero-
momentum fermion pairs exist aboveTc only as the damped
objects because of their overlap with the incoherent back-
ground. However, upon lowering the temperature such an
overlap gradually diminishes which effectively leads to an
increase in their lifetime.

Although aboveTc there exists no off-diagonal long-range
order (ODLRO) we predict nevertheless the possibility to
observe some ordering on a restricted spatial and temporal
scale. Experiments using terahertz frequencies8 did indeed
confirm the existence of preformed pairs in underdoped HTS
materials up to 25° aboveTc. We moreover suspect that
“moving” fermion pairs(on the basis of our study expected
to have the infinite lifetime) have been observed in measure-
ments of the Nernst coefficient.9

As far as the single-particle excitations are concerned we
provided here the analytical arguments for the appearance of
Bogoliubov-type bands in the pseudogap phase. Upon ap-
proachingTc from above the shadow branch absorbs more
and more spectral weight and simultaneously narrows as was
previously indicated by us from the self-consistent numerical
study.2 Below Tc, the shadow branch shrinks to the usual
d-function peak and marks the appearance of infinite-lifetime
Cooperons. In distinction to the conventional BCS supercon-
ductors we find that the quasiparticle peaks occurring atv
= ±Îs«k −md2+Dsc

2 become slightly separated from the rest
of the spectrum which is present in the form of a incoherent
background. This effectively leads to the formation of the
intriguing peak-dip-humpstructure which has been well
documented experimentally by ARPES measurements. In our
scenario such a structure is a consequence of the pair corre-
lations (see also the similar conclusion in Ref. 6).

In a future study we plan take into consideration an an-
isotropic two-dimensional version of this model which is
more realistic for describing the HTS cuprates. The boson-
fermion couplingv should then be appropriately factorized
by thed-wave form factor. Another important aspect which
has not been fully explored so far concerns the doping de-
pendence of the pseudogap and other related precursor fea-
tures discussed above. Such a study requires a proper treat-
ment of the hard-core nature of the local electron pairs,
which is an issue which is rather nontrivial. Preliminary re-
sults were so far obtained using a perturbative approach43

and from exact-diagonalization studies.44 As we realized, the
crossover between the BCS type superconductivity and BE

FIG. 6. Schematic view of the single-particle fermion spectral
function Ad

FskF ,v,0d in the ground state of the boson fermion
model. Energyv is expressed in units of the superconducting gap
which is roughly scaled viaDsc.vÎncond

B .
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condensation of preformed pairs was addressed by Eagles in
Ref. 45.
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APPENDIX A

In our previous work25 we have derived the continuous
canonical transformation for block diagonalization of the
BFM. The transformed Hamiltonian was constrained to the
structureHsld=H0sld+Hintsld, where

H0sld = o
k,s

s«ksld − mdcks
† cks + o

q
sEqsld − 2mdbq

†bq

+
1

N
o

k,p,q
Uk,p,qsldck↑

† cp↓
† cq↓ck+p−q↑, sA1d

Hintsld =
1

ÎN
o
k,p

vk,psldsbp+k
† ck↓cp↑ + H.c.d. sA2d

For eliminating Hintsld we follow an idea proposed by
Wegner26 who showed that, upon using hsld
=fH0sld ,Hintsldg, one obtains liml→`Hintsld=0. In this case,

hsld = −
1

ÎN
o
k,p

ak,psldsbp+k
† ck↓cp↑ − H.c.d, sA3d

whereak,psld=f«ksld+«psld−Ek+psldgvk,psld. All l-dependent
parameters of the Hamiltonian(A1) and(A2) are determined
via a set of the flow equations(16)–(21) given in Ref. 25.
They are obtained from the operator equation(2) by reducing
the higher-order interactions through normal ordering(lin-
earization).

Since atl =` the bosons are no longer hybridized with
fermions, we essentially obtain the(semi)free subsystems
with renormalized effective spectra. Only the fermion part
contains the long-range Coulomb interactionUk,p,q which in
some cases can play an important role. For instance, in the
q=p channel one obtains24 a resonant-type amplitude of the
potentialUk,p,ps`d for «k +«p=Ep+k. This corresponds to the
resonant(Feshbach) scattering between electrons when their
total energy is equal to energy of the bound pair(hard-core
boson).20 In the context of HTS such unusual scattering is
also important, leading to the particle-hole asymmetry of the
low-energy spectrum both, in the pseudogap and supercon-
ducting phases.34

One should remember that the amplitude of the induced
Coulomb potentialUk,p,qs`d is finite for any channel. It was
estimated to be residual, of the orderv2.25 In the following
we will thus treat the transformed Hamiltonian

Hs`d = HFs`d + HBs`d sA4d

as composed of two contributions from bosonsHBs`d
=oqẼqbq

†bq with their effective energyẼq;Eqs`d−2m and

fermions approximated byHFs`d.oks«̃kcks
† cks with effec-

tive energy

«̃k ; «ks`d − m +
1

N
o
p

Uk,p,ps`dnp,−s
F . sA5d

Here np,s
F =kcp,s

† cp,sl, where the spin is a dummy index
which will be kept throughout the remainder of this paper in
order to indicate the origin of such terms.

APPENDIX B

Neglecting the incoherent background states of the single-
particle functionsAd

Fsk ,vd andAod
F sk ,vd is equivalent to the

assumption thatpk,qsld=0 andrk,qsld=0. In such a case the
flow equations(29) and (30) simplify to

dPksld
dl

= Încond
B a−k,ksldRksld, sB1d

dRksld
dl

= − Încond
B ak,−ksldPksld. sB2d

We will now assume that both functionsPksld andRksld are
real (this requirement does not restrict the generality of our
considerations). We rewrite Eq.(B1) as

dPksld
Rksld

= Încond
B a−k,kslddl sB3d

and integrate both sides of Eq.(B3) in the limits el=0
l=`. Using

the sum rule 10 of Ref. 2 we can substituteRksld
=Î1−Pk

2sld. Upon integration we get, for the LHS,

E
l=0

l=` dPksld
Î1 − fPksldg2

= − arcosfPks`dg sB4d

because arcosfPks0dg=0.
Integration of the RHS of Eq.(B3) requires knowledge of

a−k,ksld for the superconducting phase. First, let us notice
that from the general definition of this parameter we have
a−k,ksld=2f«ksld−mgv−k,ksld. Using Eq.(43) of Ref. 25 we
can further write

v−k,kslddl = −
dv−k,ksld

4f«ksld − mg
. sB5d

In the superconducting phase we can additionally make use
of the invariance shown in Eq.(51) of Ref. 25:

«ksld − m = ± Îsjk
MFd2 − ncond

B v−k,k
2 sld, sB6d

where ±=sgns«k −md. By substituting Eqs.(B5) and (B6)
into the RHS of Eq.(B4) we obtain
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Încond
B E

0

`

dla−k,ksld = −
Încond

B

2
E

l=0

l=` dv−k,ksld
«ksld − m

=
71

2
Încond

B E
v

0 dv−k,k

Îsjk
MFd2 − ncond

B v−k,k
2

= ±
1

2
Fp

2
− arcosSvÎncond

B

jk
MF DG . sB7d

In the second line of Eq.(B7) we applied the initial condition
v−k,ks0d=v and also the final resultv−k,ks`d=0 when chang-
ing the integration variable fromdl to dv−k,ksld.

By comparing the results(B4) and (B7) we obtain

72 arcosfPks`dg =
p

2
− arcosSvÎncond

B

jk
MF D , sB8d

and by taking the cosine function on both sides, we get
2Pk

2s`d−1=u«k −mu /jk
MF, which leads to the usual BCS co-

herence factors

Pk
2s`d =

1

2
F1 +

u«k − mu
jk

MF G = 1 −Rk
2s`d. sB9d

In this way we also know that the magnitude of the product
is uPks`dRks`du=vÎncond

B /2jk
MF. Hence, assuming thatPksld

is positive(in particular also forl =`), then on a basis of the
flow equation (B2) we conclude that Rksld=−sgns«k
−mduRksldu and thus finally

Pks`dRks`d = −
vÎncond

B

2jk
MF . sB10d

This product(B10) enters the off-diagonal Green’s function
and in consequence yields Eq.(45) for the order parameter.
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