Majorana quasiparticles: concepts & challenges

Tadeusz Domański (UMCS, Lublin)

Majorana quasiparticles: concepts & challenges

Tadeusz Domański (UMCS, Lublin)

In collaboration with:

- M. Maśka & A. Gorczyca-Goraj (UŚ, Katowice)
- A. Ptok (IFJ, Kraków)
- S. Głodzik & A. Kobiałka (UMCS, Lublin)

• Majorana (quasi)particle / what is it ? /

- Majorana (quasi)particle/ what is it ? /
- Superconductivity in nanostructures:
- ⇒ electron pairing and in-gap states/ proximity effect /

- Majorana (quasi)particle/ what is it ? /
- Superconductivity in nanostructures:
- ⇒ electron pairing and in-gap states/ proximity effect /
 - Topological superconductivity:
- ⇒ end/edge quasiparticles / experimental evidence /

- Majorana (quasi)particle/ what is it ? /
- Superconductivity in nanostructures:
- ⇒ electron pairing and in-gap states/ proximity effect /
 - Topological superconductivity:
- ⇒ end/edge quasiparticles / experimental evidence /
 - Major challenges:
- novel materials, nonlocality, realization of quantum computing, ...

1. Majorana fermions: basic notions

• P. Dirac (1928)

$$i\dot{\psi}=\left(ec{lpha}\!\cdot\!ec{p}+eta m
ight)\psi$$

/ relativistic description of fermions /

particles (
$$E > 0$$
),

anti-particles (E < 0)

P. Dirac (1928)

$$i\dot{\psi}=\left(ec{lpha}\!\cdot\!ec{p}+eta m
ight)\psi$$

/ relativistic description of fermions /

particles (E > 0),

anti-particles (E < 0)

E. Majorana (1937)

He noticed that a particular choice of $\vec{\alpha}$ and β yields a real-valued wavefunction!

Physical implication: particle = antiparticle or creation = annihilation

• P. Dirac (1928)

$$i\dot{\psi} = (ec{lpha}\!\cdot\!ec{p} + eta m)\,\psi$$

/ relativistic description of fermions /

particles (E>0), anti-particles (E<0)

E. Majorana (1937)

He noticed that a particular choice of $\vec{\alpha}$ and β yields a real-valued wavefunction!

Physical implication: particle = antiparticle or creation = annihilation

with the following features of such object: energyless, chargeless, ...

• P. Dirac (1928)

$$i\dot{\psi} = (ec{lpha}\!\cdot\!ec{p} + eta m)\,\psi$$

/ relativistic description of fermions /

 $\underline{\text{particles}} \; (E > 0), \quad \underline{\text{anti-particles}} \; (E < 0)$

E. Majorana (1937)

He noticed that a particular choice of $\vec{\alpha}$ and β yields a real-valued wavefunction!

Physical implication: particle = antiparticle or creation = annihilation

with the following features of such object: energyless, chargeless, ...

Does it exist anywhere ?

• P. Dirac (1928)

$$i\dot{\psi} = (ec{lpha}\!\cdot\!ec{p} + eta m)\,\psi$$

/ relativistic description of fermions /

E. Majorana (1937)

He noticed that a particular choice of $\vec{\alpha}$ and β yields a real-valued wavefunction!

Physical implication: particle = antiparticle or creation = annihilation

with the following features of such object: energyless, chargeless, ...

Does it exist anywhere ?

Probably it doesn't!

Hunting for majorana qps – in solids

Hunting for majorana qps - in solids

Properties of solids are determined by the conduction **electrons**, which are the ordinary Dirac fermions

Hunting for majorana qps

- in solids

- ★ Properties of solids are determined by the conduction electrons, which are the ordinary Dirac fermions
- Many-body effects, however, can induce variety of emergent phenomena,
 e.g. phonons, polaritons, spinons, holons etc.

/ 'More is different' P.W. Anderson (1972) /

Hunting for majorana qps

- in solids

- Properties of solids are determined by the conduction electrons,
 which are the ordinary Dirac fermions
- Many-body effects, however, can induce variety of emergent phenomena,
 e.g. phonons, polaritons, spinons, holons etc.
 - / 'More is different' P.W. Anderson (1972) /
- **★** So, how about **Majorana quasiparticles** ?

Hunting for majorana qps

- in solids

- ★ Properties of solids are determined by the conduction electrons ,
 which are the ordinary Dirac fermions
- Many-body effects, however, can induce variety of emergent phenomena,
 e.g. phonons, polaritons, spinons, holons etc.

```
/ 'More is different' P.W. Anderson (1972) /
```

★ So, how about **Majorana quasiparticles** ?

★ Formaly, any usual fermion can be majoranized ...

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i,\hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i,\hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger,\hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i,\hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i,\hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger,\hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

 $c_i^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{lll} \hat{c}_{j} & \equiv & \left(\hat{\gamma}_{j,1} + i\hat{\gamma}_{j,2}
ight)/\sqrt{2} \ \hat{c}_{j}^{\dagger} & \equiv & \left(\hat{\gamma}_{j,1} - i\hat{\gamma}_{j,2}
ight)/\sqrt{2} \end{array}$$

'real' and 'imaginary' parts

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

 $c_i^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{lll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to <u>neutral</u> objects

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

 $c_i^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{ll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to $rac{ ext{neutral}}{ ext{objects}}$

Exotic properties

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n} \ \left\{ \hat{\gamma}_{i,n}, \hat{\gamma}_{j,m}^{\dagger}
ight\} = \delta_{i,j} \delta_{n,m}$$

creation = annihilation !

fermionic antisymmetry

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

 $c_i^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{lll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to <u>neutral</u> objects

Exotic properties (cd)

$$\hat{\gamma}_{i,n} \; \hat{\gamma}_{i,n} \; = \; 1/2 \ \hat{\gamma}_{i,n}^\dagger \; \hat{\gamma}_{i,n} \; = \; 1/2$$

no Pauli principle!

half 'occupied' & half 'empty'

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

⇒ chargeless & energyless

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- → chargeless & energyless
 - spatially nonlocal

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & energyless
 - spatially nonlocal
- > they always exist in pairs, even though (infinitely) far apart

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & energyless
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractional (anyon) statistics

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & energyless
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractional (anyon) statistics

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

⇒ half-empty & half-filled entities

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & energyless
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractional (anyon) statistics

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & energyless
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractional (anyon) statistics

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected
- → immune to decoherence ... yet be cautious about that !

Various candidates for Majorana quasiparticles

Various candidates

for Majorana quasiparticles

• vortex states in *p*-wave superconductors

Volovik (1999)

Various candidates

for Majorana quasiparticles

vortex states in p-wave superconductors
 Volovik (1999)

quantum nanowires attached to superconductor

Alicea (2010); Oreg et al (2010); Lutchyn et al (2010); Stanescu & Tewari (2013)

Various candidates

for Majorana quasiparticles

• vortex states in p-wave superconductors

Volovik (1999)

quantum nanowires attached to superconductor

Alicea (2010); Oreg et al (2010); Lutchyn et al (2010); Stanescu & Tewari (2013)

Shockley states on electrostatic line defects

Tworzydło & Beenakker (2010)

Various candidates

for Majorana quasiparticles

- vortex states in p-wave superconductors

 Volovik (1999)
- quantum nanowires attached to superconductor
 Alicea (2010); Oreg et al (2010); Lutchyn et al (2010); Stanescu & Tewari (2013)
- Shockley states on electrostatic line defects
 Tworzydło & Beenakker (2010)
- edge states of 2D and 3D topological insulators
 Hasan & Kane (2010); Qi & Zhang (2011); Franz & Molenkamp (2013)

Various candidates

for Majorana quasiparticles

- vortex states in *p*-wave superconductors
 Volovik (1999)
- quantum nanowires attached to superconductor
 Alicea (2010); Oreg et al (2010); Lutchyn et al (2010); Stanescu & Tewari (2013)
- Shockley states on electrostatic line defects
 Tworzydło & Beenakker (2010)
- edge states of 2D and 3D topological insulators
 Hasan & Kane (2010); Qi & Zhang (2011); Franz & Molenkamp (2013)
- magnetic atoms chain on superconducting substrate
 Choy et al (2011); Martin & Morpugo (2012); Nadj-Perge et al (2013)

- for Majorana quasiparticles

for Majorana quasiparticles

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

dI/dV measured at 70 mK for varying magnetic field B indicated:

⇒ a zero-bias enhancement due to Majorana state

V. Mourik, ..., and <u>L.P. Kouwenhoven</u>, Science **336**, 1003 (2012).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /

- for Majorana quasiparticles

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

H. Zhang, ..., and <u>L.P. Kouwenhoven</u>, arXiv:1603.04069 (2016).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /

for Majorana quasiparticles

A chain of iron atoms deposited on a surface of superconducting lead

STM measurements provided evidence for:

⇒ Majorana bound states at the edges of a chain.

·Δ_s 0 +Δ Energy

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014).

/ Princeton University, Princeton (NJ), USA /

for Majorana quasiparticles

Self-assembled Fe chain on superconducting Pb(110) surface

AFM combined with **STM** provided evidence for:

⇒ Majorana bound states at the edges of a chain.

R. Pawlak, M. Kisiel et al, npj Quantum Information 2, 16035 (2016).

/ University of Basel, Switzerland /

Kitaev chain – a paradigm for Majorana modes

inter-site pairing of equal spin fermions

Kitaev chain

a paradigm for Majorana modes

inter-site pairing of equal spin fermions

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}$$

Kitaev chain

a paradigm for Majorana modes

inter-site pairing of equal spin fermions

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}$$

This toy-model can be exactly solved in Majorana basis. For $\Delta = t$ one obtains:

Kitaev toy model

/ Phys. Usp. 44, 131 (2001) /

operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ are decoupled from all the rest. This implies

zero-energy modes appearing at the ends of chain

Kitaev toy model

/ Phys. Usp. 44, 131 (2001) /

*

In the special case $\Delta=t$ and $|\mu|<2t$

operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ are decoupled from all the rest. This implies

zero-energy modes appearing at the ends of chain

★ Similar ideas have been considered for 1D Heisenberg chain of 1/2 spins

F.D.M. Haldane, Phys. Rev. Lett. <u>50</u>, 1153 (1983)

Nobel Prize, 2016

3. Superconductivity in nanosystems

Pairing in nanosystems

Any material brought in a contact with some bulk superconductor absorbs the Cooper pairs

Cooper pairs leak into non-superconducting region on a spatial length ξ_N .

(bound states at quantum impurities)

(bound states at quantum impurities)

Let's consider a single magnetic impurity in NbSe $_2$ ($T_c pprox$ 7 K)

- ⇒ characterized by a triangular lattice,
- ⇒ with in-plane spin orbit interactions.

(bound states at quantum impurities)

Low energy (subgap) spectrum reveals:

- ⇒ two bound (Yu-Shiba-Rusinov) quasiparticle states,
- \Rightarrow which cross each other at $J_c \approx 2t$.

(bound states at quantum impurities)

Crossing of the YSR quasiparticles signifies:

- ⇒ the quantum phase transition,
- ⇒ reversal of the magnetic polarizations.

(bound states at quantum impurities)

Characteristic star-shape spatial patters of the YSR quasiparticles.

(bound states at quantum impurities)

Particle/hole branches of the YSR quasiparticles:

- \Rightarrow reveal quantum oscillations (shifted in phase by π),
- ⇒ spread onto several lattice constants from magnetic impurity.

(bound states at quantum impurities)

Particle/hole branches of the YSR quasiparticles:

- \Rightarrow reveal quantum oscillations (shifted in phase by π),
- ⇒ spread onto several lattice constants from magnetic impurity.

A. Ptok, Sz. Głodzik, & T. Domański, Phys. Rev. B 96, 184425 (2017).

Subgap states

of multilevel quantum impurities

a) STM scheme and b) differential conductance for multilevel quantum impurity adsorbed on surface of bulk superconductor.

R. Žitko, O. Bodensiek, and T. Pruschke, Phys. Rev. B 83, 054512 (2011).

Andreev vs Majorana states – 'A story of mutation'

Andreev vs Majorana states

- 'A story of mutation'

Let us consider:

1D quantum wire deposited on s-wave superconductor

D. Chevallier, P. Simon, and C. Bena, Phys. Rev. B 88, 165401 (2013).

Andreev vs Majorana states

'A story of mutation'

Electronic spectrum comprises a series of Andreev states.

D. Chevallier, P. Simon, and C. Bena, Phys. Rev. B 88, 165401 (2013).

Andreev vs Majorana states

'A story of mutation'

Spin-orbit + Zeeman interactions induce the Majorana edge modes.

D. Chevallier, P. Simon, and C. Bena, Phys. Rev. B 88, 165401 (2013).

More detailed picture

oscillations & polarization

Spatial profiles of the Majorana qps

T. Domański *et al*, arXiv:1712.03172 (2017).

4. Present challenges (a few examples)

1. Novel structures for realization of Majorana qps

1. Novel structures

for realization of Majorana qps

a) wire-like device constructed lithographically

H.J. Suominen et al, Phys. Rev. Lett. 119, 176805 (2017).

/ University of Copenhagen, Denmark /

1. Novel structures

for realization of Majorana qps

b) chiral Majorana modes at the edges of magnetic atoms cluster

Delocalized (dispersive) modes!

G.C. Ménard et al, Nature Comm. 8, 2040 (2017).

/ Univ. Pierre & Marie Curie, Paris, France /

1. Novel structures

for realization of Majorana qps

c) zero-energy mode on ferromagnetic topological insulator

/ PAS & MagTop, Warsaw, Poland /

2. Nonlocality of Majorana qps

/ leakage on other objects /

TOPOLOGICAL MATTER

Majorana bound state in a coupled quantum-dot hybrid-nanowire system

M. T. Deng, ^{1,2} S. Vaitiekėnas, ^{1,3} E. B. Hansen, ¹ J. Danon, ^{1,4} M. Leijnse, ^{1,5} K. Flensberg, ¹ J. Nygård, ¹ P. Krogstrup, ¹ C. M. Marcus ^{1*}

Science **354**, 1557 (2016).

Leakage of Majoranas

(on side-attached normal wire)

Coalescence of Andreev states to Majorana quasiparticles.

A. Ptok, A. Kobiałka, & T. Domański, Phys. Rev. B **96**, 195430 (2017).

(recent experimental data)

Non-locality measured via the side-coupled quantum dot

M.T. Deng et al, arXiv:1712.03536 (2017).

/ Univ. of Copenhagen, Denmark &

Univ. Autonoma de Madrid, Spain /

(recent experimental data)

Non-locality probed via the side-coupled quantum dot

M.T. Deng et al, arXiv:1712.03536 (2017).

/ Univ. of Copenhagen, Denmark &

Univ. Autonoma de Madrid, Spain /

(further ideas)

Entangled pair of the Majorana quasiparticles can lead to further non-local effects, signified e.g. by interference ...

(further ideas)

Entangled pair of the Majorana quasiparticles can lead to further non-local effects, signified e.g. by interference or charge teleportation.

PRL **104,** 056402 (2010)

PHYSICAL REVIEW LETTERS

week ending 5 FEBRUARY 2010

Electron Teleportation via Majorana Bound States in a Mesoscopic Superconductor

Liang Fu

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 23 October 2009; published 2 February 2010)

3. Practical use Majorana qubits & quantum computing

3. Practical use

Majorana qubits & quantum computing

Many proposals for qubits based on Majorana qps & their braiding

(a) Basic braiding operation

(b) Full protocols: Single and double braid

PHYSICAL REVIEW X **6,** 031016 (2016)

Milestones Toward Majorana-Based Quantum Computing

David Aasen,¹ Michael Hell,^{2,3} Ryan V. Mishmash,^{1,4} Andrew Higginbotham,^{5,3} Jeroen Danon,^{3,6} Martin Leijnse,^{2,3} Thomas S. Jespersen,³ Joshua A. Folk,^{3,7,8} Charles M. Marcus,³ Karsten Flensberg,³ and Jason Alicea^{1,4}

3. Practical use

Majorana qubits & quantum computing

Some recent theoretical ideas for quantum operations

FIG. 1. Top: a 1D implementation of a Majorana circuit. Majoranas (blue dots) occur at either the edge of a nanowire (black line) or as it crosses the boundary of a superconductor (light green). Josephson junctions (red crossed lines) connect superconducting islands to a common base, allowing for parallel joint parity measurements. Fully-tunable T-junctions

/ Delft University, Netherlands /

T.E. O'Brien, P. Rożek, A.R. Akhmerov, arXiv:1712.02353 (2017).

3. Practical use

Majorana qubits & quantum computing

Some recent theoretical ideas for quantum operations

FIG. 1. Top: a 1D implementation of a Majorana circuit. Majoranas (blue dots) occur at either the edge of a nanowire (black line) or as it crosses the boundary of a superconductor (light green). Josephson junctions (red crossed lines) connect superconducting islands to a common base, allowing for parallel joint parity measurements. Fully-tunable T-junctions

/ Delft University, Netherlands /

T.E. O'Brien, P. Rożek, A.R. Akhmerov, arXiv:1712.02353 (2017).

However any experimental realization is missing!

Summary: -

unique features of Majorana qps

unique features of Majorana qps

• particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

unique features of Majorana qps

particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

⇒ chargeless & zero-energy objects

unique features of Majorana qps

particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal

unique features of Majorana qps

particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal
- ⇒ exist always in pairs (even far away from each other)

unique features of Majorana qps

• particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal
- ⇒ exist always in pairs (even far away from each other)
 - fractional (anyon-type)

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

unique features of Majorana qps

• particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal
- exist always in pairs (even far away from each other)
 - fractional (anyon-type)

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

⇒ half-empty & half-filled entities

unique features of Majorana qps

• particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal
- ⇒ exist always in pairs (even far away from each other)
 - fractional (anyon-type)

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected

- unique features of Majorana qps
- particle = antiparticle

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless & zero-energy objects
 - spatially nonlocal
- exist always in pairs (even far away from each other)
 - fractional (anyon-type)

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected
- → immune to decoherence/disorder

... talk by Maciek Maśka!

possible applications

novel SQUID devices

- novel SQUID devices
- → due to fractionality

possible applications

- novel SQUID devices
- → due to fractionality

quantum teleportation

- novel SQUID devices
- → due to fractionality
 - quantum teleportation
- → due to ideal entanglement

- novel SQUID devices
- ⇒ due to fractionality
 - quantum teleportation
- due to ideal entanglement
 - fault-tollerant qubits

- novel SQUID devices
- → due to fractionality
 - quantum teleportation
- → due to ideal entanglement
 - fault-tollerant qubits
- → due to topological protection