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We study superconductivity in the extended Hubbard model with a strong on-site repulsionU and weak
attractive density-density interactionVi j . The electron correlation effects, beyond the weak-coupling regime of
U, are included approximately by employing Hubbard decoupling approximations. The formulas for super-
conducting transition temperatureTc of the present approach are compared to those obtained with the strong-
coupling expansion and slave-boson techniques. The methods share some common features. We discuss be-
havior ofTc for superconducting phases withs- andd-wave symmetry of the superconducting order parameter.
In contrast to the mean-field treatment ofU, we find that the strong on-site repulsion does not destroy
superconductivity induced byVi j,0 even whenU@uVi j u. @S0163-1829~96!02929-3#

Study of superconductivity in strongly correlated electron
systems in narrow energy bands has been pursued with re-
newed interest since the discovery of high-Tc cuprate
oxides.1 Most of these studies are based on the premise that
a single band or extended Hubbard-type models can be used
to capture the physics of high-Tc cuprate superconductors.2

The methods employed range from broken symmetry mean-
field approximations through various decoupling approxima-
tion schemes, canonical transformations, 1/N expansions, to
slave-fermion or slave-boson techniques. Still, there is no
unambiguous proof that superconducting correlations strong
enough to lead to high-Tc’s arise from strong on-site repul-
sion in a single band Hubbard model. It is now well accepted
that Coulomb interaction on the Cu sites in high-Tc cuprate
oxides is strong enough to split-off the uncorrelated Cu-d
band into Hubbard subbands and that superconducting pair-
ing occurs in the less than half-filled Hubbard subband. A
theoretical study of superconducting pairing in the Hubbard
subbands is, then, of considerable interest. In this paper, we
present such an investigation employing an extended Hub-
bard model with strong on-site repulsive and weak attractive
intersite interactions (U andVi j , respectively!. We employ
the Hubbard subband operator approach3–5 to include the
many-body correlations arising from the strong on-site repul-
sive interactionU. We will also compare our results with
those obtained using strong-coupling canonical expansion6

and slave-boson7,8 methods.
We take the Hamiltonian in the following form:
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Further on theVi j term is assumed to be at least an order of
magnitude smaller thanU. This model has been previously
studied by Micnaset al.6 in both weak- (U!t) and strong-

coupling (U@t) limits. It has also been qualitatively ana-
lyzed in the Hubbard-Jain approach.4,5 However, no explicit
calculations have been performed so far. In all cases we as-
sumeuVu!W, (W58t andV is interaction between the near-
est sites in 2d square lattice! so that the Hartree-Fock-
Bogoliubov factorization for that part of Hamiltonian is
legitimate.

To start let us recall the strong-coupling limit of the
Hamiltonian~1!. To leading order in 1/U it reads6,9
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where his5cis(12ni2s), Nis5his
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Terms corresponding to hopping of nearest-neighbor elec-
tron pairs are not taken into account.

Gorkov-type factorization leads to the BCS-like equation
for the gap function6
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with Eq5Ajq
21uDqu2 andjq5d•«q2m̄ andd512n (n is

the electron concentration!. An important point of this ap-
proach is the renormalization of charge-charge interaction
Vkq5Vdgk2q through the factord. Such a term, as we shall
see, is absent in the mean-field approximation to the slave-
boson method.

The use of the slave-boson method is particularly simple
in theU5` limit. Electron configurations of a system~for
n,1) can under such circumstances consist only of singly
occupied and empty sites. No double occupancy is allowed.
One replaces the electron operators (cis) via new fermion
( f is) and auxiliary bose field (bi) operators. The require-
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ment of no double occupation in this limit is fulfilled with
the introduction of a term into the Hamiltonian which con-
strains the allowed states. One gets a Hamiltonian in the
form
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Hereni5(s f is
† f is , andl i denotes the Lagrange multiplier.

The mean field for slave bosons means10 replacement of all
bosonic fields by their classic valuesbi5bi

†5r andl i5l.
Parametersl and r are determined by minimization of the
ground-state energy (E5^H&) of the system. This leads to
r 2512n andl52(knks«k .

A standard Gorkov-type procedure allows a derivation of
the formula ~3! with Vk2q5Vgk2q and jk5r 2«k2m
1l12nV. Thus the two approaches differ with respect to
renormalization of interactionVkq and additional shiftl of
the spectrum. In the slave-boson approach the renormaliza-
tion of interaction does not appear while in the canonical
transformation method the termd is introduced in order to
get the correctd→0 limit.

The Hubbard subband operator approach3,4 relies on the
introduction of new operatorsdis

a 5ni2s
a cis and their conju-

gate counterpartsdis
a†5(dis

a )†, where nis
1 512nis and

nis
2 5nis . One writes then the equation of motion for these
new operators. Using again Gorkov-type decoupling and
Fourier transformation one gets5
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with m̃5m28nV. At this step it is convenient to intro-
duce the ‘‘Hubbard subband’’ operators Dks

n

5(Nkn /«k)@dks
1 /Ekn1dks

2 /(Ekn2U)# where Ekn are solu-
tions of the Hubbard I problem
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The subband operators obey the following equation of mo-
tion:

FIG. 1. Plot of theNk1Tk1 /«k function ~a! and the normalized
Nk1 /«k

2 function ~b! versus single-particle energy«k for several
values ofU.

FIG. 2. Position of a chemical potentialm̃ in the effective lower
Hubbard subband obtained by the Hubbard-Jain method~a! and in
the effective band by the slave-boson method~b!. The dashed lines
correspond to zero temperature while dotted ones toT50.1W.
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Neglecting nondiagonal correlation functions, we arrive at
the gap equation
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whereTkn5U/@Ekn(Ekn2U)#. The gap equation~9! looks a
little bit more complicated than that given previously~3!. For
comparison with the previous formulas let us evaluate it in
the leading order with respect to 1/U. In doing so we have to
take into account that in the large-U limit (U→`) the on-
site pairing is prohibited. So we neglect all the terms which
would lead to the formation of such pairs. Finally, for
n,1 and forU→`, we obtain thatDk1 is expressed by Eq.
~3! with Vkq5(12n/2)2Vgk2q andjq5«q(12n/2)2m̃.

Thus the Hubbard-subband-operator method leads in a
natural way to renormalization of both: the single-particle
energies and interactions. Renormalization of energies, how-
ever, does not lead to vanishing of the bandwidth atn51.
Further analytical comparison is a little bit complicated be-
cause in each case a position of the Fermi level has to be
calculated for a given carrier concentration. For example, for

U@W, the position of the Fermi level in the lower Hubbard
subband (n,1) is given by the formula

n

2
5S 12

n

2D(k f @~12n/2!«k2m̃#, ~10!

where f (x)51/(ebx11) is the Fermi-Dirac distribution
function.

For a numerical illustration of our results for the model
~1! with arbitrary U, we use the general form of the gap
equation~9!. The kW -dependent gap function takes then the
following form:
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where «k522t(coskx1cosky), hk522t(coskx2coskx).
Here Dn

(0) , Dn
(s) , andDn

(d) refer to isotropic and extended
s-wave ord-wave symmetry gap functions, respectively. The
additional factors in front of them depend onkW through«k
only, and forU.W are relatively slowly varying functions.
Their dependence on«k for various values ofU is shown in
Fig. 1. With increasingU, both factors tend to their asymp-

totic values@(Tk1Nk1 /«k) 5
U→`

21, (Nk1 /«k
2) 5

U→`
12n/2#.

FIG. 3. Critical temperature for thes-wave superconducting
state~a! andd-wave superconducting state~b! as a function of total
carrier concentrationn5^nis&1^ni2s&. Strength of intersite attrac-
tion is in all cases the same and equalV520.1W. Values ofU for
particular curves are shown in the legend.

FIG. 4. Comparison of transition temperatures ofs-wave~a! and
d-wave ~b! superconducting phases for the extended Hubbard
model with U5` and V520.1W. Solid lines refer to the
Hubbard-Jain approximation, dashed ones to those obtained accord-
ing to canonical transformation method6 and dotted ones to the
slave-boson approach.
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To get carrier concentration dependence of the transition
temperature it is necessary to solve the gap equation self-
consistently with the equation for chemical potentialm̃. The
dependence ofm̃ on n is shown in Fig. 2~a!. The thick lines
denote edges of the lower subband, the dashed line shows
m̃ for T50 K and the dotted line atT50.1W. Figure 2~b!
shows m̃SB5m2l22nV. Note, that forn51, the band-
width vanishes in the slave-boson method.

The concentration dependences ofTc
(s) andTc

(d) are plot-
ted in Figs. 3~a! and 3~b!, respectively, for a number ofU
values. Coulomb repulsionU has a small detrimental effect
on thes-wave superconducting phase at low concentrations
but Tc

(s) remains finite~nonzero! even forU5` ~solid line!.
At low hole concentrations (n;1) there appears also an-
other s-wave superconducting phase with very smallTc

(s) ,
which is relatively stable againstU values. In fact, transition
temperatures in that region increase with increasingU. The
main effect ofU on thed phase is a slight shift of maximal

Tc
(d) towards the lower concentrationsn. The maximal value

of Tc
(d) surprisingly increases with increasingU.

Figure 4~a! shows the comparison ofTc
(s)(n) calculated in

the Hubbard-Jain approximation~solid line!, strong-coupling
expansion method~dashed line!, and slave-boson approach
~dotted line!. Figure 4~b! presents similar data forTc

(d)(n).
It is important to note that in our approach the supercon-

ducting phase appears only for attractive interactionV. It is
in contrast to slave-boson treatment of the present system7

which, for finite U, leads to superconductivity even with
repulsiveV. Influence of theV strength on the magnitude of
Tc is shown in Fig. 5. As is seen, values of critical tempera-
tures considerably increase with increasing intersite attrac-
tion.

In conclusion, we have presented a study of the many-
body effects of strong on-site repulsionU on BCS pairing in
the extended Hubbard model. Contrary to the results in a
Hartree-Fock treatment ofU, we find that the strongU does
not destroy the superconducting state produced by the weak
intersite attractive interactionV. The s-wave superconduc-
tivity appears in the dilute regions~at small electron and
small hole concentrations!, while the d-wave phase arises
aroundd50.33, and forV520.1W extends fromd'0.15
to d'0.6. The maximal value ofTc

(d) surprisingly increases
with increasingU. It follows from this study as well as pre-
vious treatments of the correlated hopping model11,12 by the
same technique, that the main effect of on-site interaction
U is a formation of Hubbard subbands and the BCS pairing
occurs between the quasiparticles in the Hubbard subbands.

This work has been partly supported by the KBN Grant
No. 38302 070 06. Part of this work has been done during
the authors visit to ICTP Trieste, Italy. R.R. would like to
thank Professor K.P. Jain~Indian Institute of Technology,
New Delhi! and Professor K. Yamaji~ETL! for discussions
and encouragement. R.R. would also like to thank the
Agency of Industrial Science and Technology~AIST!, Japan,
for financial support.

1E. Dagotto, Rev. Mod. Phys.66, 763 ~1994!.
2P. Fulde,Electron Correlations in Molecules and Solids, Springer
Series in Solid-State Sciences~Springer-Verlag, Berlin, 1993!,
Chap. XIV.

3J. Hubbard and K.P. Jain, J. Phys. C1, 1650~1968!.
4K.P. Jain and C.C. Chancey, Phys. Rev. B39, 9049~1989!; K.P.
Jain, R. Ramakumar, and C. C. Chancey, Physica C162-164,
793 ~1989!; 168, 297 ~1990!.

5K.P. Jain, R. Ramakumar, and C.C. Chancey, Phys. Rev. B42,
9896 ~1990!.

6R. Micnas, J. Ranninger, S. Robaszkiewicz, and S. Tabor, Phys.

Rev. B37, 9410~1988!; 39, 11 653~1989!; Rev. Mod. Phys.62,
113 ~1990!.

7A.E. Ruckenstein, P.J. Hirschfeld, and J. Appel, Phys. Rev. B36,
857 ~1987!.

8G. Kotliar, Phys. Rev. B37, 3664~1988!; G. Kotliar and J. Liu,
ibid. 38, 5142~1988!.

9J.E. Hirsch, Phys. Rev. Lett.54, 1317~1985!.
10D.M. Newns and N. Read, Adv. Phys.36, 799 ~1987!.
11S. Das and N.C. Das, Solid State Commun.81, 687 ~1992!;

Physica C193, 8 ~1992!; Phys. Rev. B46, 6451~1992!.
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FIG. 5. Influence of the pairing potentialV on the carrier de-
pendence ofTc

(s) ~solid lines! andTc
(d) ~dotted lines!. The on-site

interaction is in this caseU510W.
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