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The flow equation approach to the pairing instability problem
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By means of the continuous unitary transformation similar to a general scheme of the Renormal-
ization Group (RG) procedure we study the issue of symmetry breaking and pairing instability in the
system of interacting fermions. Constructing a generalized version of the Bogoliubov transformation
we show that formation of the fermion pairs and their superconductivity/superfluidity can appear
at different temperatures. It is shown that strong quantum fluctuations can destroy the long-range
order without breaking the fermion pairs which may still exist as incoherent and/or damped entities.
Such unusual phase is characterized by a partial suppression of the density of states near the Fermi
energy and by residual collective features like the sound-wave mode in the fermion pair spectrum.

Formation of the fermion pairs is a common phe-
nomenon for various physical systems of the interact-
ing particles such as: electrons, nucleons, atoms and
quarks. Binding energy and the spatial extent of fermion
pairs may vary from case to case depending on particular
species and on specific interaction mechanism. To give
some examples let us mention that pairing can be driven
by:

(i) exchange of phonons (in classical superconductors,
MgB2, etc),

(ii) exchange of magnons (superconductivity of the
heavy fermion compounds),

(iii) strong correlations (the high Tc superconductors),

(iv) Feshbach resonance (superfluidity of the ultracold
fermion atoms),

(v) or by other effects (nucleon pairing in nuclei, su-
perfuidity of the neutron stars).

Usually formation of the fermion pairs goes hand in
hand with appearance of the order parameter which con-
sequently leads either to superconductivity (for charged
particles such the conduction band electrons or holes) or
to superfluidity (for electrically neutral objects like 3He
or the ultracold fermion atoms in magnetooptical traps).
However, a simultaneous formation of pairs and emer-
gence of the symmetry broken phases needs not be a rule.
We will show here example that both these phenomena
are distinct and happen to coincide at the same critical
temperature Tc only when the quantum fluctuations are
weak.

I. HAMILTONIAN OF THE INTERACTING

FERMIONS

System of the interacting fermions can be described by
the following Hamiltonian

Ĥ =
∑

k,σ

(ǫk − µ)ĉ†kσ ĉkσ (1)

+
1

2

∑

k,k′,q

∑

σ,σ′

Uk,k′(q)ĉ†
k+ q

2
,σ
ĉ
†
k′− q

2
,σ′
ĉk′+ q

2
,σ′ ĉk−q

2
,σ

where εk is a single particle energy for a given momentum
k and σ corresponds to additional quantum numbers like
for instance spin ↑, ↓ for electrons, the angular momen-
tum for atoms or the isospin for nucleons. The two-body
interactions are described by the second term with the
potential Uk,k′(q). We use in (1) the standard notation

for the creation (annihilation) operators ĉ†kσ (ĉkσ).
In general there can arise various kinds of ordering, for

instance: ferromagnetism, antiferromagnetism, charge
ordering, superconducting BCS state, etc. We will fo-
cus here on the pairing instabilities. For this purpose we
further consider the Hamiltonian reduced only to q = 0

channel

Ĥ =
∑

k,σ

ξkĉ
†
kσ ĉkσ +

∑

k,k′

Vk,k′ ĉ
†
k↑̂c

†
−k↓ ĉ−k′↓ĉk′↑ (2)

with ξk = εk−µ and we assume the two-body potential to
be attractive Vk,k′ < 0. We will investigate this reduced
BCS Hamiltonian using the nonperturbative method (de-
scribed in section III) which belong to a family of the
Renormalization Group techniques [1].

II. RENORMALIZATION GROUP APPROACH

Thermodynamics of the system (total energy, specific
heat, pressure, etc) can be computed from the partition

function Z = Tre−Ĥ/kBT . It is convenient to express
Z using the path integrals over the Grassmann variables
ψk,σ, ψ∗

k,σ (which formally represent the eigenvalues of

the annihilation ĉk,σ and creation ĉ†k,σ operators)

Z =

∫

D[ψ, ψ∗] e−S. (3)

The action consists of two contributions S = S0 + SI
where the quadratic term

S0 =
∑

σ

∫

k

ψ∗
k,σ (iωn−ξk) ψk,σ (4)

corresponds to a free part and integration in the equa-
tion (4) runs over the four-vector k ≡ (iωn,k) with the
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fermion Matsubara frequencies ωn = (2n+ 1)πkBT . The
second quartic term refers to the two-body interactions

SI = −
∫

k,k′
Vk,k′ψ∗

k,↑ψ
∗
−k,↓ψ−k′,↓ψk′↑ (5)

As far as the dynamic quantities are concerned (various
correlation functions) they are derivable directly from the
generating functional

G[χ, χ∗] = (6)

log

[

Z−1
∑

σ

∫

D[ψ, ψ∗]e
−(S+

∫

k
ψ∗

k,σχk,σ+ψk,σχ
∗

k,σ)

]

where χk,σ and χ∗
k,σ are the Grassman source

fields. For instance, the single particle excitations
can be determined via the two-point Green’s function
δ

δχ∗

k,σ

δ
δχk,σ

G[χ, χ∗]
χ=0,χ∗=0

.

Physical properties of the system under consideration
depend predominantly on such fermion states which are
located near the Fermi surface. Other states distant from
the Fermi energy are less relevant therefore it is useful
to make a distinction between their contributions to the
partition function

Z =

∫

D<Λ[ψ, ψ∗]

∫

D>Λ[ψ, ψ∗] eS[ψ,ψ∗] (7)

where symbol D<Λ[ψ, ψ∗] corresponds to the fermion
states whose distance from the Fermi energy is smaller
than a given cut-off |εk − εkF

| < Λ. In the numerical
RG method [1] one first integrates out the high energy
fermion states. After completing such integration one is
left with only the low energy states. Partition function is

then Z =
∫

D<Λ[ψ, ψ∗] e−S
Λ[ψ,ψ∗] where the renormal-

ized action is defined by

e−S
Λ[ψ,ψ∗] =

∫

D>Λ[ψ, ψ∗] e−S[ψ,ψ∗]. (8)

This action (8) can be then cast into (6) simplifying the
calculation of the generating functional

G[χ, χ∗] = (9)

log

[

Z−1

∫

D<Λ[ψ, ψ∗]e
−(SΛ+

∫

<Λ

k
ψ∗

kχk+ψkχ
∗

k)
.

]

Such idea of mode elimination has been introduced in the
theoretical physics a long time ago [2]. Wilson adopted
it to the solid state physics by proposing a sequential
integration of the fermion fields down to some small cut-
off Λ. Reducing bit by bit the cut-off Λ to infinitesimally
small values he was able to study emergence of the critical
phenomena [1]. For a more specific discussion of various
RG formulations we recommend the the review papers
[3].

However, in the case of symmetry broken phases (such
as the superconducting state) the simple scaling proce-
dure usually fails due to a natural lower boundary cut-off

(the energy gap ∆ of the single particle excitations). It
has been even claimed that conventional RG techniques
are blind with respect to the symmetry-broken states [4].
The situation is not that much hopeless, there are pos-
sible routes to circumvent this problem. Let us mention
two of them

(i) one can impose by hand an infinitesimal symmetry-
breaking parameter ∆(Λ) at a certain initial con-
dition Λ=Λ0 and then its physical meaning would
eventually establish upon the flow Λ → 0 [5],

(ii) in order to eliminate the interacting part SI one
can enlarge the Hilbert space by introducing the
linear coupling to the boson fields Φ, Φ∗ via the
Hubbard - Stratonovich transformation [6].

Using the first procedure one must be cautious how to
constrain the small symmetry breaking parameter while
in the latter method there rise additional complications
dealing with the new boson fields. Perhaps the second
option is more natural because after all the interactions
are always mediated by certain boson fields (phonons,
photons, gravitons, etc). Unfortunately in practice it is
hard to go beyond a simple saddle point approximation
except than by taking into account the small Gaussian
corrections around it. In the next section we shall briefly
describe a more convenient procedure which has been
proposed in 1994.

III. CONTINUOUS CANONICAL

TRANSFORMATION

An alternative approach to deal with the many-body
effects (which in particular is suitable for studying the
symmetry broken phases) has been invented by Weg-
ner [7] and independently by Wilson and G lazek [8].
Instead of integrating out the high energy states (fast
modes) one constructs a continuous unitary transforma-

tion Ĥ(l) = Û(l)ĤÛ †(l) with a purpose to simplify the
Hamiltonian either to diagonal or at least to a block-
diagonal form. This is achieved through a series of in-
finitesimal steps Ĥ −→ Ĥ(l) −→ Ĥ(∞), where l stands
for some formal continuous parameter. In a course of
transformation the Hamiltonian evolves according to the
differential flow equation

∂lĤ(l) =
[

η̂(l), Ĥ(l)
]

(10)

where the generating operator is defined as η̂(l) =

−Û(l) ∂lÛ
†(l).

This method has a similarity to the traditional RG
scaling procedure because

(i) diagonalization of the high energy sector occurs
mainly during initial part

(ii) while the low energy states are worked out at the
very end of transformation.
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Roughly speaking, a role of the Wilson’s cut-off energy
Λ is played here by Λl = 1√

l
.

Advantage of such new procedure becomes particularly
clear when investigating the mutual relations between
the high and small energy states (i.e. between the fast

and small modes). In the continuous canonical transfor-
mation one treats both energy sectors on equal footing
throughout the whole transformation process. Thereof
their feedback effects are feasible to study.

For the Hamiltonians Ĥ = Ĥ0 + Ĥ1 (where H0 is a
diagonal part in a given representation) it has been pro-
posed [7] to choose

η̂(l) =
[

Ĥ0(l), Ĥ1(l)
]

(11)

so that the off-diagonal term is eliminated at the asymp-
totic point

lim
l→∞

Ĥ1(l) = 0. (12)

There are also other possible ways for constructing the
generating operator η̂. Some a survey we recommend the
recent review papers [9, 10].

As far as the diagonalization is concerned the continu-
ous canonical transformation turns out to be a rather
convenient tool. However, if one needs the correla-
tion functions then the situation becomes more cumber-
some. For example, to determine the correlation func-
tions 〈Â(t)B̂(t′)〉 one needs the statistical average

Tr
{

e−βĤÔ
}

= Tr
{

Û(l)e−βĤÔÛ †(l)
}

= Tr
{

e−βĤ(l)Ô(l)
}

(13)

where Ô(l) = Û(l)ÔÛ †(l). The easiest way to carry out
the statistical averaging (13) is in the limit l −→ ∞
when Ĥ(∞) becomes (block-)diagonal. However, this re-
quires a simultaneous transformation of the observables
Ô −→ Ô(l) −→ Ô(∞). The corresponding flow equation
is given in a familiar form

∂lÔ(l) =
[

η̂(l), Ô(l)
]

. (14)

Thus, calculation of the correlation functions is rather
more relative to the projection techniques.

IV. THE BILINEAR HAMILTONIAN

To illustrate how the flow equation method actually
works we first consider the bilinear Hamiltonian

Ĥ =
∑

k,σ

ξkĉ
†
kσ ĉkσ −

∑

k

(

∆k ĉ
†
k↑ĉ

†
−k↓ + ∆∗

k ĉ−k↓ĉk↑

)

(15)

which can be solved exactly, in particular by a single
step Bogoliubov transformation [11]. The off-diagonal
terms in the Hamiltonian (15) can be thought as resulting

from the mean field approximation for the weak pairing
potential Vk,k′ < 0 with a usual definition of the order
parameter ∆k = −∑

k′ Vk,k′〈ĉ−k′↓ĉk′↑〉.
To get the rigorous solution we now construct a con-

tinuous transformation such that the convoluted states
|k, ↑> and | − k, ↓> will be decoupled. This continuous
process depends on a distance from the Fermi surface
|ξk| (and the same holds for computation of the coher-
ence factors uk, vk).

Using the Wegner’s proposal (11) we obtain the two
coupled flow equations

∂l ξk(l) = 4ξk(l)|∆k(l)|2 (16)

∂l ∆k(l) = −4(ξk(l))2∆∗
k(l) (17)

for l-dependent quantities ξk(l) and ∆k(l). The second
equation (17) yields

|∆k(l)| = |∆k|exp

{

−4

∫ l

0

dl′[ξk(l′)]2

}

(18)

which proves that indeed the off-diagonal terms gradually
diminish under the flow l → ∞. There is a singular point
k=kF which is unaffected by the transformation but in
the thermodynamic limit (i.e. for a macroscopic number
of particles N) its role becomes marginal.

By combining the equations (16,17) one gets the fol-
lowing invariance

∂l
{

(ξk(l))2 + |∆k(l)|2
}

= 0. (19)

which implies that in the limit l → ∞ the eigenvalues
have a character of the Bogoliubov spectrum [12, 13]

ξk(∞) = sgn(ξk)
√

(ξk)2 + |∆k|2. (20)

In figure 1 we illustrate evolution of the parameter
∆k(l) which initially was assumed to be constant ∆k =
∆. In the first turn disappearance of ∆k(l) occurs for
states distant from the Fermi energy and then in the sec-
ond turn to states located nearby to µ. This evolution is
accompanied by the renormalization of fermion energies
ξk(l). Finally for l → ∞ the quasiparticle energies evolve
to the gaped Bogoliubov dispersion (20).

In order to specify the complete single parti-
cle spectrum we now derive the correlation function

〈ĉkσ(t)ĉ†kσ(t′)〉 where time evolution is given by the stan-

dard relation Ô(t) = eitĤÔe−itĤ . As emphasized in
the previous section this requires determination of the
l-dependent single particle operators. From a detailed
analysis [12] we obtain the Bogoliubov-type parameteri-
zations

ĉk↑(l) = uk(l)ĉk↑ + vk(l)ĉ†−k↓ (21)

ĉ−k↓(l)† = −vk(l)ĉk↑ + uk(l)ĉ†−k↓ (22)
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FIG. 1: Variation of ∆k(l) (panel on the right) and ξk(l)
(panel on the left) versus a distance from the Fermi surface
ξkF

= 0. We assumed a constant parameter ∆k(0) = ∆
in the model Hamiltonian (15). Energies presented in this
figure are expressed in units of ∆ and the flow parameter in
units of ∆−2. Note that for a given l the renormalizations are
practically completed outside the energy window of the width
Λl = 1

√

l
as marked by the arrows.

with the initial values uk(0) = 1, vk(0) = 0. From (14)
we derive the following differential equations for the co-
efficients uk(l), vk(l)

∂l uk(l) = 2ξk(l)∆k(l) vk(l), (23)

∂l vk(l) = −2ξk(l)∆k(l) uk(l). (24)

It can be easily checked that equations (23, 24) lead to the
following invariance of l-dependent coefficients |uk(l)|2 +
|vk(l)|2 = 1. This invariance assures that the fermion
anticommutation relations are obeyed for arbitrary level

of the transformation
{

ĉkσ(l), ĉ†k′σ′(l)
}

= δk,k′δσ,σ′ .

We have previously shown [12] that the asymptotic
l= ∞ values of the coefficients uk(l) and vk(l) coincide
with the usual BCS factors

u2
k(∞) =

1

2

[

1 +
ξk

√

(ξk)2 + |∆k|2

]

(25)

uk(∞)vk(∞) =
∆k

2
√

(ξk)2 + |∆k|2
(26)

and v2
k(∞) = 1 − u2

k(∞). In figure 2 we show the l-
dependent factors u2

k(l), v2
k(l) versus the energy mea-

sured from the Fermi surface. We can notice that for ar-

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

l=0
l=0.1
l=0.5
l=1
l=

ξk

8

uk

2
(l)

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1
l=0
l=0.1
l=0.5
l=1
l=

ξk

8

vk

2
(l)

FIG. 2: The BCS coherence factors u2

k(l) and u2

k(l) versus the
energy ξk for some representative values of l as indicated in
the legend.

bitrary l the asymptotic values are reached by all fermion
states located outside the energy cut-off Λl = 1√

l
.

The complete single particle excitation spectrum is
made of the particle and hole contributions. The cor-
responding spectral function is found [12] to be

A(k, ω) = u2
k(∞)δ(ω − ξk(∞)) + v2

k(∞)δ(ω + ξk(∞))

(27)

In a straightforward manner we can arrive at the follow-
ing expressions for the average occupancy of k momen-
tum and for the order parameter

〈ĉ†k↑ĉk↑〉 =
1

2

[

1 − ξk

ξk(∞)
tanh

ξk(∞)

2kBT

]

, (28)

〈ĉ−k↓ĉk↑〉 =
∆k

2ξk(∞)
tanh

ξk(∞)

2kBT
. (29)

The Bogoliubov spectrum (20) together with the expec-
tation values expressed in equations (28,29) reproduce
the rigorous solution for the bilinear Hamiltonian (15).

V. PAIRING IN THE STRONGLY

CORRELATED FERMION SYSTEM

The two particle interactions in (1) or in the reduced
Hamiltonian (2) can be canceled out exactly by introduc-
ing the Hubbard-Stratonovich fields Φ, Φ∗. Skipping a
detailed derivation we assign here the following effective
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Hamiltonian to the resulting fermion and boson degrees
of freedom [14]

Ĥ =
∑

kσ

ξkĉ
†
kσ ĉkσ +

∑

q

(Eq − 2µ) b̂†qbq

+
1√
N

∑

k,q

vk,q

[

b̂†qĉ−k,↓ĉk+q,↑ + h.c.
]

(30)

In the simplest step one can study (30) on the level of sad-
dle point approximation when boson fields are replaced
by constant number. This is a mean field approxima-
tion and formally it is equivalent to linearization of the
boson-fermion term via

b̂†qĉ−k,↓ĉk+q,↑ ≃ 〈b̂†q〉ĉ−k,↓ĉk+q,↑ + b̂†q〈ĉ−k,↓ĉk+q,↑〉
− 〈b̂†q〉 〈ĉ−k,↓ĉk+q,↑〉. (31)

When substituting (31) to the Hamiltonian (30) the
fermion and boson subsystems become decoupled from
one another. The physical fermion part acquires then
the bilinear structure (15) with the parameter ∆k =

vk,0〈b̂q=0〉. The mean field properties of the model (30)
have been summarized in the review paper [15].

In this section we show how to go beyond the mean
field scenario using the flow equation method. Our main
strategy is to design a continuous canonical transforma-
tion Û(l) which, step by step, dismantles the fermion
from boson degrees of freedom. Technical remarks con-
cerning such transformation has been given in our pre-
vious work [16] where we constrained the Hamiltonian

into Ĥ = Ĥ0 + ĤB−F with Ĥ0 = ĤF + ĤB denot-
ing the independent fermion and boson contributions
and ĤB−F corresponding to their interaction. We have
followed the idea proposed by Wegner [7] by choosing

η̂(l) = [Ĥ0(l), ĤB−F (l)] which yields

η̂(l) =
1√
N

∑

k,q

[Eq(l) − ε−k(l) − εk+q(l)]

×
(

vk,q(l)b̂†qĉ−k↓ĉk+k↑ − h.c.
)

. (32)

All the l-dependent quantities have been determined
by us selfconsistently using the iterative numerical Runge
Kutta algorithm to solve the set of differential flow equa-
tions (16-21) presented in the Ref. [16]. We studied a
situation with the fixed number of particles in the system

ntot =
∑

k,σ〈ĉ†kσ ĉkσ〉 + 2
∑

q〈b̂†qb̂q〉. Among the impor-
tant physical effects obtained for the fixed point l → ∞
we could point out that:

(c) boson particles (which can be thought as the
fermion pairs) acquire a finite mobility owing to
the interaction with the itinerant fermions,

(b) fermions in turn are affected by the boson particles
and this effect shows up by a loss of the single parti-
cle states near the Fermi surface (such depletion of
the density of states is often called in the literature
as pseudogap),

(c) in addition to the pseudogap there appears a reso-
nant scattering between fermions [17].

Let us remark that the resonant-type scattering processes
have been known for a long time in the nuclear physics.
Such Feshbach mechanism is nowadays widely explored
experimentally and theoretically for the atomic gasses
cooled to ultralow temperatures enabling observation of
such quantum phenomena like the Bose Einstein conden-
sation (BEC) and ultimately also the atomic superfuidity.

Since fermion states located near the Fermi energy get
combined with the boson species it is natural to expect
that the single and two-particle properties are going to
affect each other. We studied systematically their in-
terplay within the flow equation method. To derive the
single particle spectrum we had to transform the annihi-

lation ĉkσ and creation ĉ
†
kσ operators using (32). From

the flow equation (14) we derived the following general-
ized Bogoliubov transformation [18]

(

ĉk↑(l)

ĉ
†
−k↓(l)

)

=

(

uk(l)

−v∗k(l)

)

ĉk↑ +

(

vk(l)

u∗k(l)

)

ĉ
†
−k↓

+
1√
N

∑

q 6=0

[

(

pk,q(l)

r∗k,q(l)

)

b̂†qĉq+k↑ +

(

rk,q(l)

−p∗k,q(l)

)

b̂qĉ
†
q−k↓

]

.

(33)

In consequence the single particle spectral function was
found to have a different structure than the usual
BCS result (27). For temperatures T < Tc it con-
sists of two narrow quasiparticle peaks at energies ω =
±

√

(εk − µ)2 + ∆2
sc and a certain amount of the damped

states forming an incoherent background outside the su-
perconducting gap (see the left panel in figure 3). When
traversing the critical temperature Tc to a normal state
the gaped Bogoliubov-type spectrum seems to be pre-
served, however for increasing temperature the shadow

branch becomes more and more damped (see the right
h.s. panel in figure 3). Physically it means that fermion
pairs have no longer an infinite life-time. Finally, for tem-
peratures exceeding a certain characteristic value T ∗ the
Bogoliubov modes are completely gone and there remains
only a single peak at the renormalized energy ξk(∞) [18].

To check a direct impact of the above mentioned be-
havior on the pair correlations we investigated the fol-
lowing correlation function

∑

k,k′

〈

ĉ−k↓(t)ĉq+k↑(t) ĉ
†
q+k′↑(t′)ĉ†−k′↓(t′)

〉

. (34)

From the flow equation (14) for the pair operators
∑

k ĉ−k↓ĉq+k↑ we obtained the corresponding spectral
function

Apair(q, ω) = Nq δ
(

ω − Ẽq

)

+ Ainc
k (ω) . (35)

It contains the quasiparticle peak at ω = Ẽq and the
incoherent background Ainc

k (ω). For T < Tc the quasi-



6

-0.1

0.0

0.1
k-kF

-0.1

0

0.1

ω

0

10

20

AF(k,ω)

-0.1

0.0

0.1
k-kF

-0.1

0

0.1

ω

0

10

20

AF(k,ω)

FIG. 3: The effective single particle spectrum of fermions
AF (k, ω) for the superconducting state (panel on the left h.s.)
and in the normal state near the critical temperature T > Tc

(panel on the right h.s.).

particle peak is well separated from the incoherent back-
ground and, in the limit q → 0, has the important sound-
wave dispersion Ẽq = c |q| (like the collective sound-wave
branch in the superfluid state of 4He). Unfortunately in
the case of charged fermions such as the conduction band
electrons this mode is usually pushed to the huge plasma
frequency because of the strong Coulomb repulsion. For
the electrically neutral objects this Goldstone mode is a
hallmark of the symmetry broken phase.

Above the transition temperature and close to Tc there
are still some residual collective features possible to ob-
serve. At small momenta the qusiparticle peak ω = Ẽq

overlaps with the incoherent background therefore the
long wavelength limit is not suitable for appearance of
the collective effects (strictly speaking for q → 0 the
Goldstone mode is replaced by a parabolic dispersion).
A remnant of the Goldstone mode splits off from the in-
coherent background for finite momenta above a certain
critical value qcrit. This is illustrated in figure 4.

Collective features seen in the pair-pair correlations (or
in the density-density correlations) tell us directly about
a presence or absence of the long range order which is
necessary for the onset superconductivity/superfluidity.
As a matter of fact the single particle properties are

−1 −0.5 0 0.5 1

−0.2

0

0.2

normal state
pseudogap state

qx

dEq/dqx

~

FIG. 4: Derivative of the fermion pair dispersion dẼq/dqx

(where Ẽq ≡ Eq(∞)) for the normal (the dashed line) and
for the pseudogap state close to Tc (the solid curve). Note a
tendency for a qualitative changeover from the parabolic to
linear relation of Eq(∞).

then ill defined (at least in a vicinity of the Fermi en-
ergy). Instead of single fermions one should rather
think about fermion pairs as good quasiparticles. Al-
though the fermion pairs are necessary for superconud-
ctivity/superfluidity the other way around this is not
valid. It has been shown by Eagles [19], Nozieres and
Schmitt-Rink [20] and by a number of other authors that
value of the binding energy (magnitude of the gap in the
single particle spectrum) does not scale linearly with the
superfluid phase stiffness ns which determines the tran-
sition temperature Tc. Our work indeed confirms that
existence of the preformed (i.e. incoherent) fermion pairs
is a natural expectation while approaching Tc from above.
Such type of situation can be encountered in the high Tc
cuprate superconductors where the strong quantum fluc-
tuations are driven by the unscreened Coulomb repulsion
between electrons and by the reduced dimensionality of
CuO2 planes [21]. Pseudogap have been also unambigu-
ously observed in the ultracold fermion atoms close to
the unitarity limit (i.e. on the Feshbach resonance) [22].

VI. SUMMARY

We have presented the method of continuous unitary
transformation originating from a general scheme of the
RG scaling procedure. This non-perturbative technique
overcomes usual problems of the standard RG methods
in application to the symmetry broken states. We have
illustrated it on the exactly solvable case of the bilinear
Hamiltonian. This new method is moreover capable to
study the possible feedback effects between the fast and
slow modes treating both sectors simultaneously through-
out the whole continuous transformation.

Applying this method to the strongly interacting
fermion system we have shown that formation of the
fermion pairs need not be accompanied by the transi-
tion to superfluid/superconducting state. Strong quan-
tum fluctuations can suppress the long-range coherence
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(ordering) so that effectively the fermion pairs exist even
in the normal state above Tc. Such preformed fermion
pairs could be observed experimentally by e.g. probing
the single particle spectrum (using the STM or ARPES
spectroscopies) or in measurements of the correlations
between pairs (via any experimental technique sensitive
to the pair susceptibility).
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