Topological states of matter in superconducting heterostructures

Tadeusz DOMAŃSKI

M. Curie-Skłodowska Univ., Lublin

INTIBS PAN, Wrocław

15 January 2020

ISSUES TO BE ADDRESSED

quasiparticles of conventional *'trivial'* superconductors

 \Rightarrow particle vs hole

ISSUES TO BE ADDRESSED

- quasiparticles of conventional *'trivial'* superconductors
- \Rightarrow particle vs hole
- topological superconductors
- \Rightarrow from Bogoliubov to Majorana
- \Rightarrow protected edge states

ISSUES TO BE ADDRESSED

- quasiparticles of conventional *'trivial'* superconductors
- \Rightarrow particle vs hole
- topological superconductors
- \Rightarrow from Bogoliubov to Majorana
- \Rightarrow protected edge states

N. Bogoliubov J. Bardeen E. Majorana

N.N. BOGOLIUBOV (1909-1992)

Seminal works in quantum field theory:

Seminal works in quantum field theory:

I. On the theory of superfluidity N.N. Bogoliubov, J. Phys.(USSR) <u>11</u>, 23 (1947) [Izv. Akad. Nauk Ser.Fiz. <u>11</u>, 77 (1947)] Seminal works in quantum field theory:

I. On the theory of superfluidity N.N. Bogoliubov, J. Phys.(USSR) <u>11</u>, 23 (1947) [Izv. Akad. Nauk Ser.Fiz. <u>11</u>, 77 (1947)]

II. On a new method in the theory of superconductivity N.N. Bogoliubov, Nuovo Cim. <u>7</u>, 794 (1958)

I. SUPERFLUIDITY

For Bose-Einstein condensed atoms he proposed $\hat{b}_0 \simeq \sqrt{n_0}$

I. SUPERFLUIDITY

For Bose-Einstein condensed atoms he proposed $\hat{b}_0 \simeq \sqrt{n_0}$

Effective spectrum of superfluid ⁴He

I. SUPERFLUIDITY

For Bose-Einstein condensed atoms he proposed $\hat{b}_0 \simeq \sqrt{n_0}$

Bogoliubov rephrased the microscopic theory of Bardeen-Cooper-Schrieffer in terms of:

Bogoliubov rephrased the microscopic theory of Bardeen-Cooper-Schrieffer in terms of:

 \Rightarrow canonical (Bogoliubov) transformation

Bogoliubov rephrased the microscopic theory of Bardeen-Cooper-Schrieffer in terms of:

\Rightarrow canonical (Bogoliubov) transformation

His concepts have nowadays their "second life" in topological superconductors, which host exotic Majorana quasiparticles !

Bogoliubov rephrased the microscopic theory of Bardeen-Cooper-Schrieffer in terms of:

\Rightarrow canonical (Bogoliubov) transformation

His concepts have nowadays their "second life" in topological superconductors, which host exotic Majorana quasiparticles !

Bulk superconductors

SUPERCONDUCTOR

Perfect conductor

SUPERCONDUCTOR

HALLMARKS OF ELECTRON PAIRING

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

formally due to

$$\hat{\gamma}_{k\uparrow} = u_k \hat{c}_{k\uparrow} + \tilde{v}_k \hat{b}_{q=0} \hat{c}^{\dagger}_{-k\downarrow}$$

 $\hat{\gamma}^{\dagger}_{-k\downarrow} = -\tilde{v}_k \hat{b}^{\dagger}_{q=0} \hat{c}_{k\uparrow} + u_k \hat{c}^{\dagger}_{-k\downarrow}$

BOGOLIUBOV QUASIPARTICLES

Quasiparticle spectrum of conventional superconductors consists of the Bogoliubov (p/h) branches gaped around E_F

In superconductors the particle and hole degrees of freedom are mixed via pairing interactions (efficient near the Fermi energy).

Superconductivity in nanosystems

IMPURITIES IN SOLIDS

Spectrum of a single impurity hybridized with superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta
angle$

Spectrum of a single impurity hybridized with superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta \rangle$ are dubbed Yu-Shiba-Rusinov (or Andreev) quasiparticles.

DIMENSIONALITY EFFECT

Empirical data obtained from STM measurements for NbSe₂

a) very small extent in dim=3b) much longer extent in dim=2

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

A. Ptok, Sz. Głodzik and T. Domański, Phys. Rev. B 96, 184425 (2017).

HTTPS://WWW.PKS.MPG.DE/BOSSA19/

7-10 April 2019, M. Planck Inst. (Dresden, Germany)

MAGNETIC CHAINS IN SUPERCONDUCTORS

A chain of magnetic impurities embedded in superconductor:

MAGNETIC CHAINS IN SUPERCONDUCTORS

A chain of magnetic impurities embedded in superconductor:

arranges its in-gap bound states into Shiba-band(s).

M.H. Christensen ... J. Paaske, Phys. Rev. B 94, 144509 (2016).

Topological superconductors

KITAEV CHAIN: PARADIGM FOR MAJORANA QPS

Itinerant 1-dimensional fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

KITAEV CHAIN: PARADIGM FOR MAJORANA QPS

Itinerant 1-dimensional fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

can be conveniently recast in the Bogolubov/Majorana basis

KITAEV CHAIN: PARADIGM FOR MAJORANA QPS

Itinerant 1-dimensional fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

can be conveniently recast in the Bogolubov/Majorana basis

Alexei Y. Kitaev, Phys. Usp. 44, 131 (2001).
In particular, for $\Delta = t$ and $|\mu|$ being inside the electronic band two of the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

In particular, for $\Delta = t$ and $|\mu|$ being inside the electronic band two of the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the ends of wire, that can be regarded as *fractions of non-local fermion*

In particular, for $\Delta = t$ and $|\mu|$ being inside the electronic band two of the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the ends of wire, that can be regarded as *fractions of non-local fermion*

$$\hat{c}_{nonlocal} \equiv (\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}) \frac{1}{\sqrt{2}}$$
 $\hat{c}^{\dagger}_{nonlocal} \equiv (\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}) \frac{1}{\sqrt{2}}$

In particular, for $\Delta = t$ and $|\mu|$ being inside the electronic band two of the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the ends of wire, that can be regarded as *fractions of non-local fermion*

$$\hat{c}_{nonlocal} \equiv (\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}) \frac{1}{\sqrt{2}}$$
 $\hat{c}^{\dagger}_{nonlocal} \equiv (\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}) \frac{1}{\sqrt{2}}$

They manifest themselves by very exotic phenomena !

• particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- \Rightarrow neutral in charge
- \Rightarrow of zero energy

- particle = antiparticle
- \Rightarrow neutral in charge
- \Rightarrow of zero energy
- fractional character
- \Rightarrow half occupied/empty

$$\hat{\gamma}_{i,n}^{\dagger} \ \hat{\gamma}_{i,n} = \frac{1}{2}$$
$$\hat{\gamma}_{i,n} \ \hat{\gamma}_{i,n}^{\dagger} = \frac{1}{2}$$

- particle = antiparticle
- \Rightarrow neutral in charge
- \Rightarrow of zero energy
- fractional character
- \Rightarrow half occupied/empty
- spatially nonlocal
- \Rightarrow exist always in pairs at boundaries/defects

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

$$\hat{\gamma}_{i,n}^{\dagger} \ \hat{\gamma}_{i,n} = rac{1}{2}$$
 $\hat{\gamma}_{i,n} \ \hat{\gamma}_{i,n}^{\dagger} = rac{1}{2}$

- particle = antiparticle
- \Rightarrow neutral in charge
- \Rightarrow of zero energy
- fractional character
- \Rightarrow half occupied/empty
- spatially nonlocal
- \Rightarrow exist always in pairs at boundaries/defects
- topologically protected
- \Rightarrow immune to dephasing/decoherence

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

$$\hat{\gamma}_{i,n}^{\dagger} \, \hat{\gamma}_{i,n} = \frac{1}{2}$$

 $\hat{\gamma}_{i,n} \, \hat{\gamma}_{i,n}^{\dagger} = \frac{1}{2}$

Scenario 1: Rashba + pairing

REALIZATIONS OF KITAEV SCENARIO

Intersite pairing of identical spin electrons can be driven e.g. by spin-orbit (Rashba) interaction in presence of external magnetic field, using nanowires proximitized to *s-wave* superconductor.

EMPIRICAL REALIZATION : SCENARIO # 1

Differential conductance dI/dV obtained for InSb nanowire at 70 mK upon varying a magnetic field.

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Technical Univ. Delft, Netherlands /

EMPIRICAL REALIZATION: SCENARIO #1

Litographically fabricated AI nanowire contacted to InAs

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /

Nanowire

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba + magnetic field

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba + magnetic field + superconductor

A. Das et al, Nature Phys. 8, 887 (2012).

 $B < B_{cr} \rightarrow$ trivial superconducting phase

Nanowire + Rashba + magnetic field + superconductor

A. Das et al, Nature Phys. 8, 887 (2012).

 $B > B_{cr} \rightarrow nontrivial$ superconducting phase

Nanowire + Rashba + magnetic field + superconductor

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. B 96, 195430 (2017). (transition to <u>nontrivial</u> superconducting phase)

TRANSITION FROM TRIVIAL TO TOPOLOGICAL PHASE

Effective quasiparticle states of the Rashba nanowire

M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are localized near the edges

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

Scenario 2: selforganization

MAGNETIC CHAINS IN SUPERCONDUCTORS

Nanochain of magnetic impurities embedded in superconductor:

T.-P. Choy, J.M. Edge, A.R. Akhmerov, and C.W.J. Beenakker, Phys. Rev. B <u>84</u>, 195442 (2011).

EMPIRICAL REALIZATION: SCENARIO # 2

STM measurements for the nanochain of Fe atoms self-organized on a surface of superconducting Pb.

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014). / **Princeton University, USA** /

EMPIRICAL REALIZATION: SCENARIO # 2

AFM & STM data for Fe chain on Pb(110) surface

R. Pawlak, M. Kisiel *et al*, npj Quantum Information **2**, 16035 (2016). / University of Basel, Switzerland /

MAGNETIC CHAINS IN SUPERCONDUCTORS

Ground state energy vs the pitch vector *q*

Quasiparticle energies

This magnetic chain self-tunes to the topological phase / topofilia /

Unresolved questions:

 \Rightarrow is this topofilia always present ?

 \Rightarrow does it survive at finite temperatures ?

SELFORGANISATION AT T=0

A. Gorczyca-Goraj, T. Domański & M.M. Maśka, Phys. Rev. B 99, 235430 (2019).

SELFORGANISATION AT T=0

A. Gorczyca-Goraj, T. Domański & M.M. Maśka, Phys. Rev. B 99, 235430 (2019).

TEMPERATURE EFFECT ON MAJORANA QPS

Thermal effects lead to:

- \Rightarrow closing of the topological energy gap
- \Rightarrow overdamping of the Majorana qps
- \Rightarrow changeover of topological \mathbb{Z}_2 number

Thermal effects lead to:

- \Rightarrow closing of the topological energy gap
- \Rightarrow overdamping of the Majorana qps
- \Rightarrow changeover of topological \mathbb{Z}_2 number

Realistically, topological phase can survive to:

\Rightarrow $T_c \approx$ 5 K

Interplay with dimerization

Dimerization versus topological superconductivity

Dimerization versus topological superconductivity

A. Kobiałka, N. Sedlmayr, M.M. Maśka & T. Domański, Phys. Rev. B (2020), in print.

 $\delta \longrightarrow$ dimerization parameter

Motivation:

- ⇒ topological (insulating) state driven dimerization [Su-Schrieffer-Heeger, 1979]
- ⇒ topological phases of ultracold dimerized atoms [M. Lewenstein et al, 2019]

Motivation:

- ⇒ topological (insulating) state driven dimerization [Su-Schrieffer-Heeger, 1979]
- ⇒ topological phases of ultracold dimerized atoms [M. Lewenstein et al, 2019]
- Unresolved questions:
- \Rightarrow dimerization vs topological superconductivity ?
- \Rightarrow any new (emergent) phenomena ?

Quasiparticle energies vs dimerization (for $\mu = -2t$).

Diagram of the topological superconducting phase.

Quasiparticle energies vs dimerization ($\mu = -0.8t$).

Parity of the dimerized Rashba nanowire.

$$(-1)^{\nu} = \operatorname{Sgn} \left[\left(h^{2} - \mu^{2} \right)^{2} + \left(4t^{2} + 4\lambda^{2}\delta^{2} + \Delta^{2} \right)^{2} -2\mu^{2} \left(4t^{2} + 4\lambda^{2}\delta^{2} - \Delta^{2} \right) - 2h^{2} \left(4t^{2} - 4\lambda^{2}\delta^{2} + \Delta^{2} \right) \right] \\ \times \operatorname{Sgn} \left[\left(h^{2} - \mu^{2} \right)^{2} + \left(4\lambda^{2} + 4t^{2}\delta^{2} + \Delta^{2} \right)^{2} -2\mu^{2} \left(4\lambda^{2} + 4t^{2}\delta^{2} - \Delta^{2} \right) + 2h^{2} \left(4\lambda^{2} - 4t^{2}\delta^{2} - \Delta^{2} \right) \right]$$

The first term changes sign when the gap closes at k = 0, and the second when the band gap closes at $k = \pi$.

Diagram of the topological superconducting phase.

Band dispersion of the infinite dimerized Rashba chain.

Band dispersion of the infinite dimerized Rashba chain.

Band dispersion of the infinite dimerized Rashba chain.

Band dispersion of the infinite dimerized Rashba chain.

Band dispersion of the infinite dimerized Rashba chain.

\Rightarrow dimerization can lead to the band-inversion

inducing transition to/from topological phase

 \Rightarrow dimerization can lead to the band-inversion

- inducing transition to/from topological phase
- \Rightarrow novel topological regions emerge
 - solely due to dimerization

 \Rightarrow dimerization can lead to the band-inversion

- inducing transition to/from topological phase
- \Rightarrow novel topological regions emerge
 - solely due to dimerization
- \Rightarrow topological SSH phase does not coincide
 - with topological superconductivity

Localized Majorana modes in dim=2

PLANAR JOSEPHSON JUNCTIONS

Two-dimensional electron gas of InAs epitaxially covered by a thin Al layer

Width: $W_1 = 80 \text{ nm}$

Length:

 $L_1 = 1.6 \ \mu m$

A. Fornieri, ..., <u>Ch. Marcus</u> and F. Nichele, Nature <u>569</u>, 89 (2019). Niels Bohr Institute (Copenhagen, Denmark)

PLANAR JOSEPHSON JUNCTIONS

Majorana qps at the ends of 2DEG depend on the phase-difference Φ

A. Fornieri, ..., <u>Ch. Marcus</u> and F. Nichele, Nature <u>569</u>, 89 (2019). Niels Bohr Institute (Copenhagen, Denmark)

PLANAR JOSEPHSON JUNCTIONS

Two-dimensional HgTe quantum well coupled to 15 nm thick Al film

Width: W = 600 nmLength:

 $L = 1.0 \ \mu m$

H. Ren, ..., <u>L.W. Molenkamp</u>, B.I. Halperin & A. Yacoby, Nature <u>569</u>, 93 (2019). Würzburg Univ. (Germany) + Harvard Univ. (USA)
PLANAR JOSEPHSON JUNCTIONS

Diagram of the trivial and topological superconducting state with respect to (1) phase difference ϕ and (2) in-plane magnetic field

H. Ren, ..., <u>L.W. Molenkamp</u>, B.I. Halperin & A. Yacoby, Nature <u>569</u>, 93 (2019). Würzburg Univ. (Germany) + Harvard Univ. (USA)

PLANAR JOSEPHSON JUNCTIONS

PLANAR JOSEPHSON JUNCTIONS

Spectrum averaged near the edge (left) and center (right) of Rashba strip.

Results obtained for 30×90 cluster by Sz. Głodzik (2019).

Motivation:

 \Rightarrow since a ratio W/L is far from negligible two-dimensionality has to be inspected

Motivation:

 \Rightarrow since a ratio W/L is far from negligible two-dimensionality has to be inspected

Relevant issues:

- ⇒ emergence of any transverse features ?
 (e.g. Majorana polarization)
- \Rightarrow are point-like defects detrimental ?

Majorana modes induced in the proximitized Rashba strip.

 $|\Psi|^{2}(r_{x}, r_{y}, E=0)$

Strip width = 2

Majorana modes induced in the proximitized Rashba strip.

 $|\Psi|^{2}(r_{x}, r_{y}, E=0)$

Majorana modes induced in the proximitized Rashba strip.

Strip width = 0

 $|\Psi|^{2}(r_{x}, r_{y}, E=0)$

Majorana modes induced in the proximitized Rashba strip.

JOSEPHSON JUNCTION: POLARIZATION

Majorana polarization $u_{\uparrow,n}v_{\uparrow,n} - u_{\downarrow,n}v_{\downarrow,n}$ (where $E_n = 0$).

Spatial profile of the Majorana modes:

Spatial profile of the Majorana modes:

influence of an electrostatic defect placed near the edge.

Influence of an electrostatic defect placed in the center.

Spatial profile of the polarization of Majorana modes.

Spatial profile of the polarization of Majorana modes.

- \Rightarrow point-like defects are neither detrimental
 - to Majorana modes nor to topological phase

JOSEPHSON JUNCTION: CONCLUSIONS

- \Rightarrow point-like defects are neither detrimental
 - to Majorana modes nor to topological phase
- \Rightarrow strong tendency towards localization
 - "Benefits of Weak Disorder in One-Dimensional Topological Superconductors" A. Haim & A. Stern, Phys. Rev. Lett. 122, 126801 (2019).

JOSEPHSON JUNCTION: CONCLUSIONS

- \Rightarrow point-like defects are neither detrimental
 - to Majorana modes nor to topological phase
- \Rightarrow strong tendency towards localization
 - "Benefits of Weak Disorder in One-Dimensional Topological Superconductors" A. Haim & A. Stern, Phys. Rev. Lett. 122, 126801 (2019).

- \Rightarrow finite width affects both a topography
 - and polarization of Majorana modes

Copper pairs leaking to nanoscopic systems

SUMMARY/CONCLUSIONS

- Copper pairs leaking to nanoscopic systems
- \Rightarrow convert the Bogoliubov quasiparticles
 - into the subgap (Shiba) modes

- Copper pairs leaking to nanoscopic systems
- \Rightarrow convert the Bogoliubov quasiparticles
 - into the subgap (Shiba) modes
- which (under specific conditions) evolve to
 the Majorana-type quasiparticles

- Copper pairs leaking to nanoscopic systems
- \Rightarrow convert the Bogoliubov quasiparticles
 - into the subgap (Shiba) modes
- which (under specific conditions) evolve to
 the Majorana-type quasiparticles
- taking a form of either localized or dispersive
- \Rightarrow protected edge modes.

ACKNOWLEDGEMENTS

Majorana quasiparticles

- ⇒ A. Kobiałka (Lublin), A. Ptok (Kraków),
 - M. Maśka & A. Gorczyca-Goraj (Katowice),
 - J. Tworzydło (Warsaw), N. Sedlmayr (Lublin).
- Shiba states/bands in topological phases
- \Rightarrow Sz. Głodzik (Lublin), T. Ojanen (Tampere, Finland)
- Majorana vs Kondo
- I. Weymann (Poznań), G. Górski (Rzeszów), J. Barański (Dęblin), T. Novotný (Prague).

ACKNOWLEDGEMENTS

Majorana quasiparticles

- ⇒ A. Kobiałka (Lublin), A. Ptok (Kraków),
 - M. Maśka & A. Gorczyca-Goraj (Katowice),
 - J. Tworzydło (Warsaw), N. Sedlmayr (Lublin).
- Shiba states/bands in topological phases
- \Rightarrow Sz. Głodzik (Lublin), T. Ojanen (Tampere, Finland)
- Majorana vs Kondo
- ⇒ I. Weymann (Poznań), G. Górski (Rzeszów),
 - J. Barański (Dęblin), T. Novotný (Prague).

New co-operators are kindly welcome !

Edge modes in dim=2 systems

TWO-DIMENSIONAL MAGNETIC STRUCTURES

Magnetic island of Co atoms deposited on the superconducting Pb surface

Diameter of island: 5 - 10 nm

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. 8, 2040 (2017). Pierre & Marie Curie University (Paris, France)

EVIDENCE FOR DELOCALIZED MAJORANA MODES

Majorana modes propagating along magnetic islands

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. 8, 2040 (2017). Pierre & Marie Curie University (Paris, France)

PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

Chern number:

C = 20

A. Palacio-Morales, ... & <u>R. Wiesendanger</u>, Science Adv. <u>5</u>, eaav6600 (2019). University of Hamburg (Germany)

PROPAGATING MAJORANA EDGE MODES

Real space maps of the tunneling conductance (top panel) and deconvoluted DOS (bottom panel) obtained for various energies (as indicated) in the subgap regime ($\Delta = 240 \mu eV$).

A. Palacio-Morales, ... & <u>R. Wiesendanger</u>, Science Adv. <u>5</u>, eaav6600 (2019). University of Hamburg (Germany)

Mixed – dimensionality structures

CAN MAJORANA QPS BE DECONFINED ?

Main idea: Majorana qps in 1D-2D hybrid structure

A. Kobiałka, T. Domański & A. Ptok, Scientific Reports 9, 12933 (2019).

Constituents of this hybrid-system belong to different homotopy groups:

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \Rightarrow homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

For details, concerning the topological criteria see:

- A. Kitaev, AIP Conf. Proc. <u>1134</u>, 22 (2009);
- M.Z. Hasan & C.L. Kane, Rev. Mod. Phys. <u>82</u>, 3045 (2010);
- X.-L. Qi & S.-C. Zhang, Rev. Mod. Phys. <u>83</u>, 1057 (2011).

DELOCALIZATION OF MAJORANA MODES

Majorana/Andreev quasiparticles of a wire-plaquette hybrid

plaquette: nontopological

nanowire: topological

A. Kobiałka, T. Domański & A. Ptok, Scientific Reports 9, 12933 (2019).

DELOCALIZATION OF MAJORANA MODES

Majorana/Andreev quasiparticles of a wire-plaquette hybrid

Both regions are assumed to be in topological sc phase. A. Kobiałka, T. Domański & A. Ptok, Scientific Reports 9, 12933 (2019).
DELOCALIZED MAJORANAS: EXPERIMENTAL FACTS

Majorana localized at point-like defect coexists with another itinerant

edge mode observed in Co-Si island deposited on disordered Pb.

G.C. Ménard, ..., P. Simon and T. Cren, Nature Comm. <u>10</u>, 2587 (2019). Paris (France)

TOOL TO DETECT THE CHERN NUMBER

Itinerant Majorana mode leaking into the side-attached nanowire.

E. Mascot, S. Cocklin, S. Rachel & D.K. Morr, Phys. Rev. B 100, 184510 (2019).

University of Illinois at Chicago (USA)

TOOL TO DETECT THE CHERN NUMBER

Itinerant Majorana mode leaking into the side-attached nanowire.

E. Mascot, S. Cocklin, S. Rachel & D.K. Morr, Phys. Rev. B 100, 184510 (2019).

University of Illinois at Chicago (USA)

"A similar spatial structure of the zero-energy LDOS was also found in plaquette-nanowire hybrid structure [A. Kobiałka et al, 2019]."

TOOL TO DETECT THE CHERN NUMBER

Leakage of the Majorana modes between nanowire and island can help to detect the Chern number, characterizing topological phase of 2D-systems.

E. Mascot, S. Cocklin, S. Rachel & D.K. Morr, Phys. Rev. B 100, 184510 (2019).