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Replicas of the Fano resonances induced by phonons in a subgap Andreev tunneling
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We study influence of the phonon modes on a subgap spectrum and Andreev conductance for
the double quantum dot vertically coupled between a metallic and superconducting lead. For the
monochromatic phonon reservoir we obtain replicas of the interferometric Fano-type structures
appearing simultaneously in the particle and hole channels. We furthermore confront the induced
on-dot pairing with the electron correlations and investigate how the phonon modes affect the zero-
bias signature of the Kondo effect in Andreev conductance.

PACS numbers: 73.63.Kv;73.23.Hk;74.45.+c;74.50.+r

I. INTRODUCTION

Electron transport through nano-size transistors con-
taining the quantum dots, molecules and/or nanowires
is determined by the available energy levels (tunable
by external gate voltage) and strongly depends on the
Coulomb interactions [1]. Discretization of the energy
levels is responsible for oscillations of the differential con-
ductance upon varying the gate voltage, whereas the cor-
relation effects lead to the Coulomb blockade and can
induce (at low temperatures) the Kondo resonance en-

hancing the zero-bias conductance to a unitary value 2e2

h
[2, 3]. Besides promising perspectives for the applications
in modern electronics/spintronics the nanoscopic struc-
tures represent also valuable testing grounds for probing
the many-body effects. Magnetic, superconducting or
other types of orderings absorbed from the external leads
can be confronted with the on-dot electron correlations
in a fully controllable manner.

In this regard, especially interesting are the hetero-
junctions where the quantum dots (QDs) are in con-
tact with the superconducting (S) electrodes. Nonequi-
librium charge transport can occur there either via the
usual single particle tunneling (upon breaking the elec-
tron pairs) or by activating the anomalous (Andreev or
Josephson) channels. The resulting currents are sensitive
to a competition between the induced on-dot pairing and
the Coulomb repulsion. In such context there have been
experimentally explored the signatures of π-junction [4],
Josephson effect [5], superconducting quantum interfer-
ence [6], quantum entanglement by splitting the Copper
pairs [7], multiple Andreev scattering [8], and interplay
of the on-dot pairing with the Kondo effect [9–11]. These
and similar related activities have been discussed theo-
retically by various groups [12–16].

Since in practical realizations the nanoscopic objects
are never entirely separated from an environment (e.g.
a given substrate or external photon/phonon quanta)
therefore transport properties are also affected by the
interference effects. A convenient prototype for studying
such phenomena is the tunneling setup shown in figure
1, where the central quantum dot is coupled to the side-
attached quantum dot and eventually to other degrees of
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phonon
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FIG. 1: (color online) Schematic view of the double quantum
dot coupled in T-shape configuration between the metallic (N)
and superconducting (S) electrodes where an external phonon
bath affects the side-attached quantum dot (QD2).

freedom. Transport through this T-shape double quan-
tum dot (DQD) occurs predominantly via the central
quantum dot (QD1), whereas electron leakage to/from
the side-coupled quantum dot (QD2) brings in the inter-
ference effects. In the case of both normal (N) electrodes
and assuming a weak interdot coupling it has been ar-
gued [17, 18] that the differential conductance should re-
veal the asymmetric Fano-type lineshapes. This fact has
been indeed observed experimentally [19].

Recently we have explored the interferometric patterns
for the DQD case placed between the metallic and super-
conducting electrodes [20]. In such heterostructures the
interferometric lineshapes appear simultaneously at neg-
ative and positive energies because of the mixed particle
and hole degrees in the effective quantum dot spectrum
[21]. These effects manifest themselves in the subgap
Andreev conductance [10]. Stability of interferometric
Fano structures on a dephasing by external fermionic
bath have been analyzed in Refs [22, 23]. Here we ex-
tend such study addressing the role of bosonic bath in
the setup displayed in Fig. 1. We argue that monochro-
matic phonon bath induces a number of the Fano-type
replicas depending on the adiabadicity ratio λ/ω0.
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In the next section we introduce the microscopic model
and briefly specify characteristic energy scales. We also
discuss the formal aspects concerning the adopted ap-
proximations. In the section III we analyze spectroscopic
fingerprints of the phonon modes for the case of uncor-
rected quantum dots. Finally, in section IV, we address
the correlation effects (Coulomb blockade and Kondo
physics) due to the on-dot repulsion between the opposite
spin electrons. Appendix A provides phenomenological
arguments for the Fano-type interferometric patters of
the double quantum dot structures.

II. MICROSCOPIC MODEL

The double quantum dot heterojunction shown in Fig.
1 can be described by the Anderson-type Hamiltonian

Ĥ = Ĥleads + ĤDQD + ĤT (1)

where Ĥleads = ĤN +ĤS denote the normal N and su-
perconducting S charge reservoirs, ĤDQD refers to both
quantum dots (together with the phonon bath) and the

last term ĤT describes the hybridization to external
leads. We treat the conducting lead as a Fermi gas

ĤN =
∑

k,σ ξkN ĉ†
kσN ĉkσN and we assume that isotropic

superconductor is described by the BCS Hamiltonian

ĤS =
∑

k,σ ξkS ĉ
†
kσS ĉkσS−∆

∑

k
(ĉ†

k↑S ĉ
†
−k↓S+ ĉ−k↓Sĉk↑S).

The operators ĉ
(†)
kσβ correspond to annihilation (creation)

of the itinerant electrons with spin σ =↑, ↓ and energies
ξkβ =εkβ−µβ are measured with respect to the chemical
potentials µβ .

The double quantum dot along with the phonon bath
is described by following local part

ĤDQD =
∑

σ,i

εid̂
†
iσ d̂iσ + t

∑

σ

(

d̂†1σ d̂2σ+H.c.
)

(2)

+
∑

i

Ui d̂
†
i↑d̂i↑ d̂†i↓d̂i↓ + ω0â

†â + λ
∑

σ

d̂†2σ d̂2σ(â† + â),

where we use the standard notation for the annihilation
(creation) operators d̂

(†)
i for electrons at each quantum

dot QDi=1,2. Their energy levels are denoted by εi and
Ui refer to the on-dot Coulomb potentials. Since we are
interested in the Fano-type interference we focus on the
electron transport only via the central quantum dot

ĤT =
∑

β=N,S

∑

k,σ

(

Vkβ d̂†1σ ĉkσβ + H.c.
)

. (3)

This situation can be extended to more general cases
when electron tunneling directly involves both the quan-
tum dots. For clarity reasons we postpone such analysis
for the future studies.

A. Outline of the formalism

Energy spectrum and transport properties of the sys-
tem (1) can be inferred from the matrix Green’s function

Gi(τ1, τ2) = −iT̂τ〈Ψ̂i(τ1)Ψ̂†
i (τ2) defined in a representa-

tion of the Nambu spinors Ψ̂†
i ≡ (d̂†i↑, d̂i↓), Ψ̂i ≡ (Ψ̂†

i )
†.

In the equilibrium conditions (for µN = µS) such ma-
trix Green’s function depends only on time difference
τ1−τ2. The corresponding Fourier transform can be then
expressed by the Dyson equation

G−1
i (ω) = g−1

i (ω) −Σ
0
i (ω) −Σ

U
i (ω), (4)

where the bare propagators gi(ω) of uncorrelated quan-
tum dots are given by

g−1
i (ω) =

(

ω − εi 0
0 ω + εi

)

. (5)

First part of the selfenergy Σ
0
i (ω) comes from a com-

bined effect of the interdot coupling, hybridization of the
central QD1 with the external leads (3) and the phonon

bath contribution acting on QD2. The other term Σ
U
i (ω)

appearing in (4) accounts for the many-body effects orig-
inating from the on-dot Coulomb repulsion Ui.

Let us begin by first specifying the selfenergy Σ
0
1(ω)

for the uncorrelated central quantum dot. The usual di-
agrammatic approach yields

Σ
0
1(ω) =

∑

k,β

Vkβgβ(k, ω) V ∗
kβ + t G2(ω) t∗, (6)

where gβ(k, ω) denote the matrix Green’s functions of
the leads. In particular, we have for the normal lead

gN (k, ω) =

( 1
ω−ξkN

0

0 1
ω+ξkN

)

(7)

and for the superconducting electrode

gS(k, ω) =

(

u2

k

ω−Ek

+
v2

k

ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

−ukvk
ω−Ek

+ ukvk
ω+Ek

u2

k

ω+Ek

+
v2

k

ω−Ek

)

(8)

with quasiparticle energy Ek =
√

ξ2
kS + ∆2 and the BCS

coefficients u2
k
, v2

k
= 1

2

[

1 ± ξkS

Ek

]

, ukvk = ∆
2Ek

. In the

wide band limit approximation we assume the constant
hybridization couplings Γβ = 2π

∑

k
|Vkβ |2 δ(ω−ξkβ) and

treat ΓN as a convenient unit for energies. We then for-
mally have

∑

k

|VkN |2 gβ(k, ω) = −i
ΓN

2

(

1 0
0 1

)

(9)

∑

k

|VkS |2 gS(k, ω) = −i
ΓS

2
γ(ω)

(

1 ∆
ω

∆
ω 1

)

(10)

where [12]

γ(ω) =

{

|ω|√
ω2−∆2

for |ω| > ∆,
ω

i
√
∆2−ω2

for |ω| < ∆.
(11)

Deep in a subgap regime (i.e. for |ω| ≪ ∆) only the off-
diagonal terms of (10) survive, approaching the static
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value −ΓS/2. From the physical point of view a magni-
tude |−ΓS/2| ≡ ∆d1 can be interpreted as on-dot pairing
gap induced in the QD1. Such situation has been stud-
ied in the literature by a number of authors [24] apply-
ing various methods to account for the correlation effects
ΣU

1 (ω).

B. Influence of the phonon modes

Generally speaking, the phonon modes have both the
quantitative and qualitative influence on the electron
transport through nanodevices [25]. In particular they
can be responsible for such effects as: appearance of the
multiple side-peaks, polaronic shift in the energy levels,
lowering of the on-dot potential Ui (even to the nega-
tive values promoting the pair hopping [26]), suppression
of the hybridization couplings Γβ and often serve as a
source of the decoherence. These and related subjects
have been so far studied by many groups, mainly con-
sidering the single quantum dots coupled to the normal
leads [27]. Here we would like to focus on the different
situation (Fig. 1) considering the phonon modes coupled
to the side-attached quantum dot. This is reminiscent of
the setup discussed by M. Büttiker [28] except that the
fermion reservoir is here replaced by the phonon bath.

In analogy to (6) we express the selfenergy Σ
0
2(ω) of

QD2 by the following contributions

Σ
0
2(ω) = tG1(ω)t∗ + Σ

ph
2 (ω), (12)

where tG1(ω)t∗ originates from the interdot hybridiza-
tion and the second term is induced by the phonon reser-
voir. Since QD2 is assumed to be weakly coupled with

the central dot we approximate the selfenergy Σ
ph
2 (ω)

adopting the local solution. The selfenergy Σ
ph
2 (ω) can

be determined by means of the Lang-Firsov canonical
transformation which effectively gives [29]

1

ω − ε2 −Σ
ph
2 (ω)

=
∑

l

( A(l)
ω−ε̃2(l)

0

0 A(l)
ω+ε̃2(l)

)

(13)

with the quasiparticle energies ε̃2(l) = ε2−∆p + lω0, the
corresponding polaronic shift ∆p = λ2/ω0 and tempera-
ture dependent spectral weights A(l) [25, 29]

A(l) = e−g
√

1+2Nph(l) enω0/kBT (14)

× Il

(

2g2
√

Nph(l) [1 + Nph(l)]

)

.

As usually, we introduce a dimensionless adiabadicity pa-

rameter g = λ2

ω2

0

, Nph(l) =
[

eω0/kBT − 1
]−1

is the Bose-

Einstein distribution and Il denote the modified Bessel
functions. In particular, for the ground state the equa-
tion (14) simplifies to

lim
T→0

A(l) = e−g g
l

l!
θ(l). (15)
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FIG. 2: (color online) Spectral function of the side-attached
quantum dot obtained at low temperature for the model pa-
rameters ε2 = −1ΓN , U2 = 5ΓN , ω0 = 0.2ΓN , g = 1, ε1 = 0,
∆ = 10ΓN assuming a weak interdot coupling t = 0.2ΓN .

In figure 2 we illustrate the characteristic spectrum
of the side-attached quantum dot (see section IV.A for
technical details). We notice two groups of the narrow
peaks. The lower one starts from the energy ε̃2 = ε−∆p

(where ∆p = λ2/ω0 is the polaronic shift) followed by a
number of equidistant phonon peaks spaced by ω0. The
upper phonon branch is separated by U2 and it mani-
fests the charging effect [25]. For the coupling g = 1 we
observe only about five phonon peaks but in the antia-
diabatic regime (g ≫ 1) their number considerably in-
creases. Such tendency is shown in section III discussing
the spectrum of QD1. Let us also stress that the in-
terference peaks have a rather tiny but yet finite width
∝ t2/ΓN [20].

C. Subgap transport

Charge transport in a subgap regime |eV |<∆ is gener-
ated only by the Andreev mechanism. Electrons coming
from the metallic lead are then converted into the Cooper
pairs in superconductor simultaneously reflecting holes
back to the normal lead. Such anomalous current IA(V )
can be expressed by the Landauer-type formula [30]

IA(V ) =
2e

h

∫

dωTA(ω) [f(ω−eV, T )−f(ω+eV, T )] ,(16)

where f(ω, T ) = 1/
[

eω/kBT + 1
]

is the Fermi-Dirac func-
tion. Andreev transmittance TA(ω) depends on the off-
diagonal part of the Green’s function G1(ω) via [30]

TA(ω) = Γ2
N |G1,12(ω)|2 . (17)

The transmittance (17) can be regarded as a qualitative
measure of the proximity induced on-dot pairing. Under
optimal conditions it approaches unity when ω is close
to the quasiparticle energies ±

√

ε21 + (ΓS/2)2. The An-
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dreev transmittance TA(ω) is also sensitive to other struc-
tures, for instance originating from the interferometric
effects [20, 22, 23].

In what follwos we shall study the differential Andreev
conductance

GA(V ) =
∂IA(V )

∂V
(18)

exploring its dependence on the phonon modes. We start
this analysis assuming that both quantum dots uncorre-
lated and we next extend it (in section IV) by considering
the correlation effects. As a general remark, let us no-
tice that the even function TA(−ω) =TA(ω) implies the
symmetric Andreev conductance GA(−V ) = GA(V ) re-
gardless of any particular features due to interference,
phonons, correlations or whatever. Physically this is
caused by the fact that particle and hole degrees of free-
dom participate equally in the Andreev scattering.

III. UNCORRELATED QUANTUM DOTS

Upon neglecting the correlation selfenergies ΣU
i (ω)=0

one has to solve the following coupled equations

G−1
1 (ω) = g−1

1 (ω) − |t|2G2(ω) +
1

2

(

iΓN ΓS

ΓS iΓN

)

(19)

G−1
2 (ω) = g−1

2 (ω) − |t|2G1(ω) − Σph
2 (ω). (20)

We have computed numerically the matrix Green’s func-
tions Gi(ω) for a mesh of energy points appropriate for
the model parameters (mainly dependent on ω0, g and t).
Practically already about ten iterations proved to yield
a fairly convergent solution.

Since the proximity induced on-dot pairing predomi-
nantly affects the energy region around µS we first con-
sider the instructive case ε1 = 0, ε2 6= ε1. In figure 3 we
present the equilibrium spectrum ρd1(ω) of the central
quantum dot obtained for three representative coupling
constants g = λ/ω0 corresponding to the adiabatic limit
g ≪ 1 (upper panel), the antiadiabatic regime g ≫ 1
(bottom panel) and the intermediate case (middle panel).
On top of two Lorentzian peaks centered at the quasipar-
ticle energies ±ΓS/2 we clearly see formation of the Fano
resonances. They appear at energies ε̃2+ lω0 and at their
mirror reflections (because of the particle - hole mixing
[21]). Number of these phonon features depends on the
adiabadicity parameter g. For the adiabatic regime there
appear only a few phonon features whereas in the oppo-
site antiadiabatic limit there is a whole bunch of such
narrow structures. In the latter case they seem to have
an irregular structure, but after closer inspection we can
clearly see the Fano-type shapes (see the inset).

Phonon driven replicas of the Fano lineshapes appear
also in the Andreev transmittance (see Fig. 4). In a dis-
tinction to the spectral function ρd1(ω) the resonances
show up in a symmetrized way due to reasons mentioned
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FIG. 3: (color online) The interferometric Fano-type line-
shapes appearing at T = 0 in the spectral function ρd1(ω)
of QD1. Numerical calculations have been done for the un-
correlated quantum dots Ui = 0 using the model parameters
ε1 = 0, ε2 = 1ΓN , t = 0.2ΓN , ΓS = 5ΓN and ∆ = 10ΓN .

in the preceding section. Again we notice the broad max-
ima centered at the subgap quasiparticle energies ±ΓS/2
accompanied by a number of the Fano-type resonances at
±(ε̃2+ lω0). Spectroscopic measurements of the Andreev
conductance would thus be able to detect such phonon
induced interferometric features.

The subgap quasiparticle lorentzian peaks (often re-
ferred as the bound Andreev states) depend on the en-
ergy level ε1. In the case of single quantum dot (i.e.
for vanishing t) the spectral function ρd1(ω) consists of

two lorentzians at ±E1 (where E1 =
√

ε21 + (ΓS/2)2)
broadened by ΓN . Their spectral weights are given by
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FIG. 4: (color online) The Andreev transmittance (upper
panel) and the differential subgap conductance GA(V ) (bot-
tom panel) obtained for the intermediate coupling limit g = 1
using the same parameters as in figure 3.

the BCS factors 1
2 (1 ± ε1/E1). This fact has some im-

portance also for the interferometric features. Figure 5
shows the spectrum ρd1(ω) for several values of ε1. When
the energy ε1 moves away from the Fermi level (by ap-
plying the gate voltage) we observe a gradual redistri-
bution of the quasiparticle spectral weights accompanied
with suppression of the Fano resonances, especially at
−(ε̃2 + lω0). The Andreev transmittance TA(ω) and dif-
ferential conductance GA(V ) are even functions therefore
such particle-hole redistribution is not pronounced, nev-
ertheless suppression of the phonon induced Fano line-
shapes is well noticeable.

IV. CORRELATION EFFECTS

In this section we address qualitative effects caused by
the Coulomb repulsion between the opposite spin elec-
trons. Roughly speaking, we expect some possible sig-
natures of the charging effect (Coulomb blockade) and
eventual hallmarks of the Kondo physics. Since the elec-
tron transport occurs in our setup via QD1 we suspect
that predominantly the Coulomb potential U1 can have a
significant role. For completeness we shall however study
the influence of correlations on both quantum dots.
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FIG. 5: (color online) Dependence of the spectral function
ρd1(ω) and the Andreev conductance GA(V ) on ε1 (tunable
by the gate voltage). Calculations have been done for the
same parameters as in figure 4.

A. Influence of U2

We start by considering the effects of finite U2, ne-
glecting correlations on the central quantum dot (U1=0).
Since the side-attached quantum dot is weakly hybridized
with QD1 therefore the indirect influence of external
leads on QD2 should be rather meaningless. For this
reason we impose a diagonal structure of the selfenergy

Σ
U
i (ω) ≃

(

Σdiag
i,↑ (ω) 0

0 −
[

Σdiag
i,↓ (−ω)

]∗

)

, (21)

and here i=2. We next approximate the diagonal terms
of (21) by the atomic limit solution

1

ω − ε2 − Σdiag
2,σ (ω)

=
1 − n2,σ̄

ω−ε2
+

n2,σ̄

ω−ε2 − U2
(22)

where ↓̄ =↑, ↑̄ =↓. It has been pointed out [31] that
the selfenergy defined in equation (22) coincides with the
second order perturbation formula

Σdiag
2,σ (ω) = U2 n2,σ̄+

(U2)
2
n2,σ̄(1 − n2,σ̄)

ω − ε2 − U2(1 − n2,σ̄)
(23)

and it can be generalized into more sophisticated treat-
ments in the scheme of iterative perturbative theory [32].
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FIG. 6: (color online) Spectral function ρd1(ω) of the central
quantum dot (top panel) and the differential Andreev con-
ductance (bottom panel) obtained for ε1 = 0, ε2 = −1ΓN ,
t = 0.2ΓN , g = 1, ω0 = 0.2ΓN , ∆ = 10ΓN assuming the
Coulomb potential U2 = 5ΓN . The corresponding ρd2(ω) is
shown in Fig. 2.

For the weak interdot coupling t we expect however that
corrections to (22,23) are not crucial. We skip here the
higher order superexchange mechanism leadind to the ex-
otic Kondo effect [33] which is beyond the scope of our
present study.

The top panel of figure 6 shows the spectrum ρd1(ω)
obtained at low temperature for U2 = 5ΓN , U1 = 0. As
far as the side attached quantum dot spectrum is con-
cerned it reveals a bunch of phonon peaks formed near
the energy ε̃2 and another group of states around the
Coulomb satellite ε̃2+U2 (see figure 2). These phonon
signatures appear in ρd1(ω) as the Fano-type resonances.
Due to the absorbed superconducting order we can no-
tice effectively four groups of such Fano-type structures
nearby the energies ε̃2, ε̃2+U2 and at their mirror reflec-
tions. The Andreev transmittance TA(ω) is symmetrized
versions of what is shown in figure 6 therefore the result-
ing differential conductance is even function of applied
voltage V (see the bottom panel in Fig. 2).

B. Influence of U1

Correlations originating from the Coulomb repulsion
U1 have a totally different effect on the transport prop-
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FIG. 7: (color online) Spectral function ρd1(ω) of the cen-
tral quantum dot obtained in the Kondo regime for kBT =
10−3ΓN , ε1 = −2ΓN , U2 = 15ΓN , ΓS = 4ΓN , t = 0.2ΓN ,
ω0 = 0.2ΓN , g = 1, ∆ ≫ ΓN . The vertical arrows indicate
positions of the subgap Andreev states at ±E1 and at their
Coulomb satellites. We can notice that the Kondo peak at
ω = 0 is distinct from the phonon induced Fano resonances.

erties than above discussed U2. The central quantum dot
is directly coupled to both external leads therefore on one
hand by it experiences the induced on-dot pairing (due to
ΓS) and, the other hand, the Kondo effect (due to ΓN ).
These phenomena are known to be antagonistic. Their
nontrivial competition in a context of the quantum dots
has been discussed theoretically by many groups using
various techniques (see Ref. [13] for a survey).

To recover basic qualitative features we shall follow
here our previous studies [34] which proved to yield sat-
isfactory results for the single quantum dot on interface
between the metallic and superconducting leads [10]. We

choose the correlation selfenergy Σ
U
2 (ω) in the form (21)

and determine its diagonal parts by the equation of mo-
tion approach [35]. Formally we use

Σdiag
1,σ (ω) = U1 [n1,σ̄−Σ1(ω)] (24)

+
U1 [n1,σ̄−Σ1(ω)] [Σ3(ω) + U1(1−n1,σ̄)]

ω − ε1 − Σ0(ω) − [Σ3(ω) + U1(1 − n1,σ̄)]
,

where

Σν(ω) =
∑

k

|VkN |2
[

1

ω−ξkN
+

1

ω−U1− 2ε1+ξkN

]

×
{

f(ξkN ) for ν = 1
1 for ν = 3

(25)

and as usually Σ0(ω) =
∑

k
|VkN |2/(ω−ξkN)=−iΓN/2.

Let us remark that upon neglecting the terms Σ1(ω)
and Σ3(ω) the selfenergy (24) nearly coincides with the
second order perturbation formula (23)

lim
Σ1,Σ3→0

Σdiag
1,σ (ω) = (26)
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FIG. 8: (color online) The differential Andreev conductance
GA(V ) for the set of parameters discussed in figure 7 and
several values of ε2.

U1n1,σ̄ +
[U1]

2
n1,σ̄(1−n1,σ̄)

ω − ε1 − U1(1 − n1,σ̄)−Σ0(ω)

except of Σ0(ω) present in the numerator of (27). This in-
dicates that equation (24) is able to capture the charging
effect (Coulomb blockade). The additional terms Σν(ω)
provide corrections which are important in the Kondo
regime, i.e. for ε1 < 0 < ε1 + U1 at temperatures below

TK = 0.29
√

U1ΓN/2 exp
[

πε1(ε1+U1)
ΓNU1

]

. Under these con-

ditions at µN there forms the narrow Kondo resonance
of a width scaled by kBTK . In our present method such
Kondo resonance is only qualitatively reproduced [34].
Its structure in the low energy regime |ω| ≤ kBTK must
be inferred from the renormalization group or other more
sophisticated treatments.

Let us now point out the main properties character-
istic for the Kondo regime. The equilibrium spectrum
of QD1 illustrated in figure 7 consists of four Andreev
bound states (indicated by the vertical arrows) centered

at ±
√

ε21 + (ΓS/2)2 and ±
√

(ε1 + U1)2 + (ΓS/2)2. The
fact that ε1 is located aside the superconducting en-
ergy gap causes asymmetry of the quasipartice spectral
weights. Besides these broad lorentzians we additionally
notice the narrow peak at the Fermi level signifying the
Kondo effect. Such Kondo peak is considerably reduced
in comparison to the normal case ΓS = 0 because of a
competition with the on-dot pairing [34]. On top of this
picture we recognize the phonon degrees of freedom ap-
pearing as the Fano-type resonances at ±(ε̃2 + lω0).

The above listed effects are also detectable in the dif-
ferential Andreev conductance (see Fig. 8). GA(V ) has
local maxima at voltages corresponding to the energies
of the subgap bound states. Furthermore, similarly to
our previous studies [34], we notice that the Kondo peak
leads enhances the zero-bias Andreev conductance. This
property has been indeed observed experimentally [10].
In the present situation we additionally observe the Fano-
type resonances. They destructively affect the zero-bias
enhancement whenever the phonon features happen to be

located nearby the Kondo peak. The zero-bias feature it-
self is also quite sensitive to the asymmetry ratio ΓS/ΓN

- practically it is visible only when both couplings Γβ are
comparable [34].

V. CONCLUSIONS

We have studied influence of the phonon modes on
the spectral and on the Andreev transport in the double
quantum dot vertically coupled between the metallic and
superconducting electrodes. Our studies focused on the
weak interdot coupling t assuming that phonons directly
affect only the side-attached quantum dot. Under such
circumstances an external phonon bath leads to some in-
terferometric effects, reminiscent of the dephasing setup
introduced by Büttiker [28].

In particular we find a number of the equidistant Fano-
type patterns manifested both in the effective spectrum
and in the subgap transport properties. These lineshapes
appear at ±(ε̃2 + lω0) (where ω0 is the phonon energy, l
is an integer number and ε̃2 = ε2 − λ2/ω0 describes the
QD2 energy shifted by a polaronic term). They can be re-
garded as replicas of the initial interferometric structures
in absence of the phonon bath formed at ±ε2 [20, 23].

Electron correlations Ui on the quantum dots can in-
duce additional Coulomb satellites of these Fano features.
We have investigated in some detail how the correla-
tion effects get along with the Fano interference tak-
ing into account the induced on-dot pairing. We notice
that phonon features are sensitive to the subgap Andreev
states (dependent on Ui) and to the Kondo effect. The
latter one is important whenever the phonon lineshapes
are induced in a vicinity of the Kondo peak. We thus
expect that quantum interference would destructively af-
fect the Kondo physics by partly suppressing its zero-bias
hallmark [10].

It would be of interest for the future studies to check if
the presently discussed effects are still preserved when
the interdot coupling t is comparable to the external
hybridization Γβ. We suspect, that the Fano-type pat-
terns shall evolve into some new qualities typical for the
complex molecular structures. Furthermore, the role of
Coulomb interaction U2 might prove to be more influen-
tial via the higher order exchange integrations inducing
some exotic kinds of the indirect Kondo effect [33]. These
nontrivial issues deserve further studies eventually using
some complementary methods.
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Appendix A: Fano-type interference:

phenomenological arguments

Here we would like to explain in a simple way why
the interferometric Fano structures show up in the trans-
port properties of DQD system. In general, the Fano-
type lineshapes [36] emerge whenever the localized (res-
onant) electron waves interfere with a continuum (or
with sufficiently broad electron states). Following [37]
let us consider the very instructive example in which
the ”direct” transmission channel td =

√
Gde

iφd (here
Gd denotes its conductance and φd stands for an ar-
bitrary phase) is combined with the transmission am-

plitude tr(ω) =
√
Gr

(ΓL+ΓR)/2
ω−εr+i(ΓL+ΓR)/2 of another ”res-

onant” level εr. From general considerations [35] the
corresponding conductance of such ”resonant” level is

Gr = 2e2

h
4ΓLΓR

(ΓL+ΓR)2
. Effectively these two channels yield

the following asymmetric structure

G(ω) = |td + tr(ω)|2 = Gd
|ω̃ + q|2
ω̃2 + 1

, (A1)

where ω̃ = (ω − εr)/(12Γ) and q = i + e−iφd

√

Gr

Gd
is the

characteristic asymmetry factor.

Similar reasoning can be applied to the T-shape dou-
ble quantum dot system shown in Fig. 1. For simplic-
ity let as neglect the phonon bath and assume that
both electrodes are normal conductors. In the case
of weak interdot coupling t2 ≪ Γ2

β the side-attached
dot QD2 plays the role of ”resonant” channel with its

transmission amplitude tr(ω) =
√
Gr

t/2
ω−ε2+it/2

, where

Gr = 2e2

h . On the other hand the other central dot
QD1 provides a relatively broad background td(ω) =
√

2e2

h
4ΓNΓS

(ΓN+ΓS)2
(ΓN+ΓS)/2

ω−ε1+i(ΓN+ΓS)/2 . For energies ω ∼ ε2

the latter amplitude is nearly constant td(ω) ≃
√
Gde

iφd

with
√
Gd =

√

2e2

h
4ΓNΓS

(ΓN+ΓS)2

∣

∣

∣

1
2(ε1−ε2)/(ΓN+ΓS)+i

∣

∣

∣
. Un-

der such conditions the resulting conductance G(ω) =

|td + tr(ω)|2 indeed reduces to the Fano structure (A1).
Some more specific microscopic arguments in support
for the Fano-type interference of the strongly correlated
quantum dots have been discussed at length e.g. by
Maruyama [17] and by Žitko [18].
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