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Particle-hole mixing in the pseudogap state of preformed pairs

T. Domański
Institute of Physics, M. Curie Sk lodowska University, 20-031 Lublin, Poland

Motivated by a novel ability of STM spectroscopy to measure the Bogolubov angle we propose
to use this technique for identifying precursor effects above the transition temperature Tc of under-
doped cuprate superconductors. Within phenomenological two-component model we show that the

Bogolubov angle can emerge already in the normal state upon approaching Tc from above. Its mea-
surements might clear up what part of the pseudogap region in the phase diagram corresponds to the
Bogolubov-like quasiparticles and, ultimately whether T ∗ is related to superconducting fluctuations.

I. INTRODUCTION

In the recent paper Fujita et al [1] proposed to combine
the STM tunneling conductance measured at positive
and negative bias in order to determine the particle-hole
mixing in superconductors. At sufficiently low tempera-
tures the charge carriers (conduction electrons or holes)
are bound into pairs and effectively the single-particle
excitation spectrum (probed by STM) becomes gaped
where the particle and hole contributions mix with one
another. In conventional superconductors, they are ex-
pressed by the BCS coefficients |u2

k| and correspondingly
|v2

k| = 1−|uk|2. As a measure of the particle-hole mixing
one defines the Bogolubov angle [2]

θk =
π

2
− 2arctan

(

uk

vk

)

(1)

which varies between −π/2 and π/2 depending on the
momentum k and indirectly on temperature. This an-
gle (2) has a clear physical interpretation in terms of the
pseudospin representation introduced for fermion pairs
by Anderson [3]. In the Hilbert space restricted to
nk↑−n−k↓=0 such angle θk points down (up) when true
quasiparticles are represented by the particles (holes).
The upper and bottom panels of figure 1 illustrate this
behavior for the normal and superconducting states [3].
In general, θk is a dynamical quantity governed by the
Bloch type equations. Its dynamics is recently widely
explored for the ultracold superfluid atoms where time-
dependent magnetic field traversing the Feshbach reso-
nance can lead to soliton-like solutions [4].

In the high temperature superconductors (HTSC)
fermion pairs extend on a local (interactomic) distance
therefore the energy gap [5] and the angle θk [1] are both
spatially dependent. In addition to electronic inhomo-
geneity, formation of the pairs (below some characteristic
temperature Tp) is not accompanied by onset of super-
conductivity (which appears at Tc ≤ Tp). Up to now
there is no consensus whether Tp follows the transition
temperature being close to Tc or perhaps the pairs ex-
ist in a whole pseudogap region up to T ∗ [6]. The new
ability of STM spectroscopy [1] might finally resolve this
intriguing issue.

In principle, the Bogolubov angle (1) is sensitive to
existence of pairs at any temperature. From various ex-
perimental studies it is known that HTSC materials have
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FIG. 1: Schematic view of the Bogolubov angle orientation.
The upper and bottom plots correspond to the normal and
superconducting phases [3] while the middle one illustrates
the pseudogap state as deduced from the present analysis.

roughly the BCS-type properties below Tc [7]. However,
studying fermion pairing above Tc one usually encounters
some difficulties because of the finite life-time effects, ab-
sence of the long range coherence, etc. On a theoretical
level one must go there beyond the mean-field framework
to account for these strong quantum fluctuations.

To handle such problems we use here a phenomenolog-
ical two-component model where fermion singles and the
pairs are introduced right at the outset [8]. Our main
objective is to show that the precursor pairing leads to a
slanted Bogolubov angle |θk| 6=π/2 near the Fermi surface
(see the middle panel in figure 1). We think that such
behavior is generic for all situations with strong feed-
back effects between the single fermions and the pairs.
In particular, similar results can be expected for the mi-
croscopic models of HTSC using the extended Hubbard,
t-J or RVB scenarios.
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II. MODEL

Superconductivity of the HTSC compounds is believed
to originate from the strong electron correlations within
CuO2 planes. Various mechanisms have been explored
so far but the discussion about microscopic physics is
still going on [9]. We skip such a debate and focus sim-
ply on the effective model involving the coupled fermion
and boson degrees of freedom. This scenario seems to be
natural for the pseudogap state where single fermions co-
exist with the preexisting pairs and they both affect each
other. There have been given some phenomenological
[10] and microscopic arguments [11, 12, 13] supporting
realization of this scenario in the HTSC materials as well
as its usefulness for a description of the ultracold fermion
atoms interacting with the Feshbach resonance [14].

We consider the Hamiltonian in the following form [8]

Ĥ =
∑

k,σ

(εk−µ) ĉ†kσ ĉkσ +
∑

q

(Eq−2µ) b̂†qb̂q (2)

+
1√
N

∑

k,q

(

gk,qb̂†qĉq−k↓ĉk↑ + g∗k,qĉ†k↑ĉ
†
q−k↓b̂q

)

,

where ĉ†kσ (ĉkσ) operators refer to creation (annihilation)

of single fermions with the energy εk and b̂†q (b̂q) corre-
spond to the preformed fermion pairs. Interaction be-
tween the single fermions and the pairs is denoted by
gk,q. For simplicity, we shall assume that concentration

of pairs is small so that b̂
(†)
q operators obey the ordinary

commutation relations (neglecting the hard-core effect).

In the simplest treatment the interaction part can be
linearized and the decoupled boson and fermion parts
become exactly solvable [8]. The resulting spectrum
of fermions has then the BCS structure AMF (k, ω) =
u2
kδ(ω−Ek)+ v2

kδ(ω +Ek) with the quasiparticle energy

Ek =
√

(εk−µ)2 + ∆2
k and the usual coherence factors

u2
k, v2

k = 1
2 [1±(εk−µ)/Ek]. The energy gap of single par-

ticle excitation is effectively given by ∆k = gk,0

√

〈nB
0 〉

which means that fermions undergo the transition to su-
perconducting state simultaneously with appearance of
the Bose-Einstein condensate of (preformed) pairs [8].

The mean-field approximation is not able to take into
account any quantum fluctuations therefore for T > Tc

the fermion spectrum reduces to a single peak at ω =
εk − µ. This would imply that in the normal state
|θk|=π/2 and only in the superconducting state the Bo-
golubov would mix the particle and hole excitations [3].
In the next section we use a method capable to track the
mutual boson-fermion feedback effects and show that due
to the precursor of the superconducting correlations the
Bogolubov angle gets tilted above Tc. Moreover, at the
Fermi surface it shows a novel behavior which is distinct
from that of the BCS superconductor and from the usual
normal state.
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FIG. 2: The single particle excitation spectrum of fermions
in the pseudogap regime. Besides the long-lived quasiparticle
at ω= ε̃k−µ there emerges its mirror reflection corresponding
to the damped Bogolubov shadow branch. Both branches
develop a pseudogap feature in the dispersion curves at kF .

III. METHOD

For a selfconsistent study of the model (2) we use non-
perturbative procedure based on a continuous canonical

transformation Ĥ−→eŜ(l)Ĥe−Ŝ(l)−→ ˆ̃H [15]. The main
idea is to eliminate the interaction part gk,q through a se-
quence of infinitesimal steps. Proceeding along the lines
of the Renormalization Group (RG) techniques one starts
from the high energy sector and progressively goes down
renormalizing the low energy states (by which we mean
fermion states close to µ and boson states near 2µ).

In practice this is done by setting Ĥ(l)=eŜ(l)Ĥe−Ŝ(l)

(where Ĥ(0) corresponds to the initial Hamiltonian) and

analyzing the flow equation ∂lĤ(l) using an appropriate

choice of Ŝ(l) operator. For constructing the generat-
ing operator S(l) we have followed the initial proposal of
Wegner which guaranties that liml→∞ gk,q(l)=0. Some
necessary technical details have been given in our previ-
ous paper [16].

The model Hamiltonian (2) evolves continuously ac-
cording to the set of flow equations ∂lεk(l), ∂lEq(l) and
∂lgk,q(l) [16]. Since they are convoluted with one an-
other one must solve them simultaneously step by step.
We managed to do it by numerical means considering
the fermion and boson particles on a lattice (when no
infrared cutoffs are needed). Eventually for l → ∞, we
obtained the fixed point values

εk −→ ε̃k, Eq −→ Ẽq, g̃k,q −→ 0. (3)

In particular, we found the fermion dispersion ε̃k to have
a true gap for T < Tc or a pseudogap for Tp > T > Tc
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[16]. Simultaneously Ẽq develops the collective sound-
wave (Goldstone) mode at T <Tc which survives even in
the normal state but at finite momenta [18].

For a complete information about the effective fermion
spectrum one needs besides ε̃k also the transformed oper-

ators ĉ
(†)
kσ(l→∞) [19]. Such flow equations ∂lĉ

(†)
kσ(l) have

been explored by us for arbitrary temperatures [17, 18].
Here it would be sufficient to focus on the normal state
when the flow equations of fermion operators simplify to

ck↑(l) = Pk(l) ck↑ +
1√
N

∑

q

′

rk,q(l) bqc†q−k↓ (4)

c†−k↓(l) = − 1√
N

∑

q

′

r∗k,q(l) b†qcq+k↑ + P∗
k(l) c†−k↓(5)

with the initial condition Pk(0) = 1 and rk,q(0) = 0.
Equations (4,5) describe the process in which c-fermion
scatters into b-boson with an involvement of the opposite
spin fermion. The equations (4,5) remind the Bogolubov-
Valatin transformation but here, for the normal state,
they differ because a damping of cooperons.

The effective single particle spectral function of σ =↑
fermions is finally given by the following form

A(k, ω) = |P̃k|2δ (ω+µ−ε̃k) (6)

+
1

N

∑

q

′
(

nB
q + nF

q−k↓

)

|r̃k,q|2δ(ω+µ−Ẽq+ε̃q−k)

where the coefficients P̃k and r̃k,q refer to l = ∞ fixed
values, nB

q is the occupancy of q-momentum bosons and

nF
kσ denotes the filling of (k, σ) fermion state. The flow

equations for l-dependent coefficients Pk(l) and rk,q(l)
have been derived in our previous work [17]. They have
been solved numerically together with a set of interde-
pendent equations for εk(l), Eq(l) and gk,q(l).

IV. BOGOLUBOV ANGLE

The first term of the spectral function (6) represents
the long-lived quasiparticles whose renormalized energies
are denoted by ω= ε̃k−µ. The coefficients |P̃k|2 can thus
be interpreted as

|P̃k|2 ≡
{

u2
k for |k| < kF

v2
k for |k| > kF .

(7)

The remaining part of (6) describes damped fermion
states which are spread over a wide energy region. Most
of them constitute an incoherent background almost in-
sensitive to temperature. Among them there is however
a certain fraction (very important for us) of a different
character – these are the quasiparticle states emerging
near the Fermi energy upon approaching Tc from above.
They are located around ω = −(ε̃k−µ) as can be seen
in figure 2. This particular excitation branch, which is
sort of a mirror reflection to the quasiparticle dispersion
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FIG. 3: Spectral function of the coherent (labels on the left
axis) and the damped fermion states (labels on the right
axis) for the momentum distant (upper panel) and close (lowe
panel) to the Fermi surface. The weight of quasiparticle peak
|uk|

2 and the weight of the hole contribution |vk|
2 were de-

termined for the pseudogap regime at T = 0.004D (where D

denotes the bandwidth).

ε̃k−µ, yields a missing information about the hole (parti-
cle) contribution v2

k (u2
k) for momenta below (above) kF .

With these ingredients we can now estimate the Bogol-
ubov angle (1) in the pseudogap regime.

We investigated numerically the spectral function (6)
for several temperatures keeping a fixed total concen-
tration of charge nF

↑ + nF
↑ + 2nB. The shadow branch

appeared below Tp and we observed that a broadening of
this branch gradually narrowed upon decreasing temper-
ature. Ultimately, at T →Tc, the shadow branch evolved
into the delta function [17], signaling that cooperons be-
came the long-lived quasiparticles.

One can give a simple analytical argument explain-
ing appearance of the Bogolubov shadow branch upon
approaching Tc from above. With a decreasing tempera-
ture bosons start gathering at lower and lower energies.
Since their distribution nB

q shrinks practically only to
the smallest available energies (just above Eq=0) this pro-
duces a broadened peak of almost the Lorentzian shape

1

N

∑

q

′

|r̃k,q|2nB
q δ(ω−µ+ε̃q−k) ≃ Γk

(ω −µ+ε̃k)2 + Γ2
k

(8)

because Eq∼0 ∼ 2µ + 0+. The other term in (6) con-
taining nF

q−k↓ is responsible solely for the structureless
incoherent background.

The amount of spectral weight contained in the shadow
branch can be determined by integrating the spectral
function describing the damped fermion states for a given
T and subtracting from it the integrated spectral func-
tion at high temperatures. We illustrate this procedure
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FIG. 4: Momentum dependence of the Bogolubov angle (1)
for the superconducting, pseudogap and normal states.

in figure 3 for two representative momenta k <kF when
the hole coefficient v2

k is given by the shaded area. In the
upper panel (corresponding to k located fairly below kF )
we obtain a residual (but still finite) hole contribution,
hence the Bogolubov angle (1) is close to −π/2. In the
bottom panel we show the situation corresponding to the
fermion state located infinitesimally below kF . One can
notice that the quasiparticle peak and its mirror reflec-
tion (shadow) do not merge because of the finite pseudo-
gap ∆pg. The hole coefficient v2

k increases for k→kF −0+

but still the particle weight (7) is dominant.
In figure 4 we show the calculated Bogolubov angle as a

function of momentum measured from the Fermi surface.
The thin line refers to the usual normal state with an
abrupt change of θk by π at kF . For the pseudogap region
we notice that appearance of the shadow branch has a
substantial effect on the Bogolubov angle which becomes
tilted near kF . Yet, exactly at the Fermi surface the
Bogolubov angle is discontinuous. The continuous BCS-
type behavior is finally revived for temperatures T ≤Tc.
Since the energy gap is almost fixed below Tc therefore
the Bogolubov angle is practically frozen.

V. CONCLUDING REMARKS

We studied the effect of strong superconducting fluctu-
ations above the transition temperature where the single
fermions coexist and interact with the preformed pairs.
To account for the influence of preformed pairs on the
single particle excitation spectrum we used the selfcon-
sistent RG-like method [15]. We found that in the pseu-
dogap regime the long-lived quasiparticles (whose renor-
malized dispersion ε̃k is depleted near kF ) are accompa-
nied by the additional (shadow) branch responsible for
the particle-hole mixing. We estimated the amount of
particle and hole spectral weights and thus determined
the Bogolubov angle above Tc which to our knowledge
has not been done so far in any microscopic model.

Momentum dependence of the Bogolubov angle in the
pseudogap regime was found to be distinct from the be-
havior of the normal and superconducting states. In the
normal state (where no particle-hole mixing exists) θk

changes abruptly at kF from −π/2 to π/2 while in the
superconducting state (below Tc) it evolves continuously
between these limiting values over the energy regime of
several ∆sc (where effectively the particle and hole exci-
tations are mixed with one another). In the pseudogap
regime the particle-hole mixing does show up leading to
|θk| 6= π/2 but the Bogolubov angle is still discontinu-
ous at the Fermi surface. If the novel STM technique
could resolve the particle-hole mixing above Tc one may
hope to obtain here discussed results for the underdoped
HTSC cuprates. In this way, experimental measurements
of the Bogolubov angle might explain what part of the
phase diagram corresponds to the superconducting fluc-
tuations.
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