DYNAMICAL QUANTUM PHASE TRANSITIONS IN SUPERCONDUCTING NANOSTRUCTURES

Tadeusz Domański

M. Curie-Skłodowska Univ. (Lublin)

"Seminar on Coherence-Correlations-Complexity"

Wrocław, 13 Jan. 2021

Superconducting nanostructures: examples

Small (nanoscopic) objects attached to bulk superconductor

Small (nanoscopic) objects attached to bulk superconductor

normal metal (N) - quantum dot (QD) - superconductor (S)

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup,

K. Grove-Rasmussen and J. Nygård, Commun. Phys. 3, 125 (2020).

superconductor (S) - quantum dot (QD) - superconductor (S)

R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat, R. Deblock, Phys. Rev. B **93**, 195437 (2016).

SUPERCONDUCTING PROXIMITY EFFECT

• Coupling of the localized (QD) to itinerant (SC) electrons induces:

 \Rightarrow on-dot pairing

SUPERCONDUCTING PROXIMITY EFFECT

Coupling of the localized (QD) to itinerant (SC) electrons induces:

- \Rightarrow on-dot pairing
- This is manifested spectroscopically by:
- \Rightarrow in-gap bound states

SUPERCONDUCTING PROXIMITY EFFECT

Coupling of the localized (QD) to itinerant (SC) electrons induces:

- \Rightarrow on-dot pairing
- This is manifested spectroscopically by:
- \Rightarrow in-gap bound states
- originating from:
- \Rightarrow leakage of Cooper pairs on QD (Andreev)
- \Rightarrow exchange int. of QD with SC (Yu-Shiba-Rusinov)

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$.

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$.

Yu-Shiba-Rusinov (Andreev) bound states

Characteristic temporal scales

Consider a sudden coupling of QD to external leads

Consider a sudden coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

• how much time does it take to create in-gap states?

Consider a sudden coupling of QD to external leads

- how much time does it take to create in-gap states?
- are there any characteristic time-scales?

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge of an initially empty QD

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

t-dependent charge for various initial fillings $(n_{\downarrow}, n_{\uparrow})$

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge current of unbiased junction

• relaxation time is proportional to $1/\Gamma_N$

oscillations depend on energies of in-gap states

EXPERIMENTALLY ACCESSIBLE QUANTITIES

Subgap tunneling conductance $G_{\sigma} = \frac{\partial I_{\sigma}}{\partial t}$ vs time (t) and voltage (μ)

STATISTICS OF TUNNELING EVENTS

Transient currents from 'Waiting Time Distribution' approach

G. Michałek, B. Bułka, T. Domański & K.I. Wysokiński, Phys. Rev. B 101, 235402 (2020).

Josephson-type structures

Quantum dot embedded into Josephson & Andreev circuits.

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B <u>95</u>, 045104 (2017); P. Zalom, V. Pokorný & T. Novotný, Phys. Rev. B <u>102</u>, (2021) *to appear*

SCHEME FOR EMPIRICAL REALIZATION

Scheme for feasible realization of Josephson & Andreev circuits

G. Kiršanskas, M. Goldstein, K. Flensberg, L.I. Glazman & J. Paaske, Phys. Rev. B 92, 235422 (2015)

PHASE-CONTROLLED TRANSIENT EFFECTS

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Physical issue:

phase tunable evolution of in-gap states

PHASAL TRANSIENT EFFECTS

Phase & time dependent QD occupancy $n_{\sigma}(t)$

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

PHASAL TRANSIENT EFFECTS

Proximity induced on-dot pairing $\chi(t) = \langle \hat{d}_{\downarrow} \hat{d}_{\uparrow} \rangle$

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Dynamics of correlated nanosuperconductors

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

 \Rightarrow sudden coupling to superconductor $0 \rightarrow \Gamma_S$

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

- \Rightarrow sudden coupling to superconductor $0 \rightarrow \Gamma_S$
- \Rightarrow abrupt application of gate potential $0 \rightarrow V_G$

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

Schematics of the Andreev states formation induced by quench 0 $ightarrow \Gamma_S$

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

A) BUILDUP OF IN-GAP STATES

Time-dependent observables driven by the quantum quench $0 ightarrow \Gamma_S$

solid lines - time dependent NRG dashed lines - Hartree-Fock-Bogolubov

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

A) BUILDUP OF IN-GAP STATES

tNRG results obtained for $\varepsilon_d = 0$

QD charge n(t)

charge current $j_S(t)$ from supercond. to QD

on-dot pairing $\chi(t)\equiv \langle d_{\downarrow}d_{\uparrow}
angle$

Hartree-Fock-Bogolubov results for $\varepsilon_d = 0$

B) SUDDEN CHANGE OF GATE POTENTIAL

tNRG results for $U = 2\Gamma_S$ and $\varepsilon_d(t < 0) = -U/2$

QD charge n(t)

charge current $j_S(t)$ from supercond. to QD

on-dot pairing $\chi(t)\equiv \langle d_{\downarrow}d_{\uparrow}
angle$
B) SUDDEN CHANGE OF GATE POTENTIAL

tNRG results for $U = 2\Gamma_S$ and $\varepsilon_d(t < 0) = -U/2$

Quantum phase transition

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{\text{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \text{h.c.}
ight)$$

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced quantum phase transition between these doublet/singlet states.

QUANTUM PHASE TRANSITION (STATIC VERSION)

Singlet-doublet quantum phase transition: NRG results

J. Bauer, A. Oguri & A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).

QUANTUM PHASE TRANSITION: EXPERIMENT

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

Crossings of in-gap states correspond to the singlet-doublet QPT.

Dynamical quantum phase transition

Initially, for t < 0:

$$\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$$

Initially, for t < 0: $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

Initially, for t < 0: $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

 $\hat{H}_0 \longrightarrow \hat{H}$

Schödinger equation $irac{d}{dt}\ket{\Psi(t)}=\hat{H}\ket{\Psi(t)}$ implies $\ket{\Psi(t)}=e^{-it\hat{H}}\ket{\Psi_0}$

Initially, for t < 0: $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

$$\hat{H}_0 \longrightarrow \hat{H}$$

Schödinger equation $irac{d}{dt} \ket{\Psi(t)} = \hat{H} \ket{\Psi(t)}$ implies $\ket{\Psi(t)} = e^{-it\hat{H}} \ket{\Psi_0}$

Fidelity (similarity) of these states at time $t\geq 0$ $\langle \Psi(t)|\Psi_0
angle = \left\langle \Psi_0|e^{-it\hat{H}}|\Psi_0
ight
angle$

Initially, for t < 0: $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

$$\hat{H}_0 \longrightarrow \hat{H}$$

Schödinger equation $irac{d}{dt}\ket{\Psi(t)}=\hat{H}\ket{\Psi(t)}$ implies $\ket{\Psi(t)}=e^{-it\hat{H}}\ket{\Psi_0}$

Fidelity (similarity) of these states at time $t \ge 0$ $\langle \Psi(t) | \Psi_0 \rangle = \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle$ Loschmidt amplitude

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

 $\beta = \frac{1}{k_B T} \longleftrightarrow it$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$\beta = \frac{1}{k_B T} \longleftrightarrow it$$

Free energy F(T) $\mathcal{Z} \equiv e^{-\beta F(T)}$ Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Return rate $\lambda(t)$ $L(t) \equiv e^{-N\lambda(t)}$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$eta = rac{1}{k_BT} \longleftrightarrow it$$

Free energy F(T) $\mathcal{Z} \equiv e^{-\beta F(T)}$

Critical temperature T_c

nonanalytical $\lim_{T \to T_c} F(T)$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Return rate $\lambda(t)$ $L(t) \equiv e^{-N\lambda(t)}$

Critical time t_c

nonanalytical $\lim_{t o t_c} \lambda(t)$

EXAMPLE 1: SSH (QUENCH: NONTOPO \rightarrow TOPO)

EXAMPLE 2: ISING MODEL (TRANSITION FOR g = 1)

EXAMPLE 2: ISING MODEL (DYNAMICAL ORDER)

M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

EXAMPLE 2: ISING MODEL (EXPERIMENT)

R. Blatt with coworkers [Austrian Acad. Sciences, Innsbruck] have observed dynamical quantum phase transitions in a linear string of N calcium-40 ions, with N up to 10. They measured the so-called rate function of the system as a function of time for N=6, N=8, and N=10. The singularities at two certain critical times that the measured function exhibited indicate that dynamical quantum phase transitions occurred at these times.

V. Gurarie, Physics 10, 95 (2017).

EXAMPLE 2: ISING MODEL (EXPERIMENT)

WHAT ABOUT FINITE-SIZE SYSTEMS ?

Schematic view of "Fisher zeros" obtained for the Loschmidt amplitude $\left< \Psi_0 | e^{-iz\hat{H}} | \Psi_0 \right>$ in the complex plane $z=t+i\tau$.

Marcus Heyl, Rep. Prog. Phys. 81, 054001 (2018).

ISING MODEL: DQPT OF FINITE-SIZE SYSTEM

"Local measures of dynamical quantum phase transitions" J.C. Halimeh, D. Trapin, M. Damme & M. Heyl, arXiv:2010.07307 (2020).

Singlet-doublet DQPT

*t*NRG RESULTS: ABRUPT CHANGE OF Γ_S

Loschmidt ampl. L(t) and return rate $\lambda(t)$ obtained for various $\Gamma_N \equiv \Gamma$

*t*NRG RESULTS:

ABRUPT CHANGE OF Γ_S

Loschmidt echo

 $L(t) \equiv |\langle \Psi(t) | \Psi(0) \rangle|^2$

Return rate $|L(t)| \equiv e^{-N\lambda(t)}$

The squared magnetic moment $\langle S_z^2(t)
angle$

*t*NRG RESULTS:

ABRUPT CHANGE OF ε_d

back

forth

Issues to be clarified:

Issues to be clarified:

- what physical quantity does control t_c
- is critical time t_c really periodic ?
- is there any dynamical order ?
- empirical means to detect dynamical QPT ?

Issues to be clarified:

- what physical quantity does control t_c
- is critical time t_c really periodic ?
- is there any dynamical order ?
- empirical means to detect dynamical QPT ?

and ...

Issues to be clarified:

- what physical quantity does control t_c
- is critical time t_c really periodic ?
- is there any dynamical order ?
- empirical means to detect dynamical QPT ?

and ...

• can anybody help us ?

Quenching N-QD-S (and S_L -QD- S_R) nanostructures:

rescales/develops in-gap quasiparticles
Quenching N-QD-S (and S_L -QD- S_R) nanostructures:

rescales/develops in-gap quasiparticles

activating Rabi-type oscillations

(due to particle-hole mixing)

Quenching N-QD-S (and S_L -QD- S_R) nanostructures:

rescales/develops in-gap quasiparticles

activating Rabi-type oscillations (due to particle-hole mixing)

and may undergo dynamical QPT (upon varying ground states)

Quenching N-QD-S (and S_L -QD- S_R) nanostructures:

rescales/develops in-gap quasiparticles

activating Rabi-type oscillations (due to particle-hole mixing)

• and may undergo dynamical QPT (upon varying ground states)

 \Rightarrow These phenomena are manifested in transport properties.

Other related topics

DYNAMICS OF TOPOLOGICAL SUPERCONDUCTORS

Abrupt coupling (t_m) of quantum dot to topological SC nanowire

J. Barański, ... & T. Domański, arXiv:2012.03077 (2020).

DYNAMICS OF TOPOLOGICAL SUPERCONDUCTORS

Abrupt coupling (t_m) of quantum dot to topological SC nanowire

J. Barański, ... & T. Domański,

arXiv:2012.03077 (2020).

• time needed for Majorana leakage on QD,

DYNAMICS OF TOPOLOGICAL SUPERCONDUCTORS

Abrupt coupling (t_m) of quantum dot to topological SC nanowire

J. Barański, ... & T. Domański,

arXiv:2012.03077 (2020).

- time needed for Majorana leakage on QD,
- time-resoveld zero bias conductance.

TIME-RESOLVED MAJORANA LEAKAGE

The differential Andreev conductance vs bias voltage V and time

TIME-RESOLVED ZERO BIAS CONDUCTANCE

The zero-bias differential conductivity obtained for $\Gamma_S = 3\Gamma_N$ and $\epsilon_d = \Gamma_N$, assuming: $t_m = 0.25$ (upper left), 0.5 (upper right), 1 (lower left), 1.5 (lower right) Γ_N . QD is abruptly connected to Majorana mode at time $t = 20\hbar/\Gamma_N$.

TIME-RESOLVED ZERO BIAS CONDUCTANCE

The zero-bias differential conductivity obtained for $\Gamma_S = 3\Gamma_N$ and $\epsilon_d = \Gamma_N$, assuming: $t_m = 0.25$ (upper left), 0.5 (upper right), 1 (lower left), 1.5 (lower right) Γ_N . QD is abruptly connected to Majorana mode at time $t = 20\hbar/\Gamma_N$. For realistic systems such leakage time takes 2-20 nanoseconds.

Floquet description of in-gap states

PERIODIC DRIVING

Quantum impurity with periodically oscillating energy level

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Proximitized double QDs (qubits)

NONEQUILIBRIUM DYNAMICS

Quantum quench scenarios: gating, biasing & driving

Methods:

- Floquet approach,
- Keldysh technique,
- machine learning

ACKNOWLEDGEMENTS

- dynamics of in-gap states (transients, periodic driving, etc.)
- \Rightarrow R. Taranko (Lublin), B. Baran (Lublin),
- dynamical singlet-doublet phase transition
- 🔿 K. Wrześniewski (Poznań), I. Weymann (Poznań),
 - N. Sedlmayr (Lublin),
- time-dependent leakage of Majorana qps
- ⇒ J. Barański (Dęblin), M. Barańska (Dęblin),
- dynamical topological phase transitions
- \Rightarrow A. (Kobiałka), G. Wlazłowski (Warsaw).