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Superconductivity in a strongly correlated one-band system
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We study superconductivity in the extended Hubbard model with a strong on-site repulsaoid weak
attractive density-density interactiafy; . The electron correlation effects, beyond the weak-coupling regime of
U, are included approximately by employing Hubbard decoupling approximations. The formulas for super-
conducting transition temperatufe of the present approach are compared to those obtained with the strong-
coupling expansion and slave-boson techniques. The methods share some common features. We discuss be-
havior of T, for superconducting phases wighandd-wave symmetry of the superconducting order parameter.
In contrast to the mean-field treatment df we find that the strong on-site repulsion does not destroy
superconductivity induced by;;<0 even wherlJ>|V;;|. [S0163-18286)02929-3

Study of superconductivity in strongly correlated electroncoupling U>t) limits. It has also been qualitatively ana-
systems in narrow energy bands has been pursued with régzed in the Hubbard-Jain approathHowever, no explicit
newed interest since the discovery of high-cuprate calculations have been performed so far. In all cases we as-
oxides! Most of these studies are based on the premise thaume|V|<W, (W=8t andV is interaction between the near-

a single band or extended Hubbard-type models can be usedt sites in & square lattice so that the Hartree-Fock-

to capture the physics of highs cuprate superconductafs. Bogoliubov factorization for that part of Hamiltonian is
The methods employed range from broken symmetry meariegitimate.

field approximations through various decoupling approxima- To start let us recall the strong-coupling limit of the
tion schemes, canonical transformationd\ Bkpansions, to Hamiltonian(1). To leading order in 1 it read$?®
slave-fermion or slave-boson techniques. Still, there is no L
unambiguous proof that superconducting correlations strong -

enough to lead to highiz's arise from strong on-site repul- Hew=— 2 t'JhT h10+2 ‘]'I(S‘ S~ Ni)
sion in a single band Hubbard model. It is now well accepted

that Coulomb interaction on the Cu sites in hi§hcuprate

oxides is strong enough to split-off the uncorrelated dCu- +E ViiNiN E Mig

band into Hubbard subbands and that superconducting pair-

ing occurs in the less than half-filled Hubbard subband. Awhere h;,= Cm(l Ni—o):  Nig=hihi,=n,(1- ni- o)
theoretical study of superconducting pairing in the HubbardN;==_/N;,,, S’ = cch,l, S= 2(”|T ni;) andJ;;= 2t,J/U.
subbands is, then, of considerable interest. In this paper, weerms correspondmg to hopping of nearest-neighbor elec-
present such an investigation employing an extended Huliron pairs are not taken into account.

bard model with strong on-site repulsive and weak attractive Gorkov-type factorization leads to the BCS-like equation
intersite interactions andV;;, respectively. We employ  for the gap functioh

the Hubbard subband operator appréacho include the

lo

@

many-body correlations arising from the strong on-site repul- E v Aq i /3E 3
sive interactionU. We will also compare our results with quE an o S
those obtained using strong-coupling canonical expafsion o
and slave-bosdrf methods. _ with Eq= \/§q2+|Aq|2 and¢;=4-eq—p andd=1-n (n'is
We take the Hamiltonian in the following form: the electron concentratipnAn important point of this ap-
proach is the renormalization of charge-charge interaction
Vig=V i q through the factos. Such a term, as we shall
2 t'leCJWLU2 M N T+2 2 VijNigNjor see, is absent in the mean-field approximation to the slave-

J o, lT

boson method.
The use of the slave-boson method is particularly simple
_'“2; Nig- @ in the U=c¢ limit. Electron configurations of a systeffor
' n<1) can under such circumstances consist only of singly
Further on thev;; term is assumed to be at least an order ofoccupied and empty sites. No double occupancy is allowed.
magnitude smaller thatd. This model has been previously One replaces the electron operatocs,) via new fermion
studied by Micnast al® in both weak- U<t) and strong- (fi,) and auxiliary bose fieldk{) operators. The require-
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FIG. 1. Plot of theNy, Ty, /g function (a) and the normalized
Nkllsﬁ function (b) versus single-particle energy; for several
values ofU.

ment of no double occupation in this limit is fulfilled with
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FIG. 2. Position of a chemical potentialin the effective lower
Hubbard subband obtained by the Hubbard-Jain metapdnd in
the effective band by the slave-boson metfilod The dashed lines
correspond to zero temperature while dotted oneB=t®.1W.

gate counterpartsd®'=(d®)*, where n} =1-n;,, and

io

ni20=ni0. One writes then the equation of motion for these

the introduction of a term into the Hamiltonian which con- new operators. Using again Gorkov-type decoupling and
strains the allowed states. One gets a Hamiltonian in th&ourier transformation one géts

form
HSB:—i; t|1f|T0'f]Ublb}._/J“|§: fiTO'filT—i_iEj: Vijninj

+> M| 2 fi+bib—1]. (4)
I o

Hereni=2(,fit,fi(,, and\; denotes the Lagrange multiplier.
The mean field for slave bosons me¥ngplacement of all
bosonic fields by their classic valubs=b/=r and\;=A\.
Parametera. andr are determined by minimization of the
ground-state energyE(=(H)) of the system. This leads to
r’=1—n and\=—3ny,&.

A standard Gorkov-type procedure allows a derivation of

the formula (3) with Vi_=Vy_q and &=re—pu

odg, = (g,—n)dg, +n%Cyy

+el o2 [ (—D)%(et28) +2n°D, Vi
k' Kk’

X <C—k’—(rck'(r>

®)

with w=pu—8nV. At this step it is convenient to intro-
duce the “Hubbard subband” operators Dy,
= (N, /e[ di,/Ex,+d2,/(Ex,—U)] where Ey, are solu-
tions of the Hubbard | problem

E,=3[U+e+(—1)"V(U-s?+2nUs,]  (6)

+\+2nV. Thus the two approaches differ with respect toand

renormalization of interactioV,4 and additional shifx of

the spectrum. In the slave-boson approach the renormaliza-

tion of interaction does not appear while in the canonical

transformation method the ter# is introduced in order to
get the correc6—0 limit.

The Hubbard subband operator approdctelies on the
introduction of new operatod> =n*__c;, and their conju-

ic™ 'li—-o

n/2 . 1-n/2]71
(Ekv_U)z EEV

Ny, = )

The subband operators obey the following equation of mo-
tion:
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FIG. 3. Critical temperature for the-wave superconducting FIG. 4. Comparison of transition temperaturesafave(a) and
state(a) andd-wave superconducting state) as a function of total  d-wave (b) superconducting phases for the extended Hubbard
carrier concentration={n;,)+(n;_,). Strength of intersite attrac- model with U=% and V=-0.1W. Solid lines refer to the
tion is in all cases the same and equat —0.1W. Values ofU for Hubbard-Jain approximation, dashed ones to those obtained accord-
particular curves are shown in the legend. ing to canonical transformation methbénd dotted ones to the

slave-boson approach.

oD}, = (Ex,— Dy, +A, 2 D"\ ,. (80 UsW, the position of the Fermi level in the lower Hubbard
v'=12 subband §<1) is given by the formula

Neglecting nondiagonal correlation functions, we arrive at 0 0
the gap equation 52(1_ 5)2 f[(1-n/2)e— 7], (10)
K

TkVNkV NkV v v

A= . (ext2ey)+ 2 2V (D", _,Dprp)»  where f(x)=1/(€#*+1) is the Fermi-Dirac distribution
k' k k g function.

©) For a numerical illustration of our results for the model

whereT,,=U/[E,,(E,,— U)]. The gap equatiot9) looks a (1) with arbitrary EJ we use the general form of the gap

little bit more complicated than that given previou¢). For ~ equation(9). The k-dependent gap function takes then the

comparison with the previous formulas let us evaluate it infollowing form:

the leading order with respect toll/ In doing so we have to

take into account that in the largé-limit (U—«) the on- TruNky

site pairing is prohibited. So we neglect all the terms which Akvzs—k

would lead to the formation of such pairs. Finally, for

n<1 _and forU—oo, we obtain thaty, is expressed by Eq. where ¢,= —2t(cok+coK), 7= — 2t(cosk,—COK,).

(3) with Viq=(1-n/2)Vy—q andéq=eq(1-n/2)=%.  Here A® AD andA® refer to isotropic and extended
Thus the Hubbard-supbqnd-operator method leads in &yave ord-wave symmetry gap functions, respectively. The

natural way to renormalization of both: the Smgle'pamdeadditional factors in front of them depend ﬁnthroughsk

energies and interactions. Renormalization of energies, hOV\(SnI and forU>W are relatively slowlv varving functions
ever, does not lead to vanishing of the bandwidtmatl. Y, y y varying '

Further analytical comparison is a little bit complicated be—lre'rlds\‘/)ii? (ijnecnr(e:;scﬁnk forbvo?[::c}:it\c/)?éutee igtfofh‘cé?ro;vsn m i
cause in each case a position of the Fermi level has to be'd: + gJ’U_m U—soo ymp
= —1, (N /ed) = 1—-n/2].

calculated for a given carrier concentration. For example, fototic values| (T ;N1 /gy)

Ny Ny
A0+ 2 Dy
€k €k
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FIG. 5. Influence of the pairing potenti& on the carrier de-
pendence off®® (solid lineg and T{¥ (dotted lines. The on-site
interaction is in this cast) = 10W.
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T towards the lower concentrations The maximal value
of T surprisingly increases with increasity

Figure 4a) shows the comparison @ (n) calculated in
the Hubbard-Jain approximatidsolid line), strong-coupling
expansion methoddashed ling and slave-boson approach
(dotted ling. Figure 4b) presents similar data foF\¥(n).

It is important to note that in our approach the supercon-
ducting phase appears only for attractive interacWorlt is
in contrast to slave-boson treatment of the present system
which, for finite U, leads to superconductivity even with
repulsiveV. Influence of theV/ strength on the magnitude of
T. is shown in Fig. 5. As is seen, values of critical tempera-
tures considerably increase with increasing intersite attrac-
tion.

In conclusion, we have presented a study of the many-
body effects of strong on-site repulsibhon BCS pairing in
the extended Hubbard model. Contrary to the results in a
Hartree-Fock treatment &f, we find that the stronyy does
not destroy the superconducting state produced by the weak

To get carrier concentration dependence of the transitioftersite attractive interactiok’. The s-wave superconduc-
temperature it is necessary to solve the gap equation selfivity appears in the dilute regiongat small electron and

consistently with the equation for chemical potenfial The
dependence of onn is shown in Fig. 2a). The thick lines

small hole concentratiopswhile the d-wave phase arises
around§=0.33, and forvV=—0.1W extends fromé~0.15

denote edges of the lower subband, the dashed line showg 6~0.6. The maximal value of @ surprisingly increases

u for T=0 K and the dotted line af =0.1W. Figure Zb)
shows ugg=u—A—2nV. Note, that forn=1, the band-
width vanishes in the slave-boson method.

The concentration dependencesTé? and T\ are plot-
ted in Figs. 8a) and 3b), respectively, for a number daf
values. Coulomb repulsiod has a small detrimental effect

with increasingU. It follows from this study as well as pre-
vious treatments of the correlated hopping m&dEby the
same technique, that the main effect of on-site interaction
U is a formation of Hubbard subbands and the BCS pairing
occurs between the quasiparticles in the Hubbard subbands.
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At low hole concentrationsn~1) there appears also an-

other s-wave superconducting phase with very snigf
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main effect ofU on thed phase is a slight shift of maximal
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