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The transport properties of various systems are studied here in the context
of three different models. These are: (i) the disordered Hubbard model ap-
plicable to correlated binary alloys with a general disorder, (ii) the Anderson
model used in describing the Kondo physics of a quantum dot connected to
the external superconducting leads, and (iii) the Ranninger-Robaszkiewicz
model applied to the study of optical properties of the system with pre-
formed electron pairs above the temperature of transition to the supercon-
ducting state. We calculate the density of states, specific heat, the Wilson
ratio and conductivity of the correlated binary alloy with off-diagonal disor-
der. We investigate the conditions under which the Kondo peak appears in
the density of states and in the conductance of a dot coupled to the exter-
nal superconducting leads. We analyze the effect of the pseudogap on the
optical spectra in the high temperature superconductors described by the
boson-fermion model.
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1. Introduction

The present paper discusses some issues relevant to very important issues of the
modern condensed matter physics. These are related to the study of thermodynamic
and transport properties of disordered alloys, the non-equilibrium transport of quan-
tum dots between the external leads as well as some aspects of the high temperature
superconductivity.

A number of heavy fermion and other correlated systems have been found with
the general chemical structure in the form of MA,B;_,. To describe their properties
it is vital to take into account the correlated character of carriers and the presence of
disorder. The interplay of disorder and the weak Coulomb interactions is of great im-
portance in the description of numerous properties of real systems. The subject has
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been studied from a viewpoint of the weak coupling theory [1] and it has been found
that renormalization procedure flows into the strong coupling regime. Therefor, we
start here from the strong correlation limit.

Coulomb interactions are also of primary importance in nano- and mesoscopic
systems which recently have become the subject of many studies due to their unusual
properties and foreseeable technological applications. The quantum dot we study in
section 3 is an example of such a system. Its importance lies both in the basic and in
the applied research. It is an example of quantum impurity [2] with the controllable
parameters. It permits to study the many body interactions in equilibrium and non-
equilibrium conditions [3]. The recent proposals [4] to use quantum dots as building
blocks of qubits (i.e., the elementary units of information in quantum computers)
together with the predicable control of their decoherence by the external voltage [5]
makes the subject even more interesting and worth studying.

The pseudogap phase of high temperature superconductors certainly belongs to
the most puzzling behaviors ever observed in the condensed matter physics. The suc-
cesses [6] of the boson fermion model, introduced by Ranninger and Robaszkiewicz
and later studied by others [7] in elucidating important aspects of the pseudogap
phase have encouraged us to look at its signatures in the transport properties. We
have found strong effect of the pseudogap on the optical spectra above T.

2. Strongly correlated alloys with off-diagonal disorder

Let us assume that disordered and correlated alloy can be adequately described
by the following Hubbard Hamiltonian

H = Z tijci cjo + Z Ucllcllcncn + Z W)CE Cig- (1)

ijo

Here t;; denote the hopping amplitudes for an electron to hop from site ¢ to j or vice
versa, c;- (¢iy) is the creation (annihilation) operator of a spin o electron at site 4, u
is a chemical potential and U denotes the energy cost when two electrons occupy the
same site. The site energies ¢; take on two values €4 or eg when site ¢ is occupied by
an A or B type electron i.e., we assume that the ideal crystal lattice is occupied at
random by two types of atoms: A with probability x and B with probability (1 —x).
Accordingly, the hopping integrals take on three values t 44, tagp = tga and tgp.
To treat the many body interactions of (1) the slave boson technique has been
introduced by Kotliar and Riickenstein [8] and used inter alia by Lavagna [9] to study
the Mott metal-insulator transition in clean system. To calculate the averages over
the disorder we use the coherent potential approximation (CPA) in its general version
[10] capable of treating the diagonal (random site energies) and off-diagonal disorder
(random hopping integrals). The present work generalizes our previous study [11,12]
of impure correlated materials. The general strategy is similar to that presented in
[12]. Instead of the electron operators ¢, ¢;, one introduces new fermion a;, (a;,) and
auxiliary boson creation €;, s}, d and annihilation e;, s,, d; operators. They take
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care of unoccupied states €] e;, singly occupied st s;,, and doubly occupied states
d}d;. Replacement is done accordlng to the followmg scheme

D = 10— siesatvac). @)
| i = ¢]0) — sjeia) [vac), (3)
[T = ¢i¢)]0) — df eiafiaJvac). (4)

Additional conditions have to be applied to the boson fields as well as a new fermion
operator to guarantee a conservation of the number of physically accepted states at
a given site 7, which can be either empty, singly or doubly occupied

ele;+ Z St Sip +difd; = 1,

and the conservation of charge
+ -
a; G, = s " Sie +d; d;.

In the mean field approximation, boson operators are replaced by the numbers. How-
ever, in the disordered system we expect that these numbers will get the random
values. To take these constraints into account one introduces the Lagrange multipli-
ers )\( and A\ @) and the resulting model contains a disorder without interactions

Hyp = Z tii€iocljoas ajy + Z )\( + € — p)a; a;, + const. (5)

ijo

Following [12] we minimize the energy of the system and find equations for the
random values of auxiliary fields. Application of the CPA [10] permits us to solve
the disordered problem and find the averaged and conditionally averaged Green
functions. The details will be presented elsewhere [13]. This enables us to calculate
thermodynamic and transport properties of the system. In particular, in figure 1 we
show the density of states of a correlated alloy with diagonal disorder for three values
of the Hubbard interaction U. Note the peak in the density of states emerging at
low energies with an increasing disorder. This behavior has been observed previously
[11] and discussed at length therein. For numerical purposes we consider the cubic
lattice with the tight binding dispersion

€ = — % (cos ky + cos ky + cos k), (6)

where W = 6t is the bandwidth and ¢ is the hopping integral.
The electron specific heat ¢, shown in figure 2 has been calculated from the
following formula

/ dwD(@)e- (0, 7), (7)
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Figure 1. Energy dependence of the density of states D for a binary alloy A, B1_,
with x = 0.5, § = ¢4 — ep = 0.5W and electron concentration per lattice site
n = 0.5. Values of the Coulomb interaction U (expressed in units of W) are
indicated in the legend.

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2. The specific heat ¢ as a function of temperature 7' (in units of W/kp)
for x = 0.5, n = 0.5, § = 0.2W and several values of the Coulomb interaction U.

where f(w,T) is the Fermi function at temperature 7' and D(w) = —1/7Im(G) is
the alloy density of states. The dc conductivity has been calculated from the Kubo-
Greenwood formula averaged over the disorder with CPA. As usually the vertex
corrections have been neglected in a spirit of the single site theory. Again, it is
shown in figure 3 as a function of U. The non-monotonic dependence indicates a
subtle interplay of the disorder and interactions. This issue will be discussed in depth
elsewhere [13].

3. Transport through Quantum Impurity Coupled
to the Superconducting Leads

The study of quantum dots, both experimental and theoretical has been exten-
sively continued over the last two decades or so [14-23]. Here we propose to calculate
transport properties of the quantum dot (QD) connected to the superconducting
leads (S — @D — S junction). It has to be noted that in this case, besides single
particle tunnelling, the Andreev reflection processes [24] contribute to the transport
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Figure 3. D¢ conductivity of the correlated alloy as a function of Coulomb inter-
action U for x = 0.5, n = 0.5 and several values d expressed in units of W.

of the system. The Andreev scattering, during which an electron impinging on the
normal metal-superconductor interface is reflected back as a hole, has been shown to
play a crucial role in the transport in various hybrid mesoscopic superconductivity
devices [25].

Such quantum dot systems have been studied theoretically [26-34] but there exist
very limited experimental data on the subject [35,36]. Theoretical studies [26-34] of
the current in the S — QD — S junctions have been mainly restricted to the case
of classical superconductors with s-wave order parameter (see, however, [30]). Here
we shall be particularly interested in the studies of the transport via quantum dot
coupled to the electrodes made of (the same or different) exotic superconductors
with d-wave symmetry of the order parameter.

The purpose of the present work is to study the electron transport through the
quantum dot coupled to the superconducting leads with various symmetries of the
superconducting order parameter. The dot is described by the Anderson impurity
model in the limit of the strong on-dot correlations (U — o). Due to large U, in the
first approximation, one can neglect the Andreev reflections [28] and deal only with
the single particle tunnelling. The effect of the Andreev processes on the tunnelling
current through S — QD — S structures is left for the future publication.

In the limit of the strong on-dot correlations (U — oo) the Anderson Hamiltonian
[37] of the S—QD— S system can be written in the slave boson representation [38,39]
as

H = Z Ekkcirkgckka + Z(AM‘C;\F}(TCj—kl + C.C.) + Ed Z f;rfg
Ako Ak o
+ > VaklChi b fo + hec). (8)

ko

A = L, R denotes here the left (L) or right (R) lead of the system. Other parameters
have the following meaning: ¢j;  (c ko) denotes a creation (annihilation) operator
for a conduction electron with the wave vector k, spin ¢ in the lead A\, A,y is the
superconducting order parameter in the lead A\, and V) is the hybridization matrix
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element between conduction electron of energy e, in the lead A and the localized
electron on the dot with the energy Eqy. .5 (f,) is the fermion operator which denotes
the singly occupied state on the dot, while b* (b) stands for empty state on the dot.
Operator of the physical electron can be expressed by the product of the fermion
and boson operators [38,39].

When the Andreev reflections are neglected, the tunnelling current in the S —
QD — S system can be expressed in terms of the single particle spectral density of
states of the dot [28]. The current flowing out of the lead A is written by

hzv)‘k/ GdAka( ) — G)\kad( ) 9)

where G3y,(w) is the Fourier transform of the Keldysh Green function
[40] G50 (t) = 1, (0)07(t) f5(t)). Using the equation of motion technique for
the nonequilibrium Green functions [41] and making approximations due to Kang
[28] we obtain the single particle current in the form

1= 2 [ Wl ) - ] (1) e o)

where fy = [e“~#3) 4+ 1]~ is the Fermi distribution function of the lead , I'S (w) =
(T2 ()5 (w))/(TF (w) + Ty (w)) is the effective coupling of the quantum dot to the
leads. To calculate G7 (w) we have used the modified slave boson approach [42,43]
and got

~

[mo ~ By — S0 (w) — 5 (w)] Gr (w) =7, (11)

where 79 and 73 are the Pauli matrices. The noninteracting (io) and interact-
ing (X;) selfenergies and the matrix ¢ will not be reproduced herein. Instead of

density of states

energy

Figure 4. The density of states of the quantum dot connected to the d-wave
superconductors for different values of the chemical potentials (u, = —pug). Other
parameters have the following values: Ff =1% =0.01, Eg = —0.07, A* = 0.1 in
units of the bandwidth W.
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this, the numerical results will be presented for the s- and d-wave superconducting
electrodes. For the s-wave (BC'S-like) superconductor the energy gap has a con-
stant value (Aye = A3) (there is no dependence on the wave vector). In case of
the d-wave superconductor we assume the order parameter in the following form:
Ak = A [cosk,a — cosk,al, where a is the lattice constant taken for simplicity as
a = 1. The equilibrium (solid line) and nonequilibrium (dashed and dotted lines)
density of states of the quantum dot connected to the d-wave superconductors (SC)
is displayed in the figure 4.

It is worth noting that we deal now with the resonance in the DOS of the
quantum dot, instead of the bound state, as for the s-wave superconductors. This
is due to the finite DOS (except the point w = u) of the d-wave superconductor.
Position of the resonance weakly depends on the voltage (i, — ur). We also observe
the additional structure near the energy w ~ A9, as in the case of the BC'S-like SC.

Figure 5 refers to the situation in which one electrode is s-wave while another
one is the d-wave superconductor with the same values of the SC' order parameters
A* = A4 = (0.1 W. The structure of the DOS is similar to the one shown in figure 4.
Now we also have a well resolved structure coming from the s-wave superconducting
gap. Such a behavior is expected due to the structure of the selfenergy (3¢ + ).
This is simply a sum of the densities of states for s- and d-wave SC.

As we mentioned earlier the current through the quantum dot should have two
components. One component is connected with the single charge tunnelling and
the second one comes from the Andreev reflection processes [24]. However, in our
system the on-dot Coulomb repulsion U is assumed to be the largest parameter in
the theory and is taken as infinitely large. So, at this condition Andreev processes
are prohibited [28] and we have only the single particle component of the current.

The differential conductance of the quantum dot couple to the d-wave supercon-
ductors is displayed in figure 6.

It is worthwhile noticing that the current does flow even for the eVsp < A9,
which is due to a finite value of DOS in the d-wave SC. The other features are
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Figure 5. The same as in figure 4, but now one electrode is the s-wave while
another one is d-wave superconductor.

337



T.Domanski, M.Krawiec, M.Michalik, K.|. Wysokirski

0.10 .
005 ——
0.10 -------
0.08 } 015
~ 006}
2]
>
)
S o004}
002 }
0.00 bomee=s . i R
-0.2 -0.1 0 0.1

eVgp

Figure 6. The single particle differential conductance in the S — QD — S system
for various values of the dot’s energy level Fq. Both superconducting energy gaps
are assumed to have d-wave symmetry and equal values A = AdR = 0.1 W. The
coupling constants are I'f = Ff{ = 0.01 W, in units of the bandwidth W.
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Figure 7. The same as in figure 6, but now one electrode is the s-wave and another
one d-wave superconductors with A% = A% =01W and I'Y = Fﬁ =0.01 W.

similar to the case of the BC'S-like superconductors. However, the main difference
arises when the dot energy level (Ey) lies within the energy gap (A?). The broad
resonance emerges at w ~ Fy (as in the DOS) and is due to the finite d-wave
superconducting DOS.

The results obtained for the geometry with the quantum dot connected to one s-
wave and the other d-wave superconductors (with the same values of A) are depicted
in figure 7. The main features are similar to a junction with the d-wave supercon-
ductors. There is, however, a strong renormalization of the position of the resonance
for Eq < A, so it is located near the w = A (solid line).
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4. Optical conductivity in the pseudogap region

One of the main theoretical issues presently widely debated in the literature
concerns the pseudogap effect which has been observed experimentally above T; in
the underdoped and optimally doped samples of high temperature superconductors.
Since the single particle electron states are (partly) washed out from the same parts
of the Brillouin zone where, for T < T, the true superconducting gap is formed,
it is quite natural to interpret this phenomenon as a precursor of superconducting
correlations. The pseudo- and superconducting gaps are assumed there to be related
with some common order parameter. In pseudogap state, the order parameter is
affected by the strong quantum fluctuations. Hence, the long range phase coherence
cannot be established. Although there are also alternative interpretations of the
pseudogap effect (in terms of the competing orders, microscopic currents, etc.) it
seems that the recent experimental facts [47] work in favor of the precursor scenario.

In this section we want to address a question whether the pseudogap (treated as
a precursor of superconducting ordering) affects qualitatively the charge response of
the system. For this purpose we investigate the two component model in which the
single particle charge carriers (fermions) are assumed to coexist and interact with the
preformed pairs (the hard-core bosons). Hamiltonian of such boson fermion model
is given by

H = Z Ex — W Ckackg—i-z b b +—Z ( +kaleT +hC> . (12)

Its relevance to the high T, superconductivity as well as the precursor type features
have been discussed in a number of papers [7].

Let us suppose that this two component system (12) reacts to the ac electric field
E(r,¢). Within the linear response theory, the induced current j(r,t) is expected to
scale linearly with a perturbation. Fourier transform of the current density can be
written as

= Z O'Olﬁ(q’ w) Eﬁ(qa w)a (13)
B

where «, [ stand for the Cartesian coordinates. The complex conductivity o(q,w)
can be determined using the Kubo formula [48] which in the case of the two com-
ponent system (12) is given by

i

ent  4e’nP
Oa,5(q,w) = o [( F + W) a5 + Hap(q,w)| - (14)

n¥ and n® denote the concentration of fermions (carrying the elementary charge
e) and bosons (of the double charge 2e). The retarded current-current correlation
function I1, 3(q,w) appearing in (14) is defined in a standard way

1/kpT
Mo (g w) = — / dre™ (Thja(a 7)js(—a, 0)) (15)
0
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where the total current operator is composed correspondingly of the fermion and
boson contributions j = j¥ + jB

jF(qv T) = ¢ Z v51(-1-01/2 CLU(T)Ck—I—qG(T)? (16)
PPla,7) = 2e Z V Eicrq/2 b (T)birq(T)- (17)

In order to determine the paramagnetic part of the conductivity (14) which is
given there by II, s(q,w) one has to calculate the two-particle Green function (15).
Within the lowest order perturbation theory it can be estimated from the bubble
diagram, which effectively represents a convolution of the single particle fermion or
boson propagators. Many body effects are included on this level of approximation
through the quasiparticle damping.

The proper description of transport requires vertex corrections to be taken into
account[48]. However, for the ordered phases (such as superconducting, ferromag-
netic, etc.) it is usually fairly sufficient to work with the lowest order estimation of
11, 5(d, w). The main effect of interactions comes there due to the gapped structure
of the single particle excitations. In the pseudogap phase we deal with a short range
ordering leads to the partial suppression of the low lying single particle states. We
can thus use the lowest order estimate for II, 5(q,w) at least as a starting point of
our discussion.

The current-current correlation function (15) consists of the following four terms
II = IIMF 4+ TIBB 4+ TIFB + TI®F which correspond to fermion-fermion, boson-boson
and the mixed current correlation functions. In the normal phase T' > T, a main
contribution to the charge transport comes from the first two terms. The other mixed
correlation functions play a considerable role only in the superconducting state as
discussed in [49]. Using the above mentioned approximations we can express the
correlation functions via

aék 2 aék /2
1 E _ 2 +a/ +a
a,B (q7 w) € Ok, 8/{5
k,o
T) — T
% /dwlAF(k,wl)/deAF(k—i—q,wQ)f(w;’ +)w f(::)?a )(18)
1 — Wo
OF OF
B.B . k+q/2 k+q/2
I5(qw) = de* Z ks
b T)—b T
X / dw; AB(k, wy) / dws AP (k + g, wo) (“’;’ +)w (tf’ ) , (19)
1~ W2

where f(x,t) and b(x,T) stand for the Fermi-Dirac and Bose-Einstein distribu-
tion functions. Moreover, we introduced the spectral functions A"®)(q,w) = —7~!
Im {GF®P)(q,w +i07)} of the single particle fermion G¥(q,7) = — <TchU(7')cfw>
and boson Green function G®(q, 7) = — (T;bq(7)b}).

The fermion and boson excitation spectra are found using the canonically trans-
formed Hamiltonian H(l) = e*¥He 5" [50], where upon a suitable choice of
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Afk,m)

20 1

Figure 8. The single particle spectral function A¥(k,w) in a neighborhood of
the Fermi surface k ~ kg for T = 0.007W/kp corresponding to the temperature
region T* > T > T.. Note a pseudogap feature in the dispersion of the long-lived
fermion states and the appearance of the additional Bogoliubov shadow branch
around w = —£€y. Energy w is expressed in units of the fermion bandwidth W,
spectral function through W~—! and momentum %k — kp in units of the inverse
lattice constant.

S(l) in the limit | — oo the subsystems become disentangled one from anoth-
er. To some extent such a transformation resembles the numerical renormaliza-
tion group procedure with the cut-off A = 1/4/1 [51]. Effective energies are renor-
malized to: ex — p — &k, g — 200 — Eq and v — 0. For the temperature
regime T* > T > T, the resulting fermion spectrum €y shows up the asym-
metric pseudogap structure near the Fermi momentum kp as discussed in [50].
The same procedure applied to the calculation of the single particle Green func-
tions gives for T > T. the following fermion spectral function [6] AY(k,w) =
| P20 (w — &) + + > [b(Eq) + f(éq_k)] 7i.q|20(w — Eq + Eq_x). Coefficients Py
and 7 4 are correspondingly given by the renormalization equations in [6]. We notice
that A¥(k,w) describes the long-lived quasiparticles of energy &) and the remaining
part of the spectral weight 1—|Py|? is distributed among the damped fermions states
which build up a broad incoherent background.

For temperatures approaching 7., all bosons start to occupy only the lowest
lying states such that Eq ~ 0 which correspond |q| < ¢uit- Occupancy of the low
momentum boson states is much larger than the Fermi function f(£4-x) and the
spectral function effectively becomes

A¥(k,w) >~ |Be|?0 (w — &) + % > b(Eq) 6(w + Eq). (20)

|q‘ g‘krit
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Figure 9. The optical conductivity o(q,w) obtained in the London limit q — 0
for the pseudogap phase T > T > T, using the boson fermion model. Energies
w, Ap, are expressed in units of W and the optical conductivity in units of e*/h,
where h is the Planck constant.

where the second part gives rise to the appearance of the Lorentzian peak centered
around w = —£_. This is a shadow branch of the Bogoliubov spectrum shown in
figure 8. It is broadened because the fermion Cooper pairs can be present above
T. only as the damped quasiparticles [6]. Charge transport of the system will be
affected by the excitations induced by the electromagnetic field between these two
Bogoliubov branches which are split around the Fermi energy by the pseudogap
24, [50].
The boson spectral function is expressed by the following general structure [6]

AMqw) = |Ags (v Ey)

e ST = () FEan] 1 Basd (0 — =2 ). (21)

where the first term represents the long-lived bosons with the renormalized energy
Eq and the second contribution describes the incoherent background which is spread
over a wide range of energies. Upon approaching 7. the incoherent background is
partly expelled from the low energies and, therefore, the long-lived bosons increase
their life-time. This feature is going to affect the charge transport.

The charge dynamics in the pseudogap region is thus determined by the following
processes:

e the single particle fermion excitations between the lower and upper Bogoliubov-
like branches which are separated near kp by 2A,,(7T") (one should keep in
mind that the shadow branch fades away for temperatures exceeding 7™ when
it merges the broad incoherent background),

e the single particle boson excitations which due to a gradual increase of the
quasiparticle life-time (this issue is at some length discussed in [6]) contribute
a non-diffusive type of transport.
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In figure 9 we present the optical conductivity calculated for the London limit
q — 0 using the boson fermion model in the pseudogap regime 7" > T' > T.. We
notice a sizable reduction of the dynamic conductivity at frequencies below 2A,,.
For comparison, let us remark that in the isotropic superconducting phase the ab-
sorption of external field quanta occurs above the energy threshold w > 2A,.. For
the pseudogap phase we obtain that the infrared absorption is not completely for-
bidden. However, it is strongly suppressed. This effect signifies the action of the pair
fluctuations on the optical conductivity. Such a behavior has been indeed observed
experimentally in the underdoped optimally doped cuprate superconductors from
the measurements of the c-axis [52] and ab-plane [53] optical conductivity.

5. Summary and conclusions

We have studied the strongly interacting systems focusing on the calculation of
the spectral and transport properties, such as: dc conductivity of the strongly corre-
lated alloys, the non-equilibrium conductance G(V') via quantum dots coupled to the
superconducting leads with various symmetries of the order parameter, and the op-
tical conductivity o(w) for the high temperature superconductors in the pseudogap
phase.

Our main findings are:

(i) the interplay of disorder and correlations manifests itself inter alia as a non-
monotonic dependence of dc conductivity with respect to the Hubbard interaction U.

(ii) in a regime of the strong on-dot correlations, the tunnelling is dominated by
the single particle current since the Andreev reflection processes are strongly sup-
pressed. The calculated differential conductance and density of states exhibit the rich
structure, which depends on a symmetry of the order parameter of superconductor.

(iii) the pseudogap remarkably effects the ac charge transport of the system. At
frequencies smaller than 2A,,, there occurs a partial suppression of the optical con-
ductivity similar to that observed in a superconducting state. This is in agreement
with the measurements for the underdoped and optimally doped high temperature
superconductors above T..
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BnacTtnBoOCTi NnepeHoCcy B CUJIbHO KOpesibOBaHUX
cucremax

T.JomaHbeki, M.Kpaseu, M.Mixanik, K.I.BUCOKiIHbCKI

IHCTUTYT Pisnkmn, YHiBepcuteT M.Kiopi-CknoaoBCbKoi,
20-031 Jlto6niH, MonbLua

OtpumaHo 12 6epesHs 2004 p., B OCTaTOYHOMY BUMMAAI —
6 TpasHsa 2004 p.

BnactuBoCTi nepeHocy s Pi3HUX CUCTEM BMBYHAKOTLCS TYT Y KOHTEKCTI
TPbOX pi3HMX Mopenen: 1) HeBnopsakoBaHa Modenb labapaa, wo 3a-
CTOCOBYETbCSA A0 KOpefboBaHUX OiHApHWX cniaBiB i3 3aranbHUM 6e3na-
OoMm, 2) moaenb AHgepcoHa anst onucy @isnkm KoHaoo y KBaHTOBIM Tou-
ui, nig’eaHaHin 0o 30BHIWHIX HAANPOBIAHWKIB, Ta 3) Moaenb PaHiHrepa-
PobalukeBiya, L0 3aCTOCOBYETLCS [0 BMBYEHHS ONTUYHUX BIACTUBOC-
Ten cnctemMu 3 NPeyTBOPEHNMU eN1EKTPOHHUMK NapaMun BULLLE TeMMepa-
Typu nepexoay B HaANPOBIAHUIA CTaH. My po3paxoByEMO MYCTUHY CTa-
HiB, TEMJIOEMHICTb, CMniBBiAHOWEHHA BinbCcoHa Ta NpOoBigHICTL ANg Kope-
JNibOBaHOro 6iHapHOro crnnaey 3 HediaroHanbHUM 6e3nagomM. Mu gochi-
IKYEMO YMOBMU, NMpu aKknx Nik KoHAO0 NOABNAETLCA B N'YCTUHI CTaHIB Ta B
MPOBIAHOCTI KBAHTOBOI TOYKW, NPUELHAHOT A0 30BHILLHIX HAANPOBIOHN-
KiB. M aHanisyemo BnAMB NCEBOOLLINVMHN HA ONTUYHI CNEKTPU Y BUCOKO-
TemMnepaTypHMUX HAAMNPOBIOHUKAX, WO ONUCYIOTLCA 6030H-HEPMIOHHOID
MOAENIO.

Knio4oBi cnoBa: Hab/IMKXeHHS] KOrepPEeHTHOro roTeHuiany, 4OMOMIKHI
6030HM, HEPIBHOBAXHWI NepeHoc, KBaHToBa To4YKka, HernepepBHe
NepeTBOPEHHS, NCEBAOLLIINHA

PACS: 71.10.-w, 72.10.-d, 73.23.-b, 74.20.-z
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