Ustroń, 18 Sept. 2012

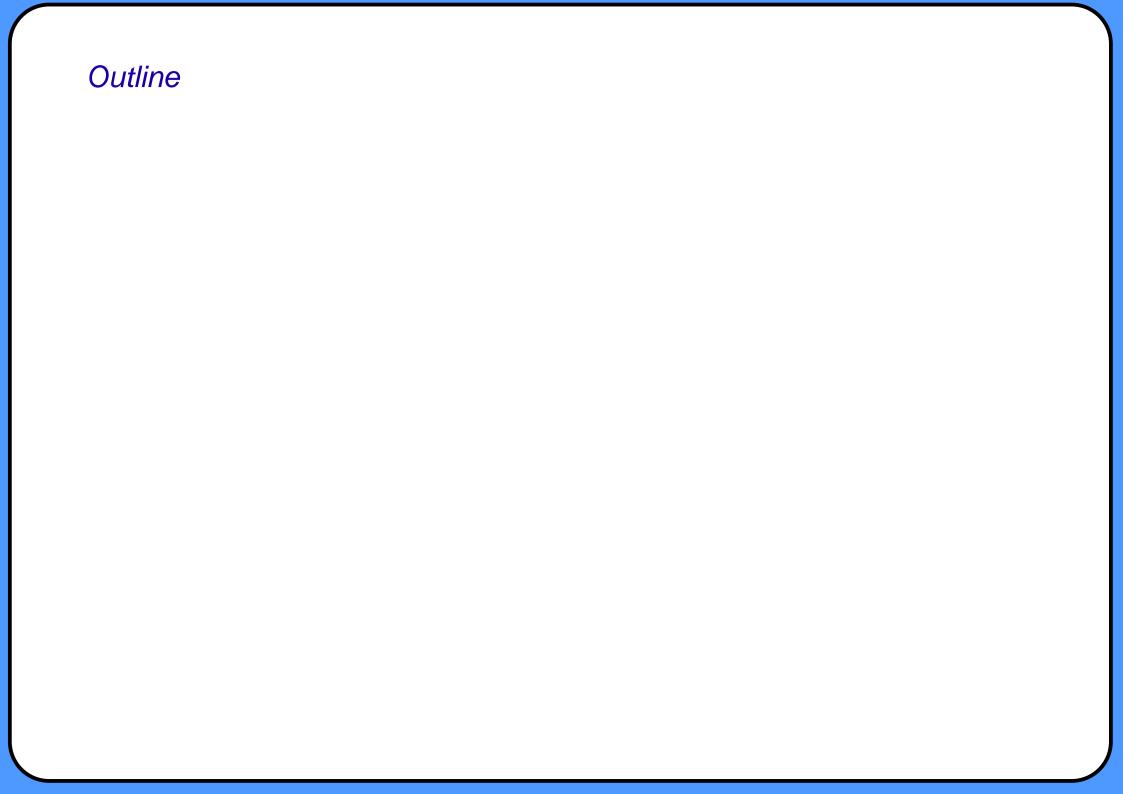
Andreev scattering:

from the nano- to macroscale

T. Domański

Marie Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman/lectures



1. Introduction

/ underlying idea /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference and decoherence /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference and decoherence /

4. Andreev spectroscopy in bulk superconductors

/ probe of the pair coherence /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference and decoherence /

4. Andreev spectroscopy in bulk superconductors

/ probe of the pair coherence /

5. Andreev scattering in ultracold gasses

/ interplay between closed and open channels /

1. Introduction

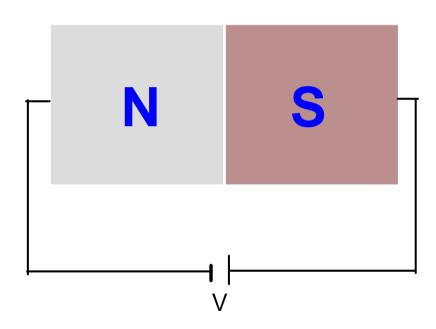
the main concept

the main concept

Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$

the main concept

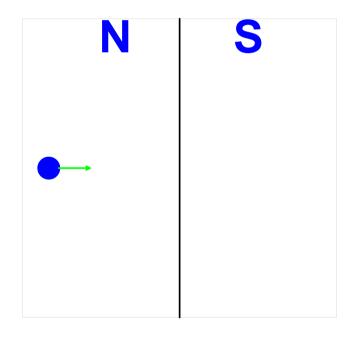
Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S



Let us restrict to the subgap regime $|eV| \ll \Delta$ of an applied bias V.

the main concept

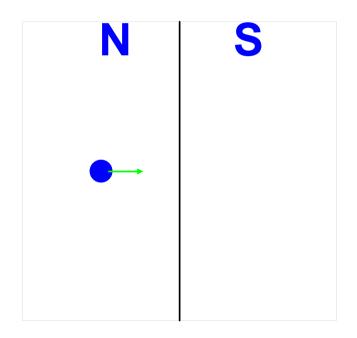
Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$



electron

the main concept

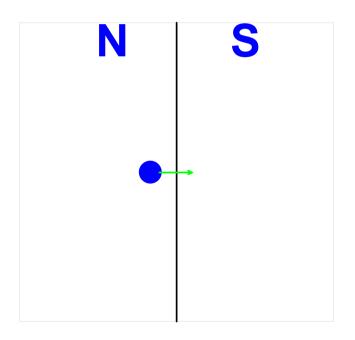
Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$



electron

the main concept

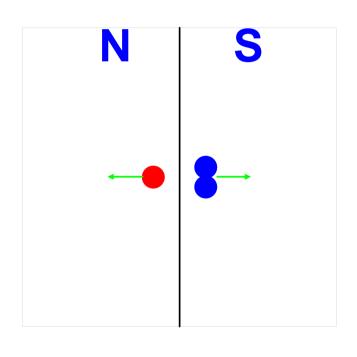
Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$



electron

the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S

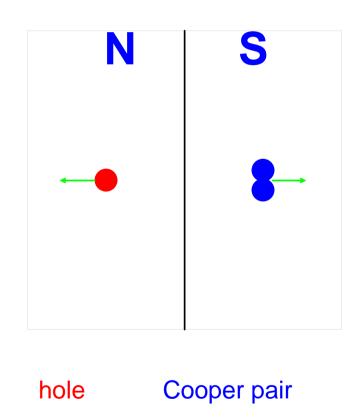


hole

Cooper pair

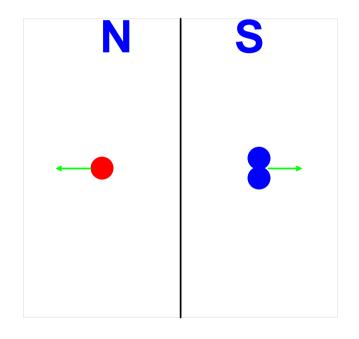
the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S



the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S



hole Cooper pair

Such double-charge exchange is named the **Andreev reflection** (scattering).

historical remark

historical remark

This *anomalous* transport channel allows for a finite subgap current across the N-S interface even though the single-particle transmissions are forbidden. Its original idea has been suggested by

historical remark

This *anomalous* transport channel allows for a finite subgap current across the N-S interface even though the single-particle transmissions are forbidden. Its original idea has been suggested by

A.F. Andreev

/ P. Kapitza Institute, Moscow (Russia) /

A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

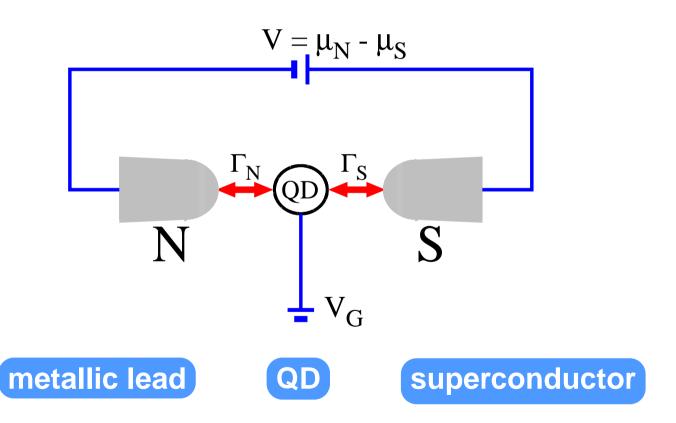
2. Andreev transport via quantum dot

N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads

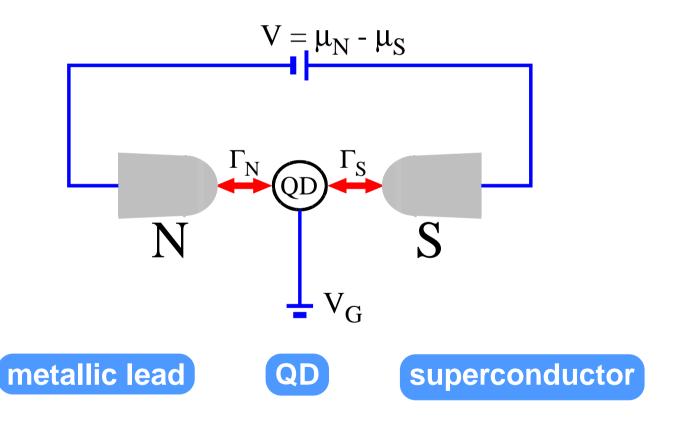
N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads



N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads



This setup can be thought of as a particular version of the SET.

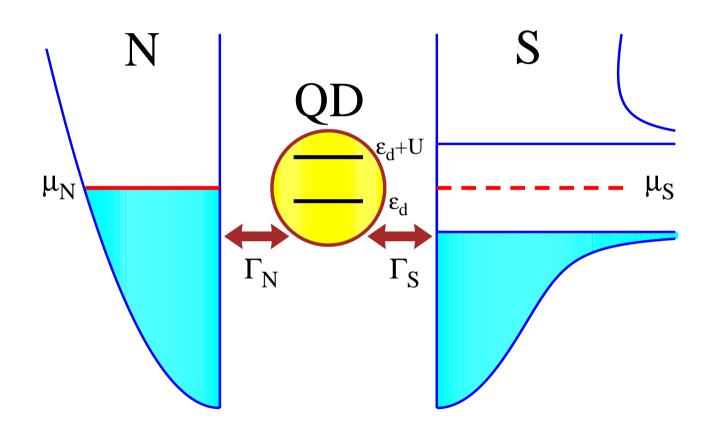
Physical situation – energy spectrum

Physical situation – energy spectrum

Components of the N-QD-S heterostructure have the following spectra

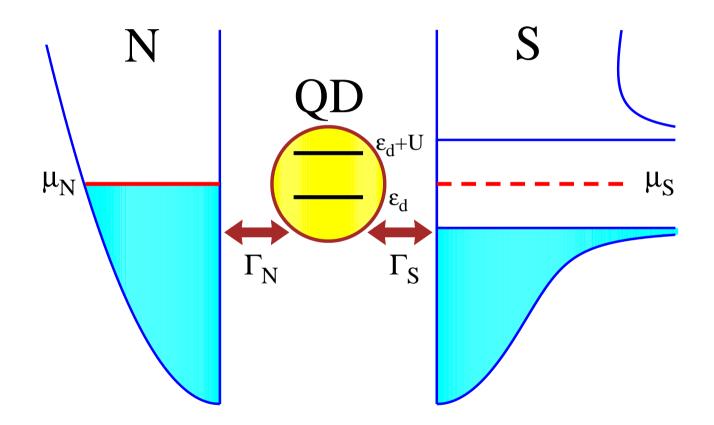
energy spectrum

Components of the N-QD-S heterostructure have the following spectra



Physical situation – energy spectrum

Components of the N-QD-S heterostructure have the following spectra



External bias $eV = \mu_N - \mu_S$ induces the current(s) through QD.

The correlation effects

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_N = \sum_{m{k},\sigma} \left(arepsilon_{m{k},N} \! - \! \mu_N
ight) \hat{c}^\dagger_{m{k}\sigma N} \hat{c}_{m{k}\sigma N}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_S = \sum_{k,\sigma} (\varepsilon_{k,S} - \mu_S) \, \hat{c}_{k\sigma S}^{\dagger} \hat{c}_{k\sigma S} - \sum_{k} \left(\Delta \hat{c}_{k\uparrow S}^{\dagger} \hat{c}_{k\downarrow S}^{\dagger} + \text{h.c.} \right)$$

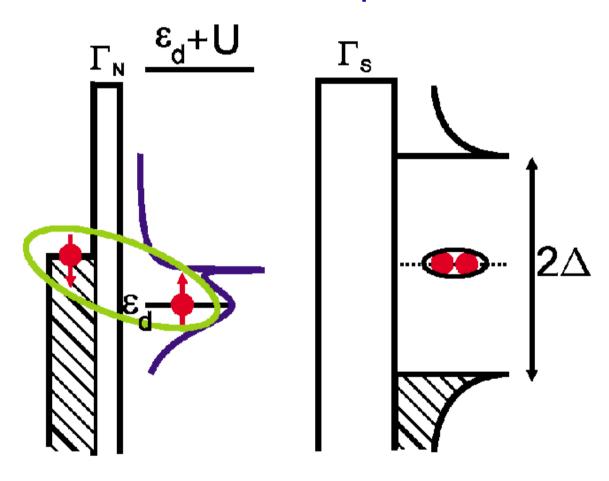
Relevant problems : issue # 1

Relevant problems : issue # 1

Hybridization of QD to the metallic lead is responsible for:

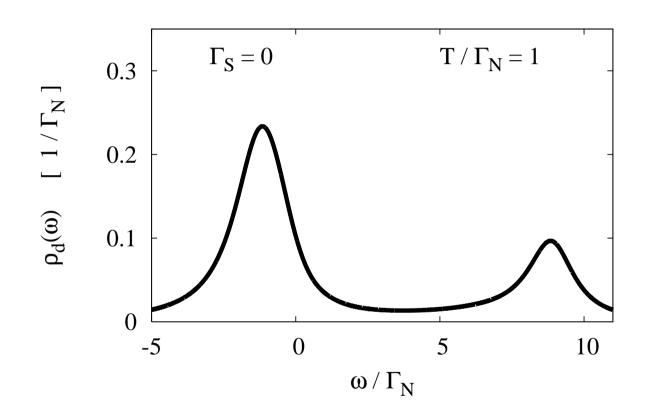
issue # 1

Hybridization of QD to the metallic lead is responsible for:



issue # 1

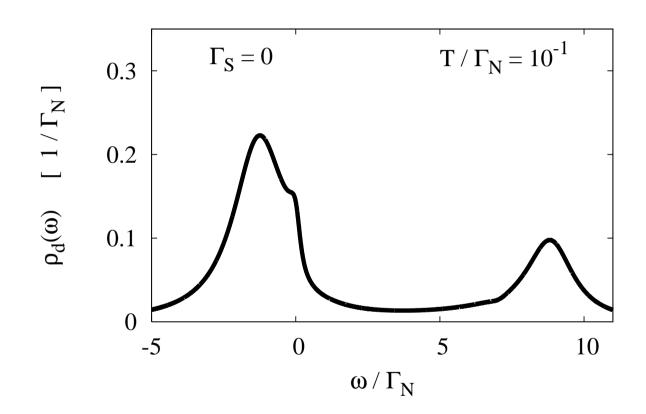
Hybridization of QD to the metallic lead is responsible for:



a broadening of QD levels

issue # 1

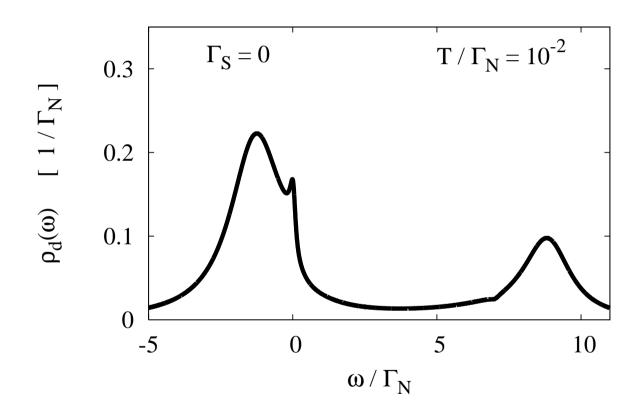
Hybridization of QD to the metallic lead is responsible for:



a broadening of QD levels and ...

issue # 1

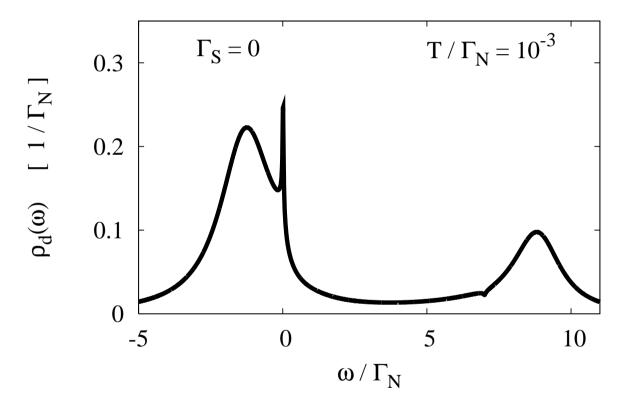
Hybridization of QD to the metallic lead is responsible for:



a broadening of QD levels and ...

issue # 1

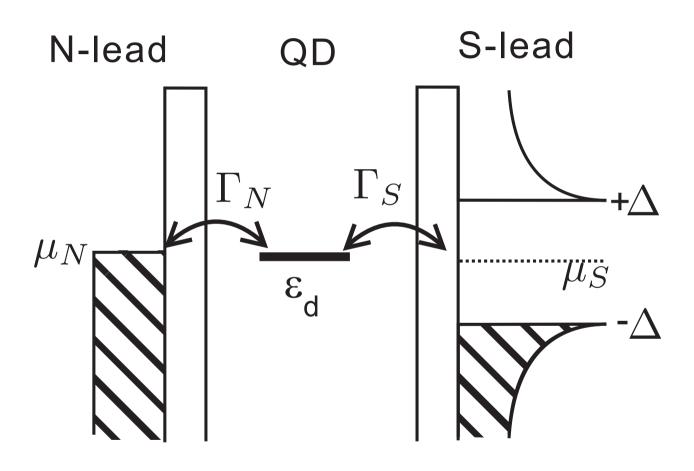
Hybridization of QD to the metallic lead is responsible for:

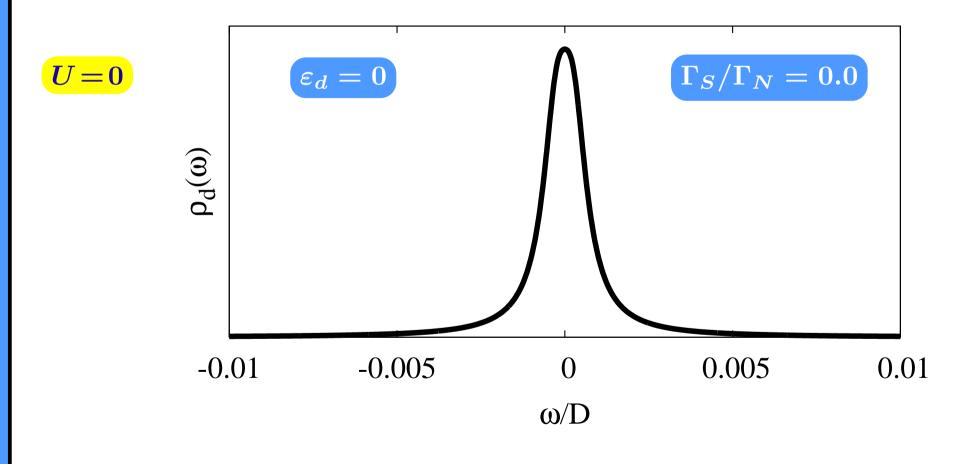


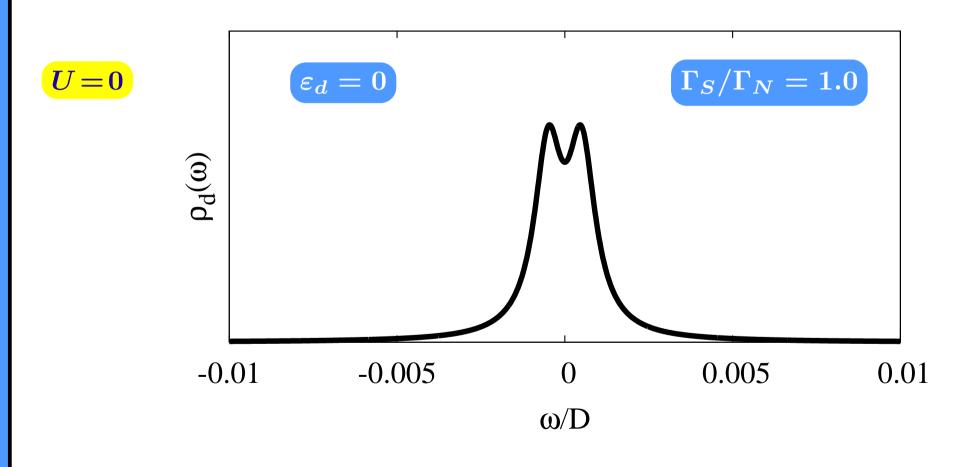
* a broadening of QD levels and

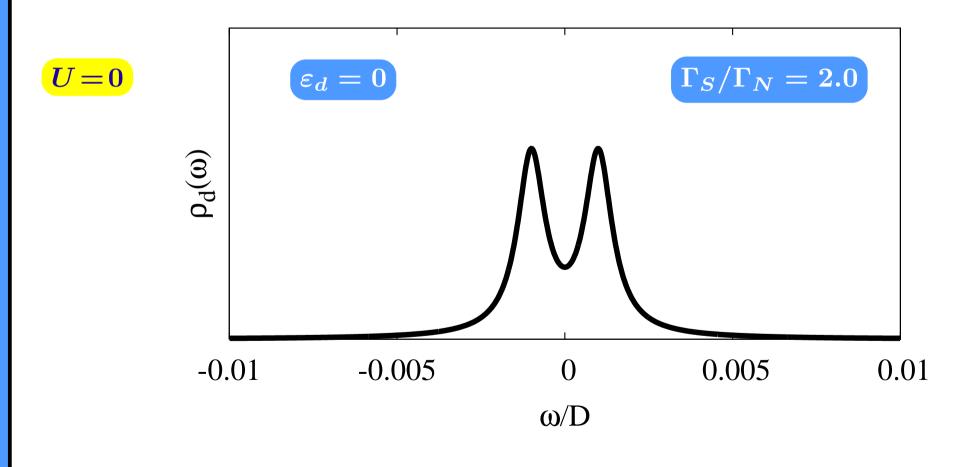
appearance of the Kondo resonance below T_K .

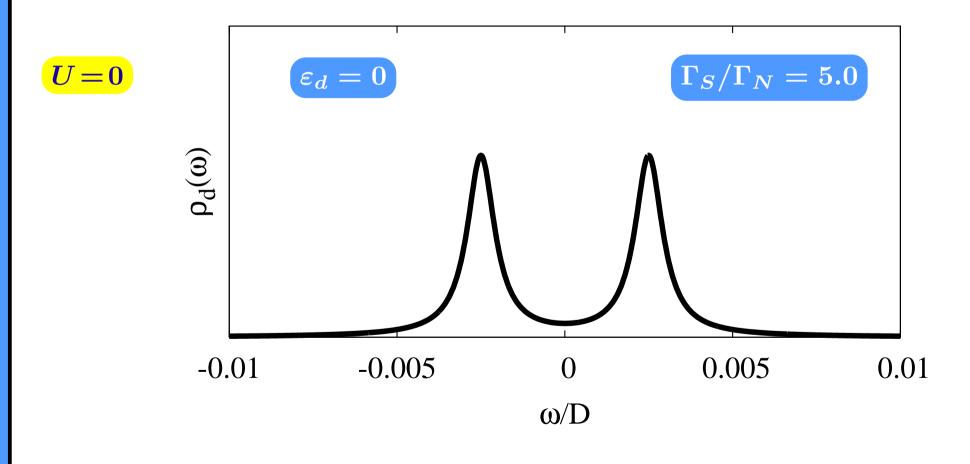
Hybridization of QD to the superconducting lead

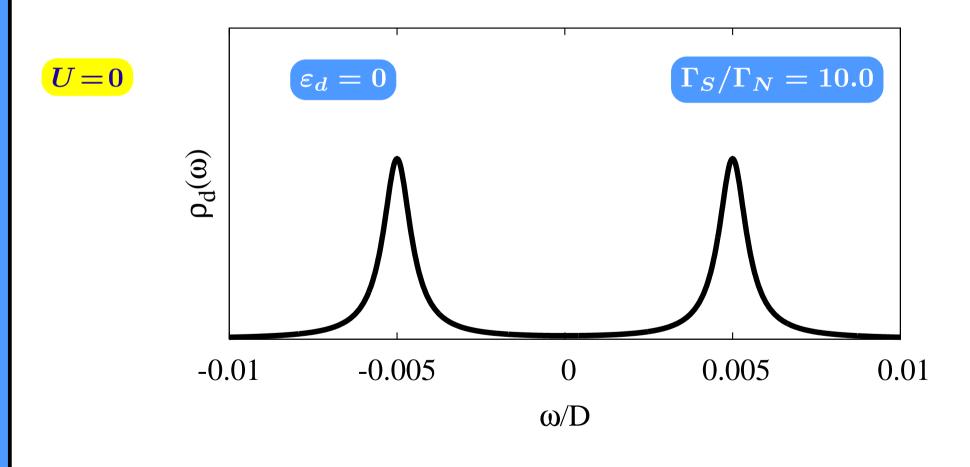


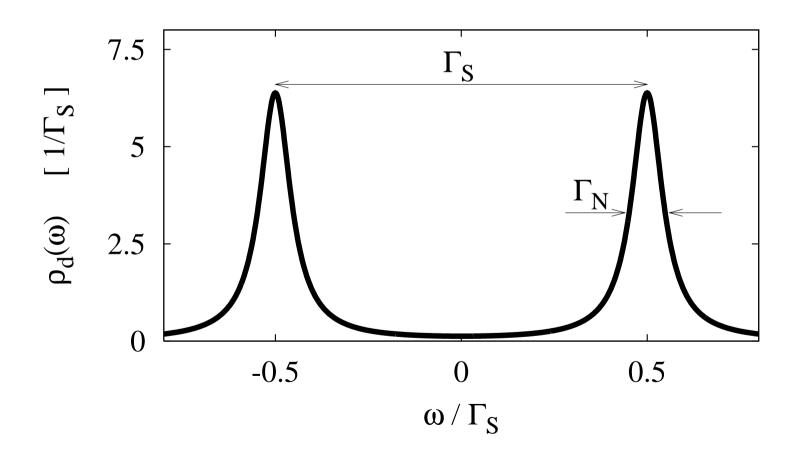








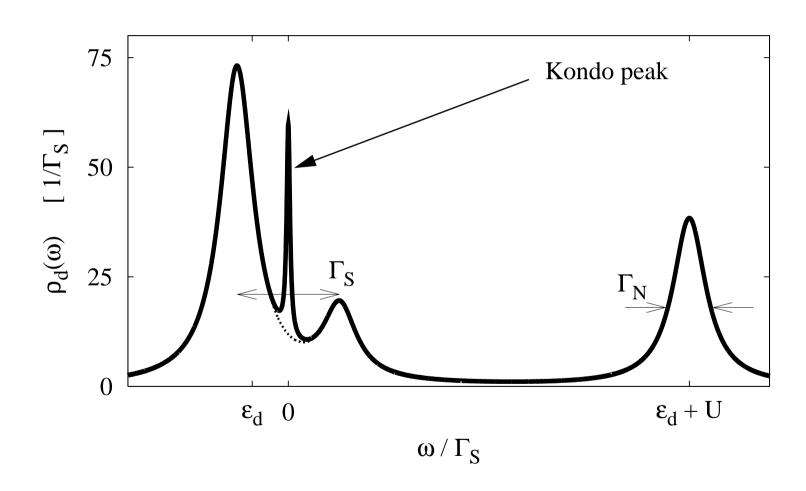




#1+2

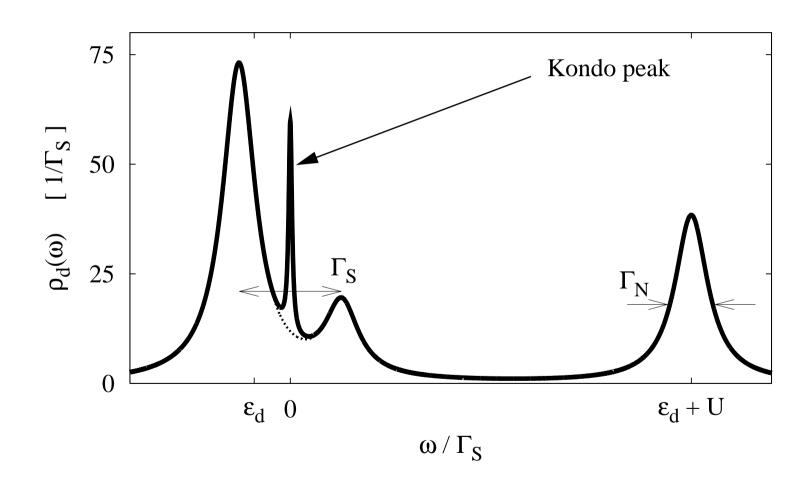
#1+2

Hybridizations Γ_N and Γ_S are thus effectively leading to



#1+2

Hybridizations Γ_N and Γ_S are thus effectively leading to



/ interplay between the Kondo effect and superconductivity /

* What kind of interplay occurs between superconductivity (transmitted onto the QD) and the Kondo effect?

★ What kind of interplay occurs between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they cooperate or compete?

★ What kind of interplay occurs between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they cooperate or compete ?

★ How do these effects show up in the charge current through N-QD-S junction ?

★ What kind of interplay occurs between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they cooperate or compete ?

★ How do these effects show up in the charge current through N-QD-S junction ?

Are there any particular features?

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au') \!=\! - \left(egin{array}{ccc} \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\downarrow(au')
angle \ \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\downarrow(au')
angle \end{array}
ight)$$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

$$\Sigma_d^0(\omega)$$
 the selfenergy for $U=0$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

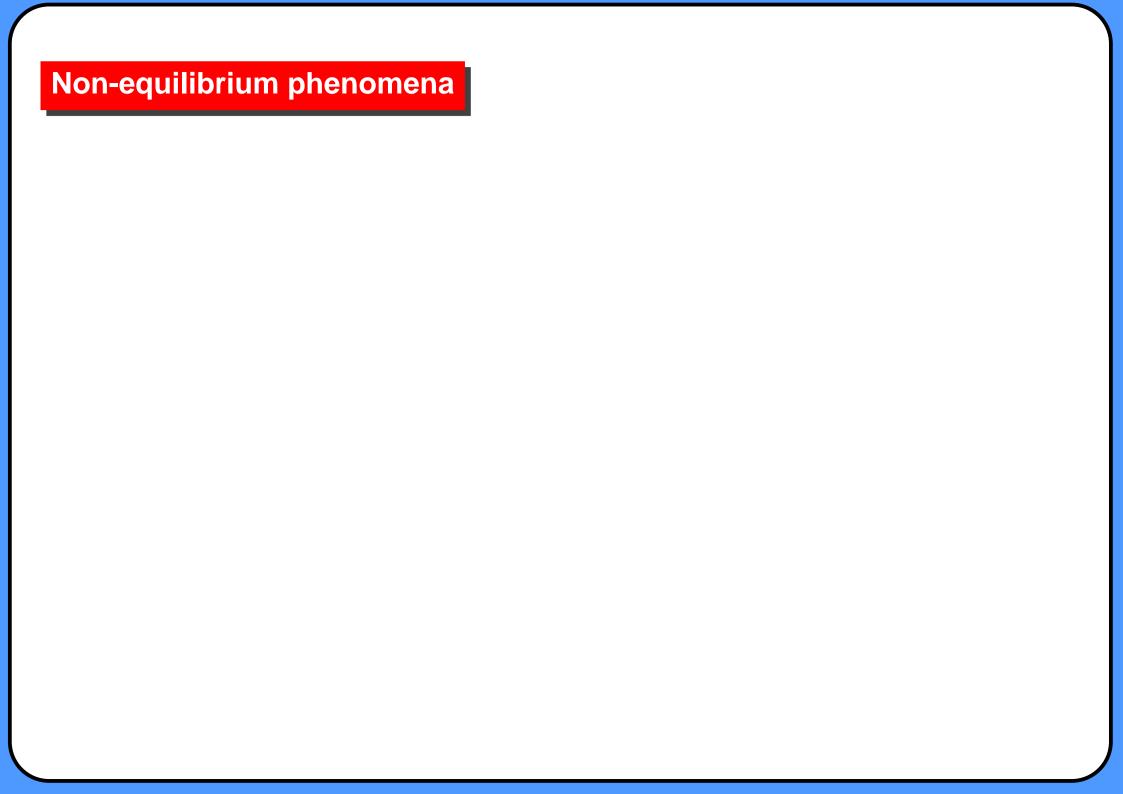
$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

 $\Sigma_d^U(\omega)$ correction due to U
eq 0.



Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

which can be expressed by the Landauer-type formula

$$J_1(V) = rac{2e}{h} \int d\omega \; T_1(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega,T)
ight]$$

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmittance

$$T_1(\omega) = \Gamma_N \Gamma_S \left(\left| G_{11}^r(\omega)
ight|^2 + \left| G_{12}^r(\omega)
ight|^2 - rac{2\Delta}{|\omega|} \mathrm{Re} G_{11}^r(\omega) G_{12}^r(\omega)
ight)$$

Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

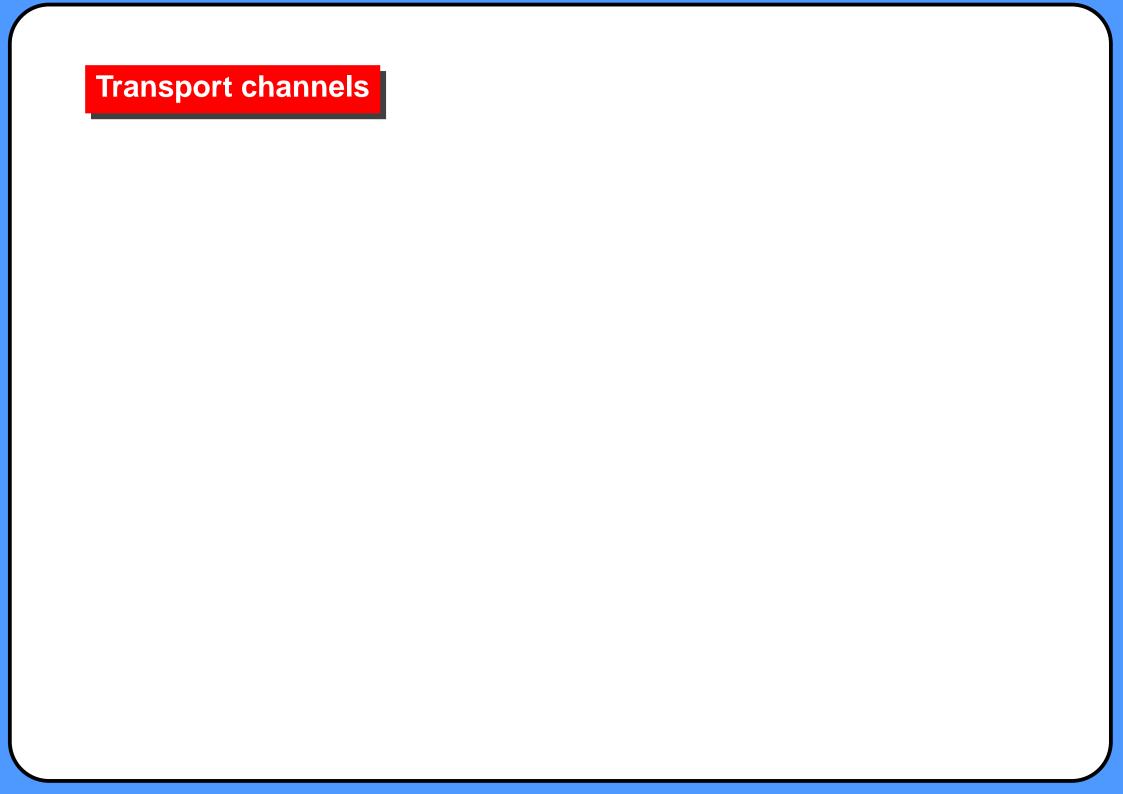
which can be expressed by the Landauer-type formula

$$J_1(V) = rac{2e}{h} \int d\omega \; T_1(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega,T)
ight]$$

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmittance

$$T_A(\omega) = \Gamma_N^2 \left| G_{12}(\omega)
ight|^2$$

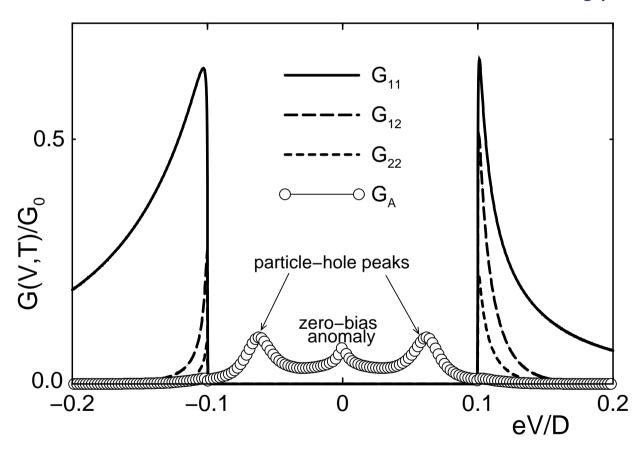


Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$

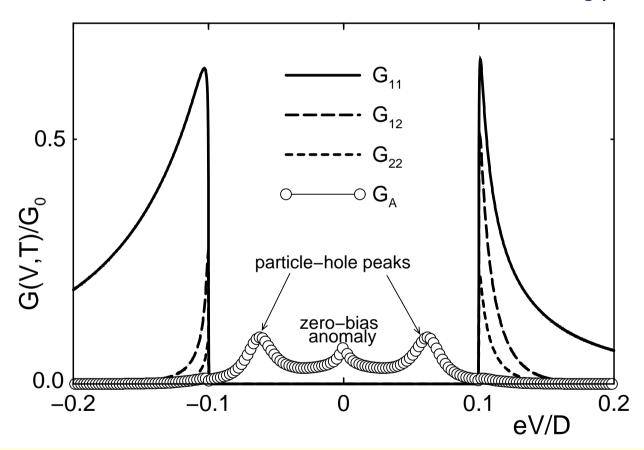
Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$



Transport channels

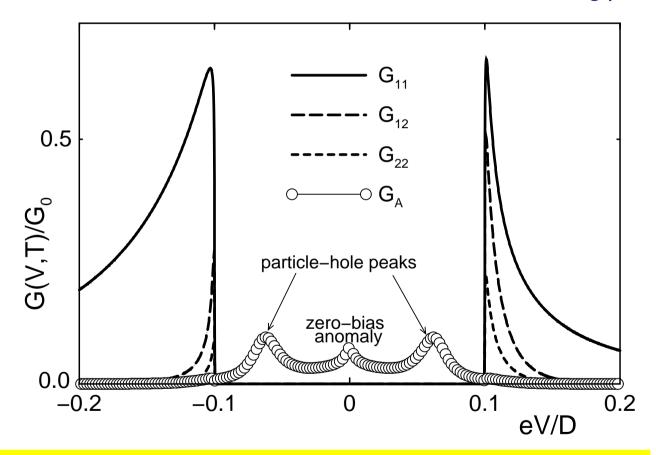
Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$



T. Domański, A. Donabidowicz, K.I. Wysokiński, PRB 76, 104514 (2007).

Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$



T. Domański, A. Donabidowicz, K.I. Wysokiński, PRB 76, 104514 (2007).

We shall now focus on the subgap Andreev conductance.

- effect of the asymmetry Γ_S/Γ_N

– effect of the asymmetry Γ_S/Γ_N

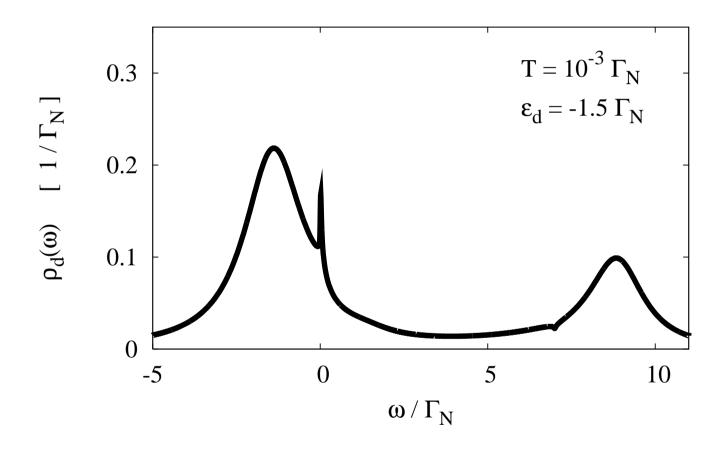
- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 0$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 1$$

- effect of the asymmetry Γ_S/Γ_N



$$\Gamma_S/\Gamma_N = 2$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 3$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N~=~4$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 5$$

- effect of the asymmetry Γ_S/Γ_N

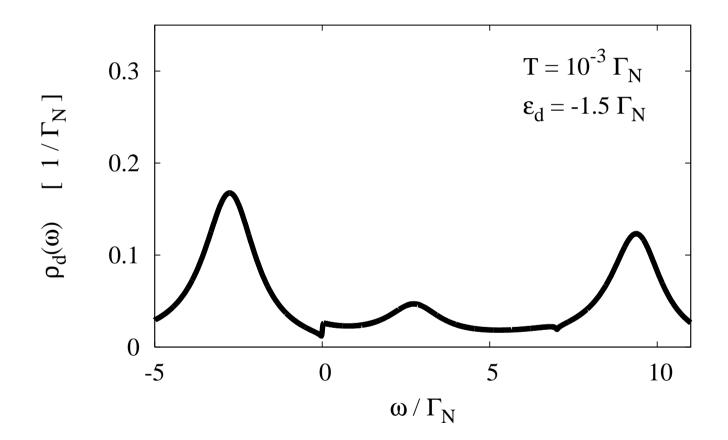
$$\Gamma_S/\Gamma_N = 6$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 8$$

- effect of the asymmetry Γ_S/Γ_N

Spectral function obtained below T_K for $U = 10\Gamma_N$



Superconductivity suppresses the Kondo resonance

– effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

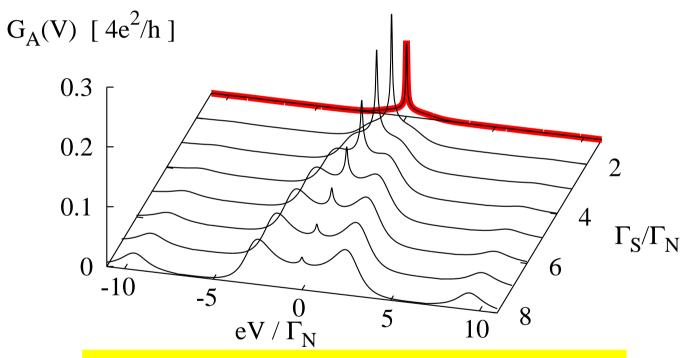


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 1$$



- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

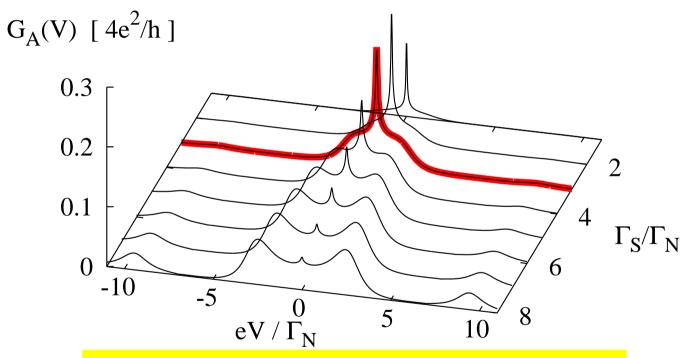
$$(U=10\Gamma_N)$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 3$$

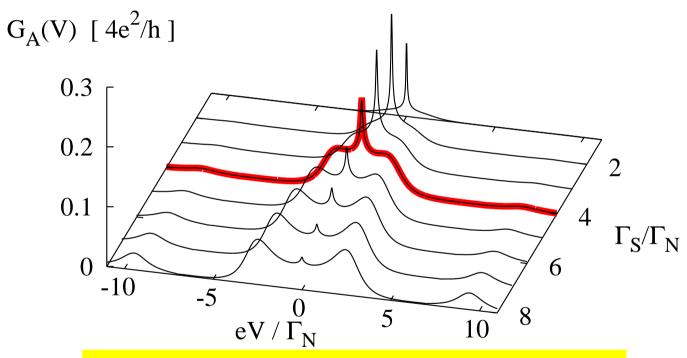


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 4$$

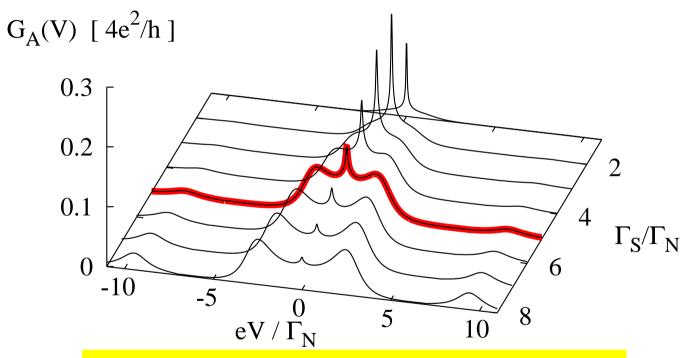


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 5$$

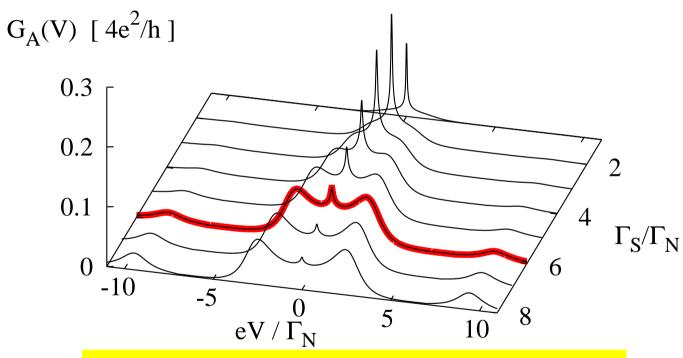


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 6$$

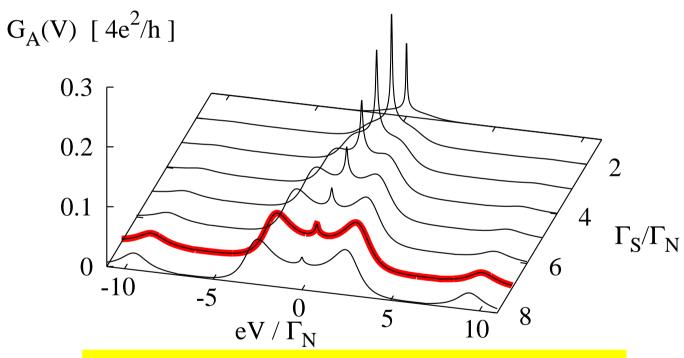


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 7$$

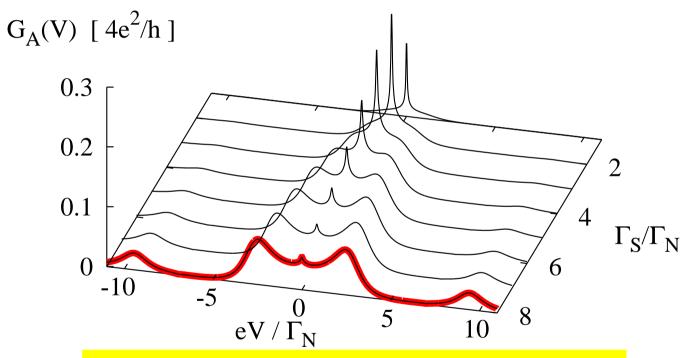


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 8$$

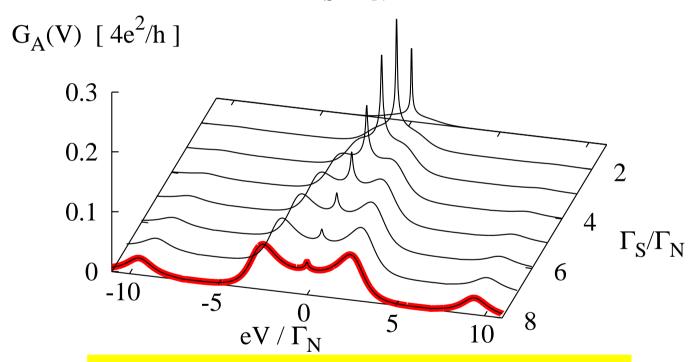


- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 8$$



T. Domański and A. Donabidowicz, PRB 78, 073105 (2008).

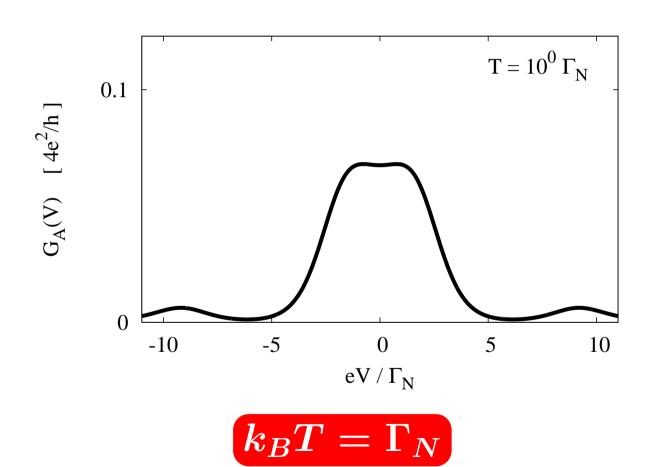
Kondo resonance slightly <u>enhances</u> the zero-bias Andreev conductance, especially for $\Gamma_S \sim \Gamma_N$!

influence of temperature

$$U=10\Gamma_N$$

influence of temperature

$$U=10\Gamma_N$$



influence of temperature

$$U=10\Gamma_N$$

$$(k_BT=\Gamma_N/10)$$

influence of temperature

$$U=10\Gamma_N$$

$$(k_BT=\Gamma_N/100)$$

influence of temperature

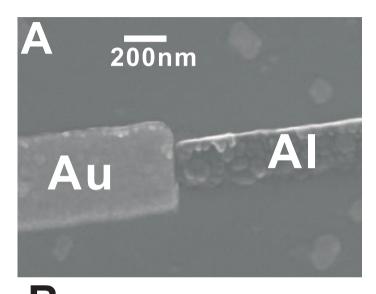
Temperature dependence of $G_A(V)$ for:

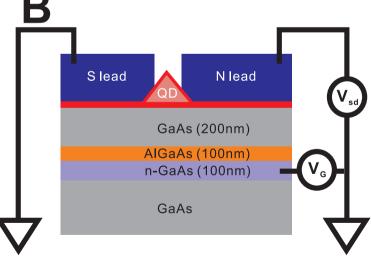
$$U=10\Gamma_N$$

$$(k_BT=\Gamma_N/1000)$$

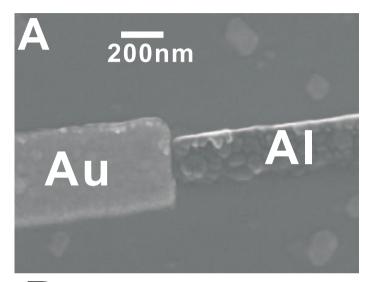
Experimental setup / University of Tokyo /

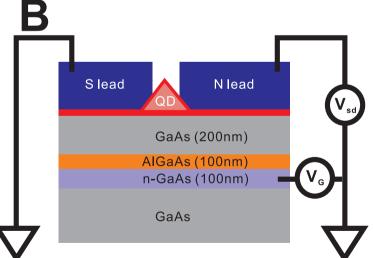
/ University of Tokyo /





/ University of Tokyo /



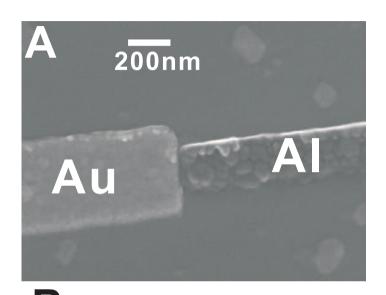


QD: self-assembled InAs

diameter \sim 100 nm

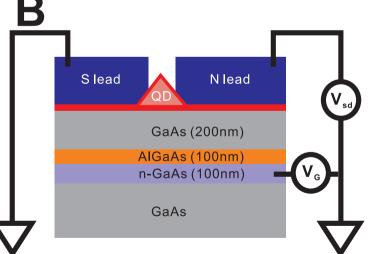
backgate: Si-doped GaAs

/ University of Tokyo /



 $T_c \simeq 1$ K

 $\Delta \simeq 152 \mu$ eV

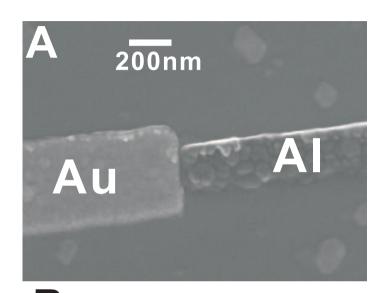


QD: self-assembled InAs

diameter \sim 100 nm

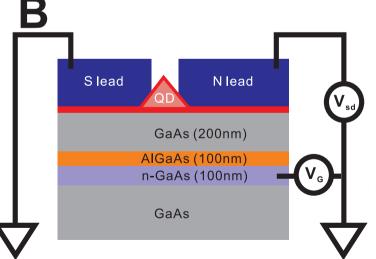
backgate: Si-doped GaAs

/ University of Tokyo /



 $T_c \simeq 1$ K

 $\Delta \simeq 152 \mu$ eV

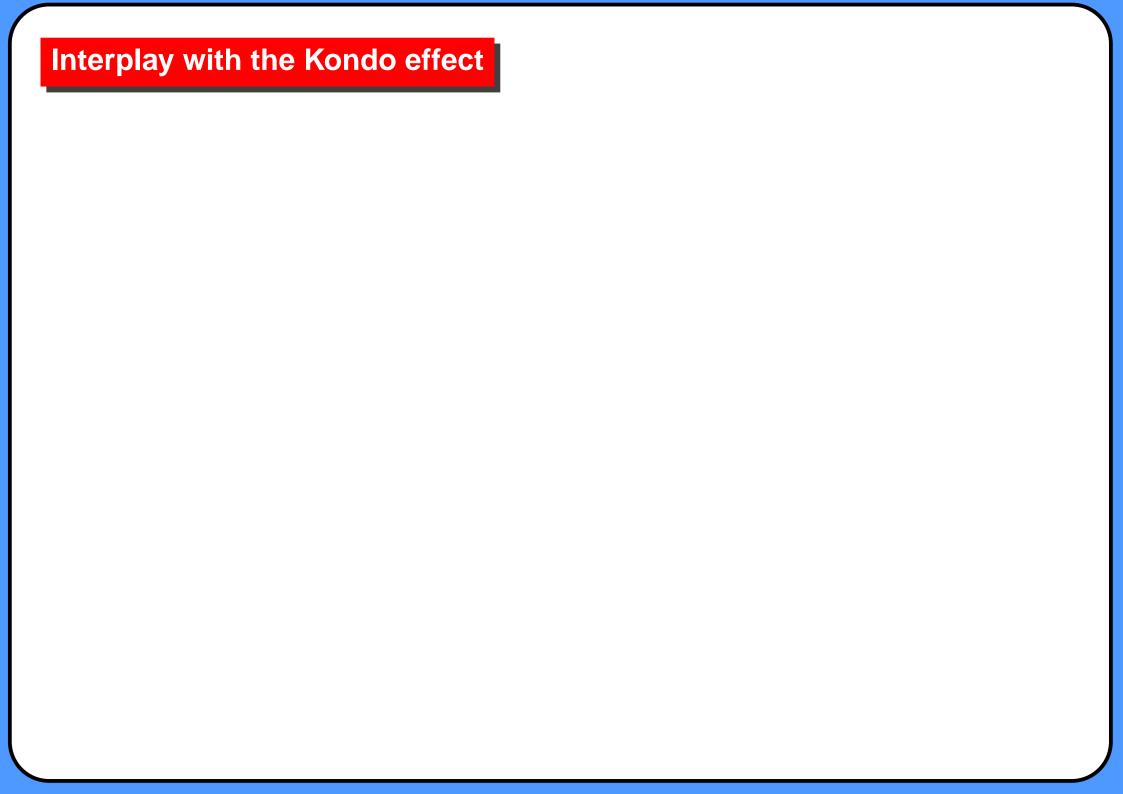


QD: self-assembled InAs

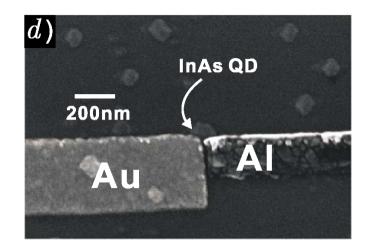
diameter \sim 100 nm

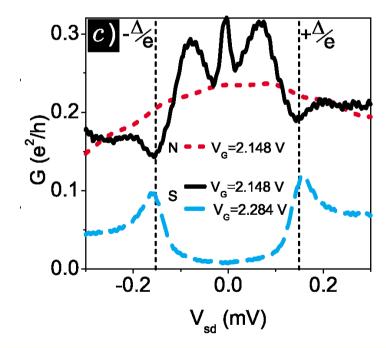
backgate: Si-doped GaAs

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).



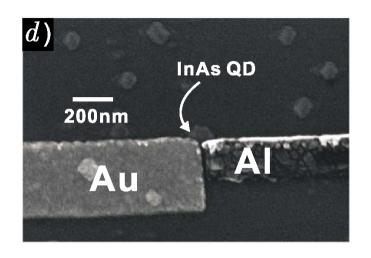
Interplay with the Kondo effect



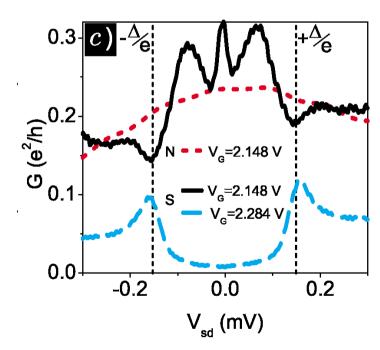


R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect

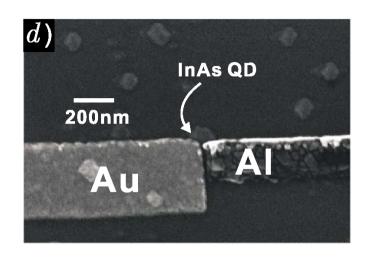


"The zero-bias
conductance peak
is consistent with
Andreev transport
enhanced by the
Kondo singlet state"

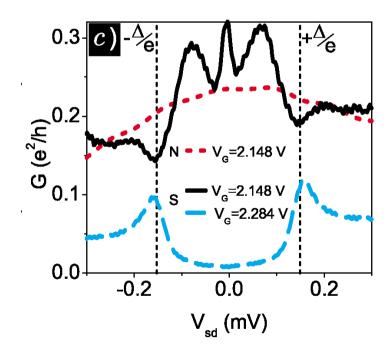


R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect



"The zero-bias
conductance peak
is consistent with
Andreev transport
enhanced by the
Kondo singlet state"



"We note that
the feature exhibits
excellent qualitative
agreement with
a recent theoretical
treatment by
Domanski et al"

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

/ for the part 2 /

/ for the part 2 /

QD coupled between N and S electrodes:

Summary / for the part 2 /

QD coupled between N and S electrodes:

⇒ absorbs the superconducting order / proximity effect /

Summary / for the part 2 /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

/ for the part 2 /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

Interplay between the proximity and correlation effects is manifested in the subgap Andreev transport by:

/ for the part 2 /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

Interplay between the proximity and correlation effects is manifested in the subgap Andreev transport by:

 \Rightarrow the particle-hole splitting / when $arepsilon_d \sim \mu_S$ /

/ for the part 2 /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

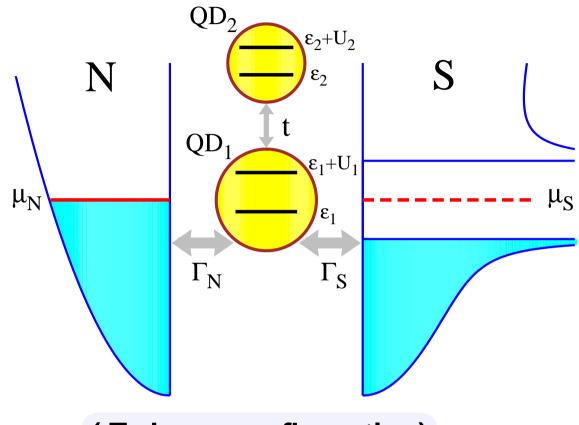
Interplay between the proximity and correlation effects is manifested in the subgap Andreev transport by:

- \Rightarrow the particle-hole splitting / when $arepsilon_d \sim \mu_S$ /
- \Rightarrow the zero-bias enhancement / below T_K /

3. Further extensions

Double QD

between a metal and superconductor



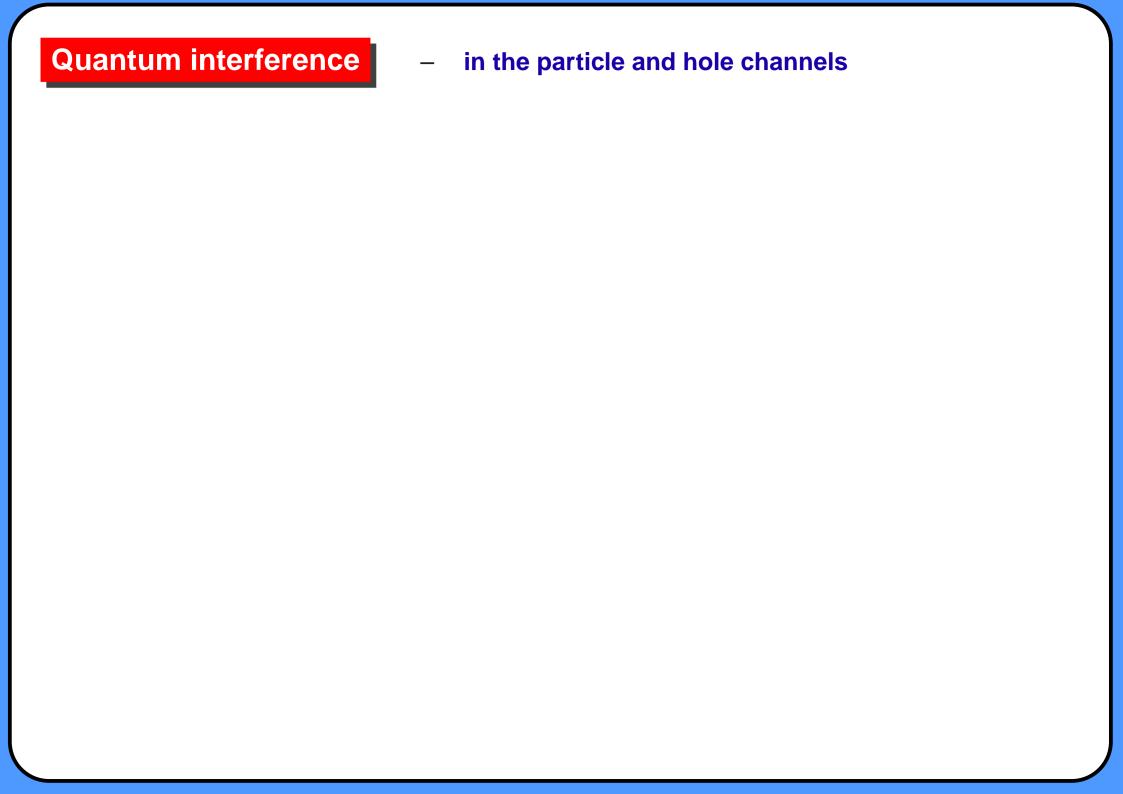
(T-shape configuration)

Relevant issues:

\Rightarrow	induced on-dot pairing		. (due to	Γ_{ξ}	3)
---------------	------------------------	--	-----------	----------------	----

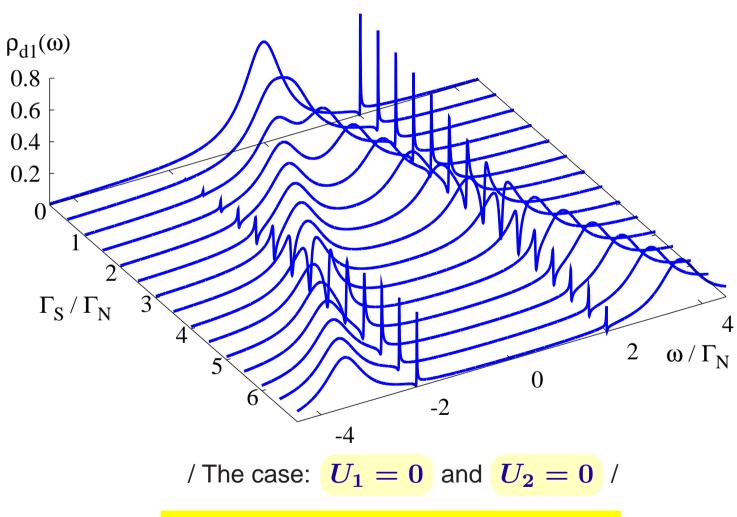
\Rightarrow	Coulomb blockade $\&$ Kondo effect	. (via $oldsymbol{U_1}$	and Γ_N	y)
---------------	------------------------------------	-------------------------	----------------	------------

 \Rightarrow quantum interference(because of t)



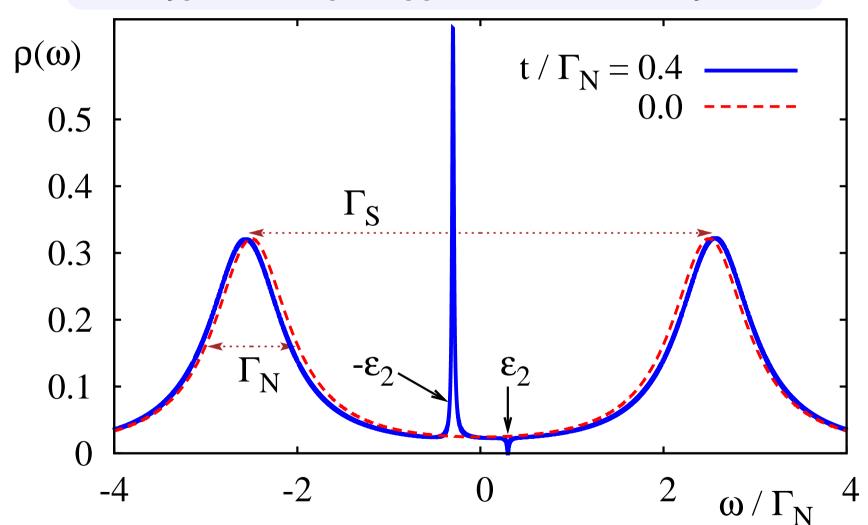
in the particle and hole channels

Fano-type lineshapes appear simultaneously at $\pm arepsilon_2$

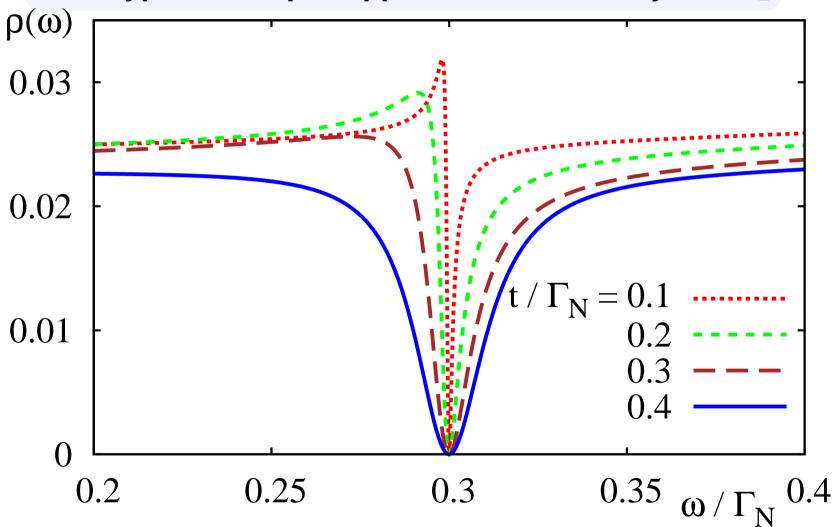


in the particle and hole channels

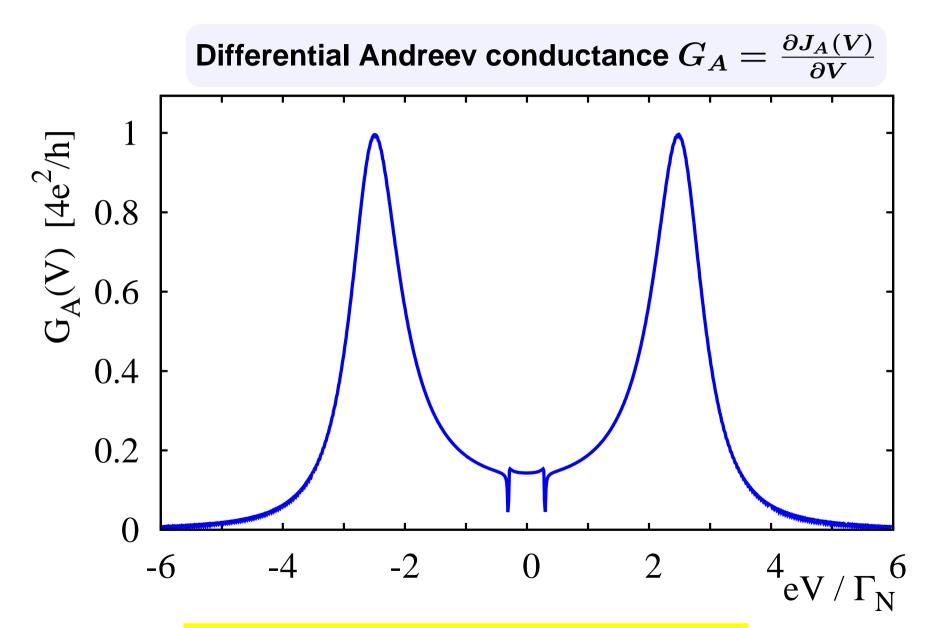
Fano-type lineshapes appear simultaneously at $\pm arepsilon_2$



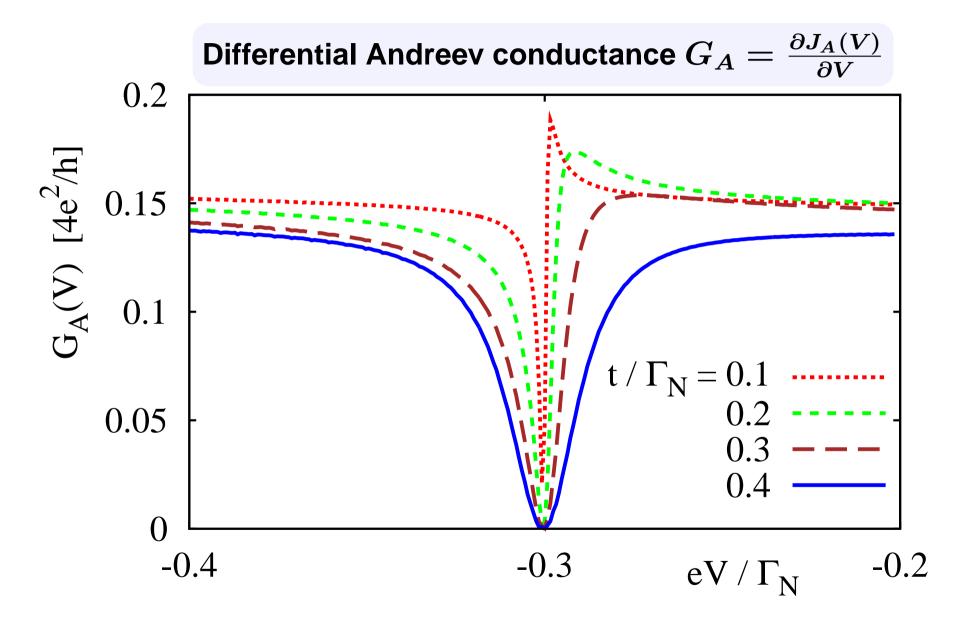
in the particle and hole channels



in the particle and hole channels

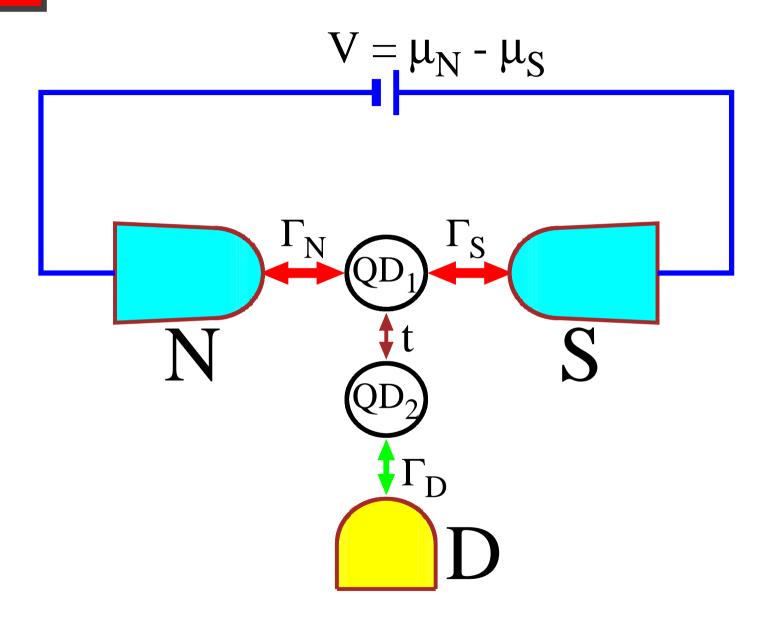


- in the particle and hole channels



Double QD

decoherence effects

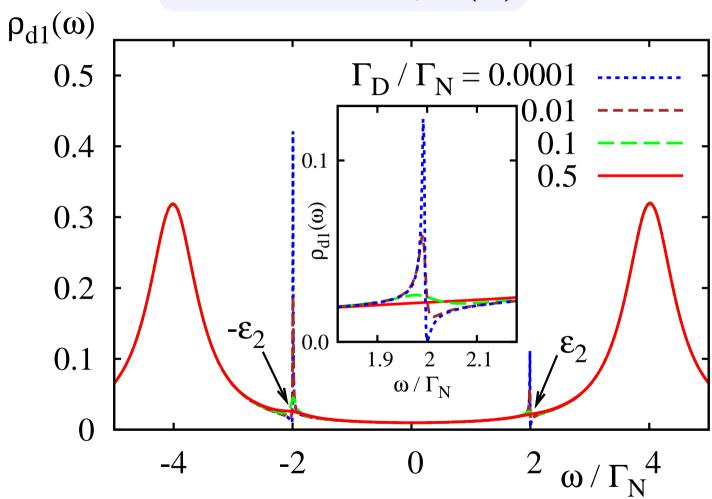


Floating lead (D) does not contribute any current but it serves as a source of decoherence.

Quantum interference influence of the decoherence

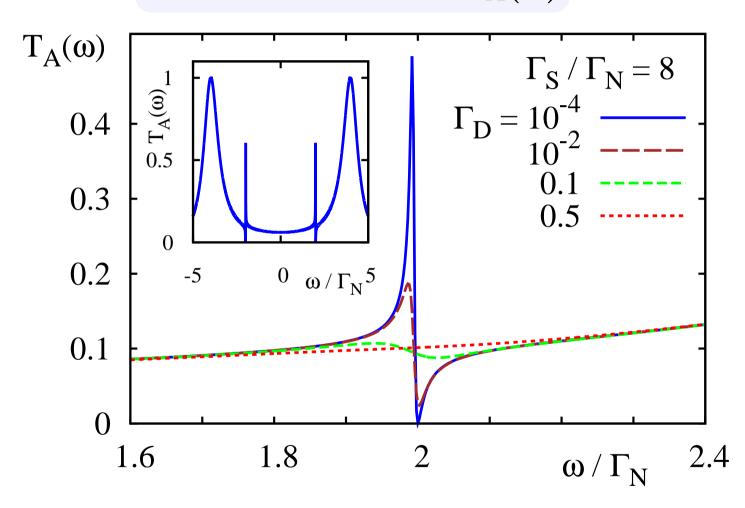
influence of the decoherence

Density of states $ho_{d1}(\omega)$

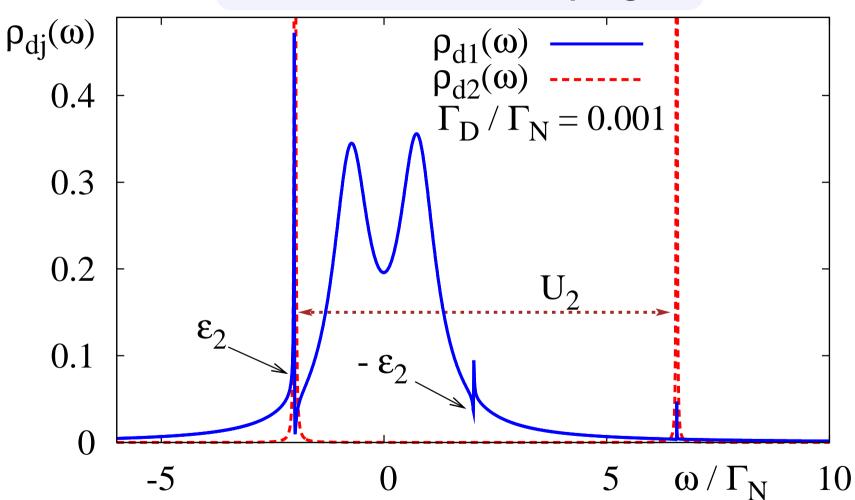


influence of the decoherence

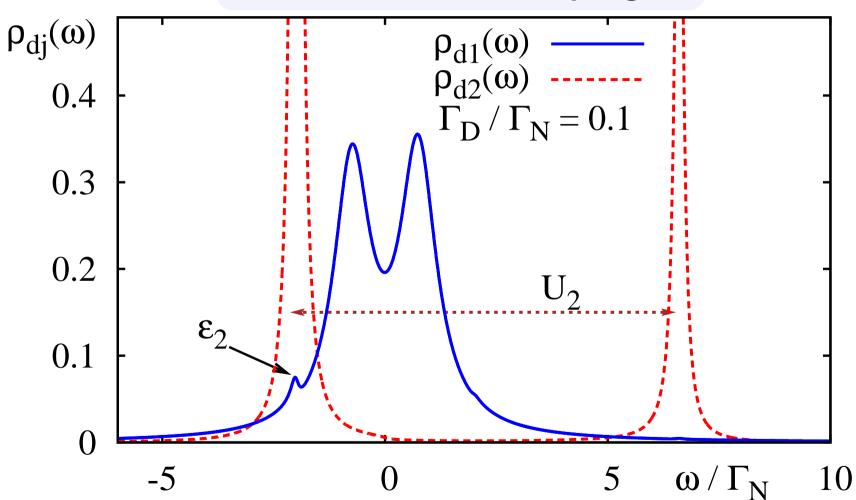
Andreev conductance $T_A(\omega)$



influence of the decoherence

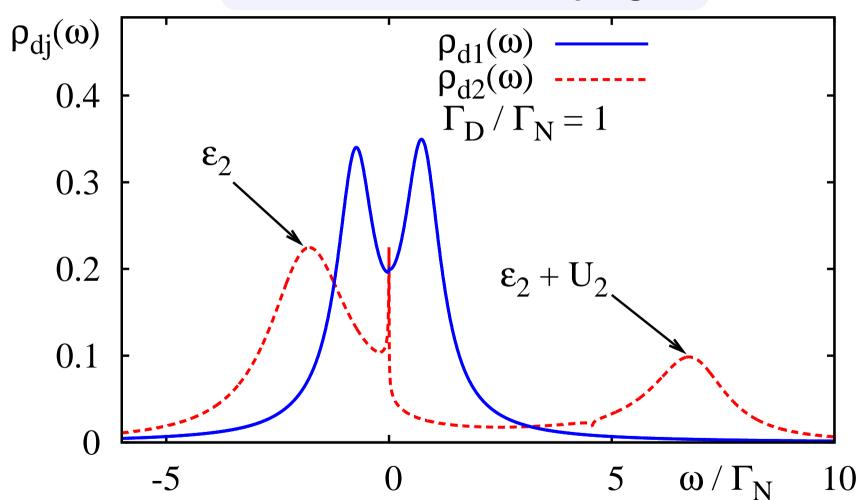


influence of the decoherence



influence of the decoherence





/ for the $\mathbf{3}^{rd}$ part /

/ for the $\mathbf{3}^{rd}$ part /

Double QD between the N and S electrodes:

/ for the 3^{rd} part /

Double QD between the N and S electrodes:

is affected by the quantum interference
/ Fano-type lineshapes /

/ for the $\mathbf{3}^{rd}$ part /

Double QD between the N and S electrodes:

- is affected by the quantum interference
 / Fano-type lineshapes /
- simultaneously in the particle and hole channels
 / particle-hole Fano structures /

/ for the $\mathbf{3}^{rd}$ part /

Double QD between the N and S electrodes:

- is affected by the quantum interference
 / Fano-type lineshapes /
- simultaneously in the particle and hole channels
 / particle-hole Fano structures /

Furthermore:

/ for the $\mathbf{3}^{rd}$ part /

Double QD between the N and S electrodes:

- is affected by the quantum interference
 / Fano-type lineshapes /
- simultaneously in the particle and hole channels
 / particle-hole Fano structures /

Furthermore:

 \Rightarrow Fano structure can suppress the Kondo resonance / below T_K /

/ for the 3^{rd} part /

Double QD between the N and S electrodes:

- is affected by the quantum interference
 / Fano-type lineshapes /
- simultaneously in the particle and hole channels
 / particle-hole Fano structures /

Furthermore:

- \Rightarrow Fano structure can suppress the Kondo resonance / below T_K /
- decoherence has a detrimental effect on the Fano lineshapes
 / already for a weak coupling /

4. Bulk superconductors

Andreev spectroscopy

for bulk superconductors

Andreev spectroscopy

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

Andreev spectroscopy

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

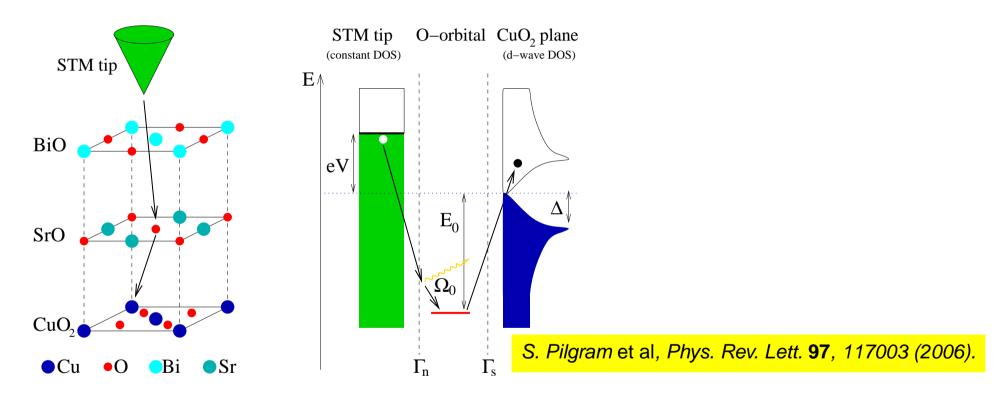


For practical experimental realizations one can e.g. use an insulating barrier sandwiched between the conducting (N) and the probed superconductor (S).

Andreev spectroscopy

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

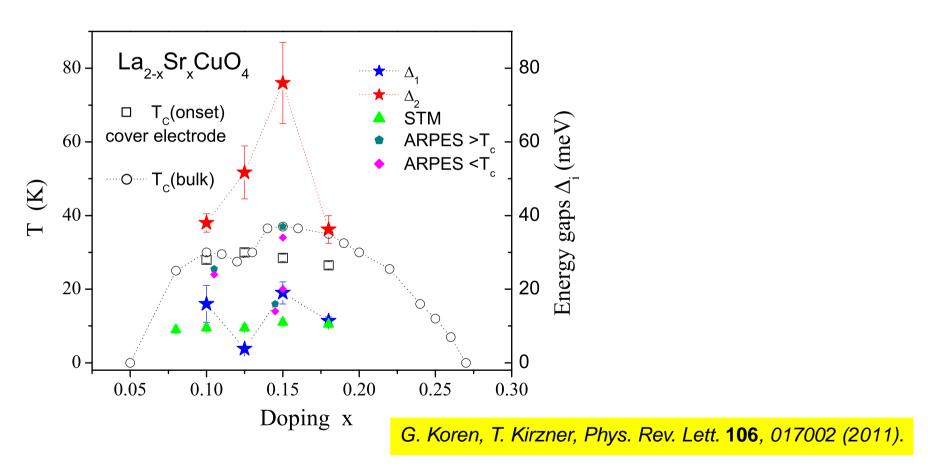


Other experimental realizations are also possible in the STM configuration, where the apex oxygen atoms play a role similar to QD in the N-QD-S setup.

Andreev spectroscopy

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.



Such Andreev spectroscopy has revealed the intriguing two-gap feature.

Andreev scattering –

on a microscopic level

Andreev scattering – on a microscopic level

Besides the specific Andreev-type spectroscopy we can, however, think of the Andreev scattering in a much broader perspective.

Strongly correlated systems / Hubbard-Stratonovich transf. /

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H}=\hat{T}_{kin}+U\int\!dec{r}\,\,\,\hat{c}_{\uparrow}^{\dagger}\left(ec{r}
ight)\,\hat{c}_{\downarrow}^{\dagger}(ec{r})\,\,\hat{c}_{\downarrow}\left(ec{r}
ight)\,\hat{c}_{\uparrow}\left(ec{r}
ight)$$

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H} = \hat{T}_{kin} + U \int\! dec{r} \,\,\, \hat{c}_{\uparrow}^{\dagger} \left(ec{r}
ight) \,\, \hat{c}_{\downarrow}^{\dagger} (ec{r}) \,\, \hat{c}_{\downarrow} (ec{r}) \,\, \hat{c}_{\uparrow} \left(ec{r}
ight)$$

In a basis of the coherent states and using the Grassmann fields

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H} = \hat{T}_{kin} + U \int\! dec{r} \,\,\, \hat{c}_{\uparrow}^{\dagger} \left(ec{r}
ight) \,\, \hat{c}_{\downarrow}^{\dagger} (ec{r}) \,\, \hat{c}_{\downarrow} (ec{r}) \,\, \hat{c}_{\uparrow} \left(ec{r}
ight)$$

In a basis of the coherent states and using the Grassmann fields

$$\hat{c}\ket{\psi}=\psi\ket{\psi}$$
 and $ra{\psi}\hat{c}^{\dagger}=ra{\psi}ar{\psi}$

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H} = \hat{T}_{kin} + U \int\! dec{r} \,\,\, \hat{c}_{\uparrow}^{\dagger} \left(ec{r}
ight) \,\, \hat{c}_{\downarrow}^{\dagger} (ec{r}) \,\, \hat{c}_{\downarrow} (ec{r}) \,\, \hat{c}_{\uparrow} \left(ec{r}
ight)$$

In a basis of the coherent states and using the Grassmann fields

$$\hat{c}\ket{\psi}=\psi\ket{\psi}$$
 and $ra{\psi}\hat{c}^{\dagger}=ra{\psi}ar{\psi}$

we can express the partition function by the path integral

$$oldsymbol{Z} = \int oldsymbol{D} \left[ar{\psi}, \psi
ight] e^{-S[ar{\psi}, \psi]}$$

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H} = \hat{T}_{kin} + U \int\! dec{r} \,\,\, \hat{c}_{\uparrow}^{\dagger} \left(ec{r}
ight) \,\, \hat{c}_{\downarrow}^{\dagger} (ec{r}) \,\, \hat{c}_{\downarrow} (ec{r}) \,\, \hat{c}_{\uparrow} \left(ec{r}
ight)$$

In a basis of the coherent states and using the Grassmann fields

$$\hat{c}\ket{\psi}=\psi\ket{\psi}$$
 and $ra{\psi}\hat{c}^{\dagger}=ra{\psi}ar{\psi}$

we can express the partition function by the path integral

$$Z=\int D\left[ar{\psi},\psi
ight]e^{-S\left[ar{\psi},\psi
ight]}$$

where the imaginary-time fermionic action

$$S[ar{\psi},\psi] = \int_0^eta d au \int dec{r} \left[\sum_\sigma ar{\psi}_\sigma(ec{r}, au) \left(\partial_ au + \hat{\xi}
ight) \psi_\sigma(ec{r}, au)
ight. \ \left. - g \ ar{\psi}_\uparrow(ec{r}, au) \ ar{\psi}_\downarrow(ec{r}, au) \ \psi_\downarrow(ec{r}, au) \psi_\uparrow(ec{r}, au)
ight]$$

/ Hubbard-Stratonovich transf. /

We consider the strongly correlated fermion system

$$\hat{H} = \hat{T}_{kin} + U \int\! dec{r} \,\,\, \hat{c}_{\uparrow}^{\dagger}\left(ec{r}
ight) \,\, \hat{c}_{\downarrow}^{\dagger}(ec{r}) \,\, \hat{c}_{\downarrow}(ec{r}) \,\, \hat{c}_{\uparrow}\left(ec{r}
ight)$$

In a basis of the coherent states and using the Grassmann fields

$$\hat{c}\ket{\psi}=\psi\ket{\psi}$$
 and $ra{\psi}\hat{c}^{\dagger}=ra{\psi}ar{\psi}$

we can express the partition function by the path integral

$$Z=\int D\left[ar{\psi},\psi
ight]e^{-S\left[ar{\psi},\psi
ight]}$$

where the imaginary-time fermionic action

$$S[ar{\psi},\psi] = \int_0^eta d au \int dec{r} \left[\sum_\sigma ar{\psi}_\sigma(ec{r}, au) \left(\partial_ au + \hat{\xi}
ight) \psi_\sigma(ec{r}, au)
ight. \ \left. - g \ ar{\psi}_\uparrow(ec{r}, au) \ ar{\psi}_\downarrow(ec{r}, au) \ \psi_\downarrow(ec{r}, au) \psi_\uparrow(ec{r}, au)
ight]$$

and
$$\hat{\xi} \equiv -\hbar^2
abla^2/2m - \mu$$
, $g = -U$.

Hubbard-Stratonovich continued

- continued

To eliminate the quartic term we can introduce the auxiliary pairing fields

$$oldsymbol{Z} = \int D\left[ar{\Delta}, \Delta, ar{\psi}, \psi
ight] e^{-S[ar{\Delta}, \Delta, ar{\psi}, \psi]}$$

- continued

To eliminate the quartic term we can introduce the auxiliary pairing fields

$$Z=\int D\left[ar{\Delta},\Delta,ar{\psi},\psi
ight]e^{-S[ar{\Delta},\Delta,ar{\psi},\psi]}$$

simplifying the action to a bi-linear form

$$egin{aligned} S = \int_0^eta d au \int dec{r} \left[\sum_\sigma ar{\psi}_\sigma(ec{r}, au) \left(\partial_ au + \hat{\xi}
ight) \psi_\sigma(ec{r}, au) + rac{|\Delta(ec{r}, au)|^2}{g} \ - ar{\Delta}(ec{r}, au) \; \psi_\downarrow(ec{r}, au) \psi_\uparrow \; (ec{r}, au) - \Delta(ec{r}, au) \; ar{\psi}_\uparrow \; (ec{r}, au) ar{\psi}_\downarrow(ec{r}, au)
ight] \end{aligned}$$

- continued

To eliminate the quartic term we can introduce the auxiliary pairing fields

$$m{Z} = \int m{D}\left[ar{\Delta}, m{\Delta}, ar{\psi}, \psi
ight] e^{-S[ar{\Delta}, m{\Delta}, ar{\psi}, \psi]}$$

simplifying the action to a bi-linear form

$$egin{aligned} S = \int_0^eta d au \int dec{r} \left[\sum_\sigma ar{\psi}_\sigma(ec{r}, au) \left(\partial_ au + \hat{\xi}
ight) \psi_\sigma(ec{r}, au) + rac{|\Delta(ec{r}, au)|^2}{g} \ - ar{\Delta}(ec{r}, au) \; \psi_\downarrow(ec{r}, au) \psi_\uparrow \; (ec{r}, au) - \Delta(ec{r}, au) \; ar{\psi}_\uparrow \; (ec{r}, au) ar{\psi}_\downarrow(ec{r}, au)
ight] \end{aligned}$$

The mean field (saddle point) solution usually relies on the assumption of a static and uniform pairing field

$$\Delta(ec{r}, au)=\Delta$$
 , $ar{\Delta}(ec{r}, au)=ar{\Delta}$.

continued

To eliminate the quartic term we can introduce the auxiliary pairing fields

$$m{Z} = \int m{D}\left[ar{\Delta}, m{\Delta}, ar{\psi}, \psi
ight] e^{-S[ar{\Delta}, m{\Delta}, ar{\psi}, \psi]}$$

simplifying the action to a bi-linear form

$$egin{aligned} S = \int_0^eta d au \int dec{r} \left[\sum_\sigma ar{\psi}_\sigma(ec{r}, au) \left(\partial_ au + \hat{\xi}
ight) \psi_\sigma(ec{r}, au) + rac{|\Delta(ec{r}, au)|^2}{g} \ - ar{\Delta}(ec{r}, au) \; \psi_\downarrow(ec{r}, au) \psi_\uparrow \; (ec{r}, au) - \Delta(ec{r}, au) \; ar{\psi}_\uparrow \; (ec{r}, au) ar{\psi}_\downarrow(ec{r}, au)
ight] \end{aligned}$$

The mean field (saddle point) solution usually relies on the assumption of a static and uniform pairing field

$$\Delta(ec{r}, au)=\Delta$$
 , $ar{\Delta}(ec{r}, au)=ar{\Delta}$.

We tried to go beyond this scheme treating the fermionic and bosonic degrees of freedom on an equal footing!

[in the lattice representation]

$$egin{array}{ll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{l} \left(E^{(B)}_{l} - 2\mu
ight) \hat{b}^{\dagger}_{l} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}^{\dagger}_{l} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] \end{array}$$

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

$$\hat{c}_{i\sigma}^{(\dagger)}$$
 itinerant fermions(e.g. holes near the Mott insulator)

 $\hat{b}_l^{(\dagger)}$ local pairs(RVB defines them on the bonds)

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

 $\hat{b}_l^{(\dagger)}$ local pairs(RVB defines them on the bonds)

interacting via:

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R}_{l} = (ec{r}_{i} + ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

$$\hat{c}_{i\sigma}^{(\dagger)}$$
 itinerant fermions(e.g. holes near the Mott insulator)

 $\hat{b}_l^{(\dagger)}$ local pairs(RVB defines them on the bonds)

interacting via:

$$\hat{b}_l^\dagger \; \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + h.c.$$
(Andreev-type conversion)

[in the lattice representation]

$$egin{array}{lll} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] & ec{R_{l}} = (ec{r_{i}} + ec{r_{j}})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

 $\hat{b}_l^{(\dagger)}$ local pairs(RVB defines them on the bonds)

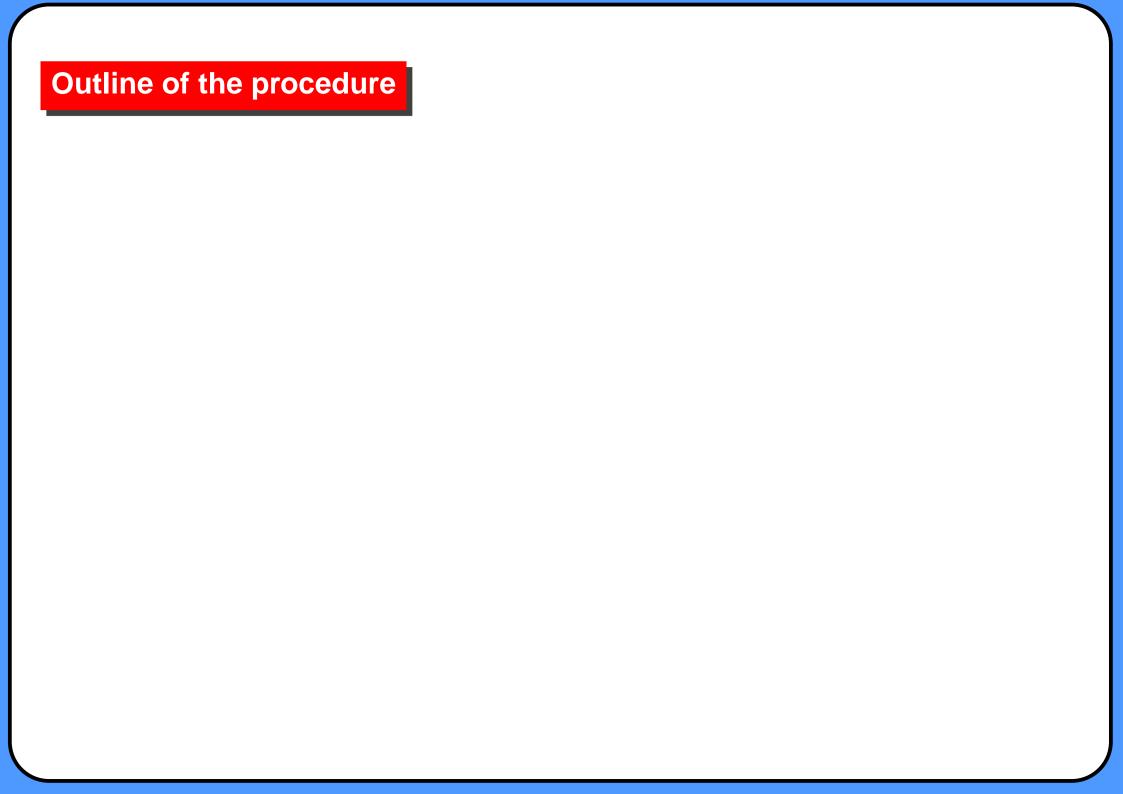
interacting via:

 $\hat{b}_l^{\dagger} \; \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + h.c.$ (Andreev-type conversion)

For a more specific recent derivation see for instance:

E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002).

Or Y. Yildirim and Wei Ku, Phys. Rev. X 1, 011011 (2011).



For studying the quantum many-body feedback effects we construct the continuous unitary transformation

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$egin{aligned} \hat{H} & \longrightarrow \hat{H}(l_1) & \longrightarrow \hat{H}(l_2) & \longrightarrow ... & \longrightarrow \hat{H}(\infty) \end{aligned}$$

gradually decoupling the boson from fermion degrees of freedom.

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$egin{aligned} \hat{H} & \longrightarrow \hat{H}(l_1) & \longrightarrow \hat{H}(l_2) & \longrightarrow ... & \longrightarrow \hat{H}(\infty) \end{aligned}$$

gradually decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

gradually decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at l=0

$$\hat{H}_F$$
 + \hat{H}_B + \hat{V}_{BF}

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

gradually decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $0 < l < \infty$

$$\hat{H}_F(l) + \hat{H}_B(l) + \hat{V}_{BF}(l)$$

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

gradually decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $l = \infty$

$$\hat{H}_F(\infty) + \hat{H}_B(\infty) + 0$$

For studying the quantum many-body feedback effects we construct the continuous unitary transformation

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

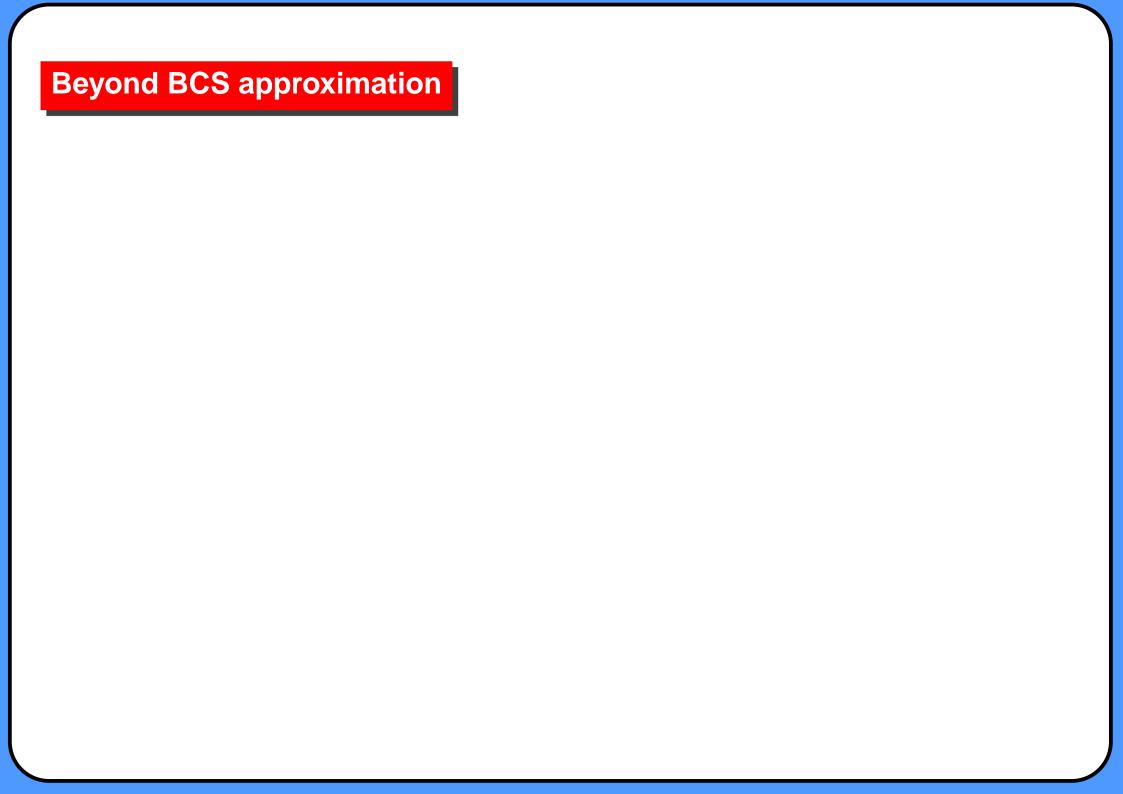
gradually decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $l = \infty$

$$\hat{H}_F(\infty) + \hat{H}_B(\infty) + 0$$

T. Domański and J. Ranninger, Phys. Rev. **B 63**, 134505 (2001).



Beyond BCS approximation

We generalized the Bogoliubov-Valatin transformation, taking into account the non-condensed (preformed) pairs

Beyond BCS approximation

We generalized the Bogoliubov-Valatin transformation, taking into account the non-condensed (preformed) pairs

$$egin{array}{lcl} \hat{c}_{\mathrm{k}\uparrow}\left(l
ight) &=& u_{\mathrm{k}}(l)\;\hat{c}_{\mathrm{k}\uparrow}^{\dagger} \; + v_{\mathrm{k}}(l)\;\hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \; + \ && rac{1}{\sqrt{N}} \displaystyle{\sum_{\mathrm{q}
eq 0}} \left[u_{\mathrm{k},\mathrm{q}}(l)\;\hat{b}_{\mathrm{q}}^{\dagger}\hat{c}_{\mathrm{q}+\mathrm{k}\uparrow}^{} \; + v_{\mathrm{k},\mathrm{q}}(l)\;\hat{b}_{\mathrm{q}}\hat{c}_{\mathrm{q}-\mathrm{k}\downarrow}^{}
ight], \ \hat{c}_{-\mathrm{k}\downarrow}^{\dagger}\left(l
ight) &=& -v_{\mathrm{k}}^{st}(l)\;\hat{c}_{\mathrm{k}\uparrow}^{} \; + u_{\mathrm{k}}^{st}(l)\;\hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \; + \ && rac{1}{\sqrt{N}} \displaystyle{\sum_{\mathrm{q}
eq 0}} \left[-v_{\mathrm{k},\mathrm{q}}^{st}(l)\;\hat{b}_{\mathrm{q}}^{\dagger}\hat{c}_{\mathrm{q}+\mathrm{k}\uparrow}^{} \; + u_{\mathrm{k},\mathrm{q}}^{st}(l)\;\hat{b}_{\mathrm{q}}\hat{c}_{\mathrm{q}-\mathrm{k}\downarrow}^{\dagger}
ight], \end{array}$$

Beyond BCS approximation

We generalized the Bogoliubov-Valatin transformation, taking into account the non-condensed (preformed) pairs

$$egin{array}{lll} \hat{c}_{\mathbf{k}\uparrow}\left(l
ight) &=& u_{\mathbf{k}}(l)\;\hat{c}_{\mathbf{k}\uparrow}^{\dagger} \; + v_{\mathbf{k}}(l)\;\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \; + \\ && rac{1}{\sqrt{N}} \displaystyle{\sum_{\mathbf{q}
eq 0}} \left[u_{\mathbf{k},\mathbf{q}}(l)\;\hat{b}_{\mathbf{q}}^{\dagger}\hat{c}_{\mathbf{q}+\mathbf{k}\uparrow}^{} \; + v_{\mathbf{k},\mathbf{q}}(l)\;\hat{b}_{\mathbf{q}}\hat{c}_{\mathbf{q}-\mathbf{k}\downarrow}^{}
ight], \\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger}\left(l
ight) &=& -v_{\mathbf{k}}^{st}(l)\;\hat{c}_{\mathbf{k}\uparrow}^{} \; + u_{\mathbf{k}}^{st}(l)\;\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \; + \\ && rac{1}{\sqrt{N}} \displaystyle{\sum_{\mathbf{q}
eq 0}} \left[-v_{\mathbf{k},\mathbf{q}}^{st}(l)\;\hat{b}_{\mathbf{q}}^{\dagger}\hat{c}_{\mathbf{q}+\mathbf{k}\uparrow}^{} \; + u_{\mathbf{k},\mathbf{q}}^{st}(l)\;\hat{b}_{\mathbf{q}}\hat{c}_{\mathbf{q}-\mathbf{k}\downarrow}^{\dagger}
ight], \end{array}$$

with the boundary conditions

$$u_{\mathbf{k}}(0) \! = \! 1$$
 and $v_{\mathbf{k}}(0) \! = \! v_{\mathbf{k},\mathbf{q}}(0) \! = \! u_{\mathbf{k},\mathbf{q}}(0) \! = \! 0.$

Beyond BCS approximation

We generalized the Bogoliubov-Valatin transformation, taking into account the non-condensed (preformed) pairs

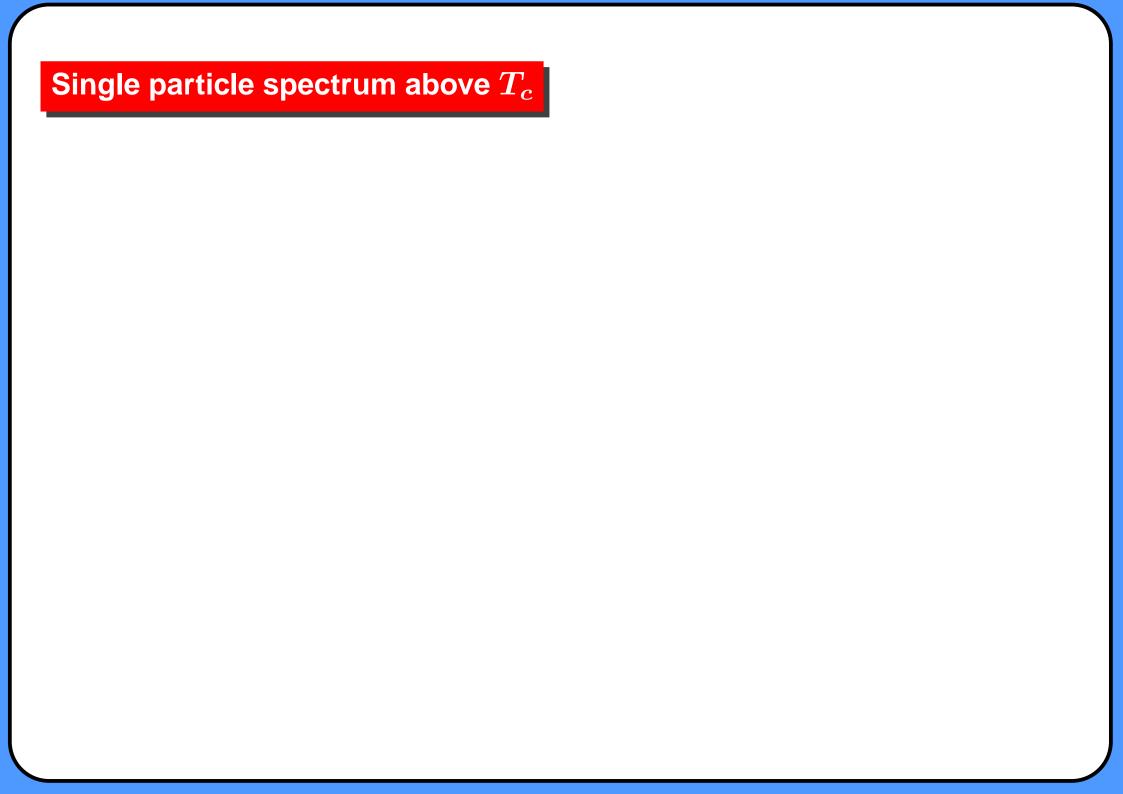
$$egin{array}{lcl} \hat{c}_{ ext{k}\uparrow}\left(l
ight) &=& u_{ ext{k}}(l)\;\hat{c}_{ ext{k}\uparrow}^{\dagger} \; + v_{ ext{k}}(l)\;\hat{c}_{- ext{k}\downarrow}^{\dagger} \; + \\ && rac{1}{\sqrt{N}}{\displaystyle\sum_{ ext{q}
eq 0}} \left[u_{ ext{k}, ext{q}}(l)\;\hat{b}_{ ext{q}}^{\dagger}\hat{c}_{ ext{q}+ ext{k}\uparrow}^{} \; + v_{ ext{k}, ext{q}}(l)\;\hat{b}_{ ext{q}}\hat{c}_{ ext{q}- ext{k}\downarrow}^{\dagger}^{}
ight], \ \hat{c}_{- ext{k}\downarrow}^{\dagger}\left(l
ight) &=& -v_{ ext{k}}^{st}(l)\;\hat{c}_{ ext{k}\uparrow}^{} \; + u_{ ext{k}}^{st}(l)\;\hat{c}_{- ext{k}\downarrow}^{\dagger} \; + \\ && rac{1}{\sqrt{N}}{\displaystyle\sum_{ ext{q}
eq 0}} \left[-v_{ ext{k}, ext{q}}^{st}(l)\;\hat{b}_{ ext{q}}^{\dagger}\hat{c}_{ ext{q}+ ext{k}\uparrow}^{} \; + u_{ ext{k}, ext{q}}^{st}(l)\;\hat{b}_{ ext{q}}\hat{c}_{ ext{q}- ext{k}\downarrow}^{\dagger}^{}
ight], \end{array}$$

with the boundary conditions

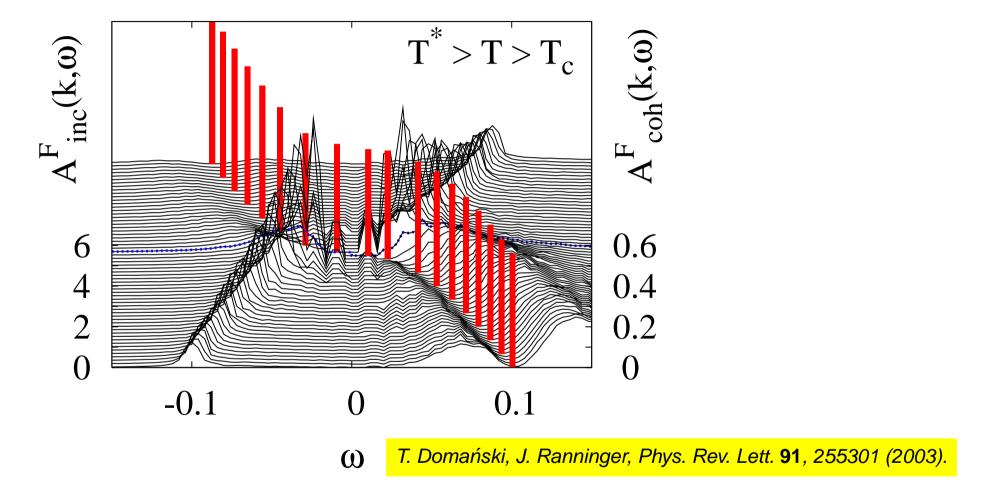
$$u_{\mathbf{k}}(0) \! = \! 1$$
 and $v_{\mathbf{k}}(0) \! = \! v_{\mathbf{k},\mathbf{q}}(0) \! = \! u_{\mathbf{k},\mathbf{q}}(0) \! = \! 0.$

The corresponding fixed point values $\lim_{l\to\infty}u_{\mathbf{k}}(l)$ (and other parameters) have to be determined from the set of coupled flow equations

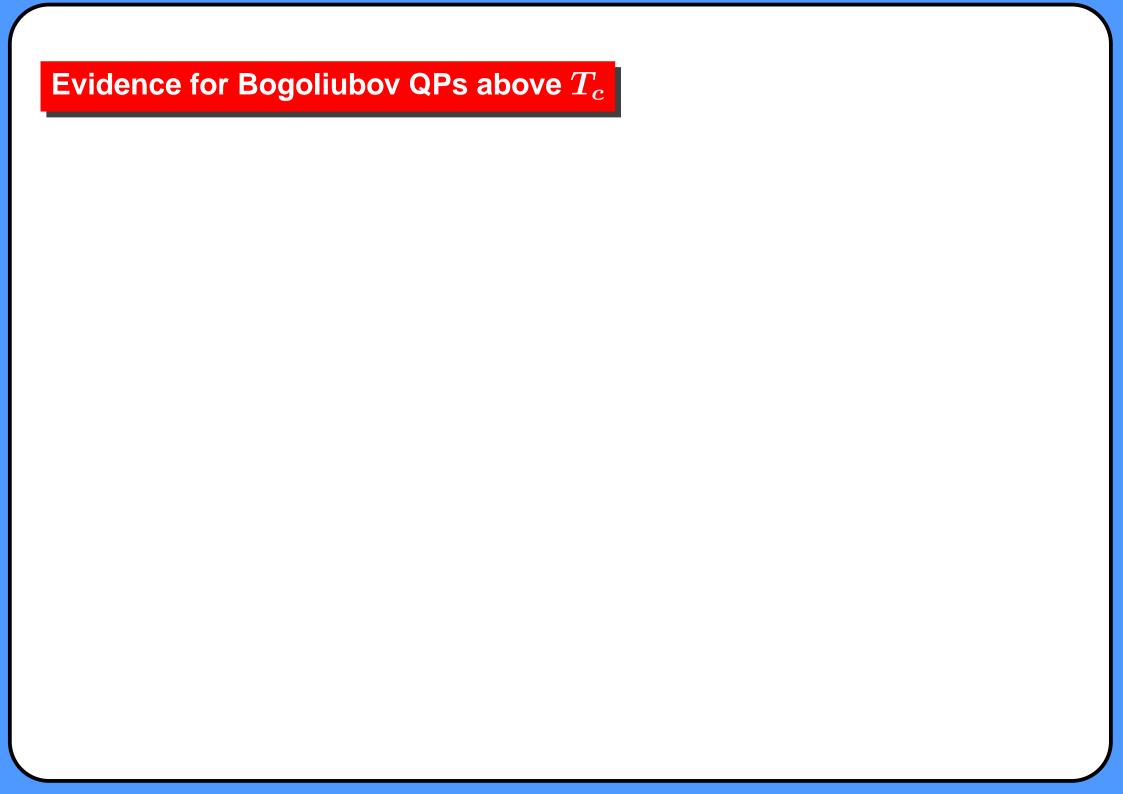
$$\left(rac{\partial}{\partial l} u_{f k}(l)
ight)$$
 , $\left(rac{\partial}{\partial l} v_{f k}(l)
ight)$, $\left(rac{\partial}{\partial l} u_{f k, f q}(l)
ight)$, $\left(rac{\partial}{\partial l} v_{f k, f q}(l)
ight)$.



Single particle spectrum above T_c

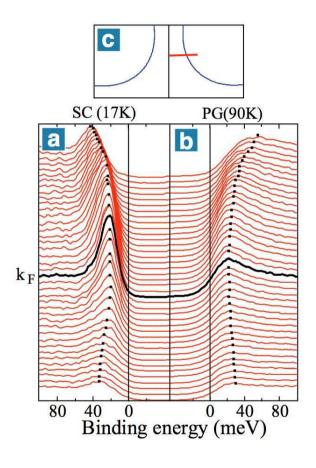


The Bogoliubov-type quasiparticles survive above T_c , being responsible for a partial destruction of the Fermi surface.



Evidence for Bogoliubov QPs above T_c

J. Campuzano group (Chicago, USA)

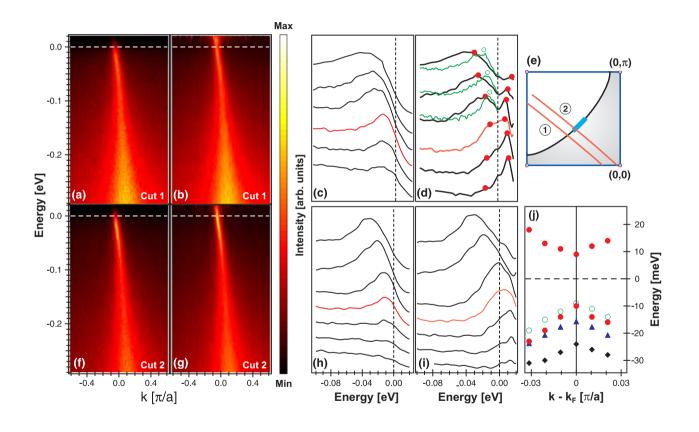


Results for: $Bi_2Sr_2CaCu_2O_8$

A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).

Evidence for Bogoliubov QPs above T_c

PSI group (Villigen, Switzerland)



Results for: $La_{1.895}Sr_{0.105}CuO_4$

M. Shi et al, Eur. Phys. Lett. 88, 27008 (2009).

5. Ultracold gasses

Andreev spectroscopy

for ultracold atoms

Andreev spectroscopy

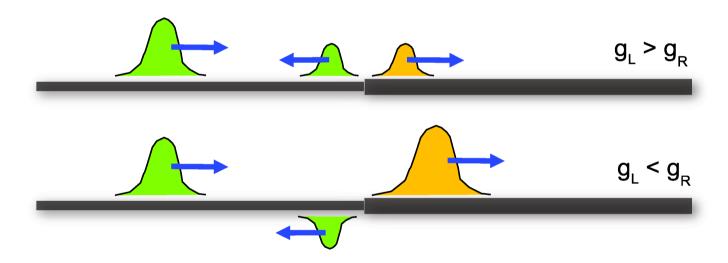
for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discussed also in a context of the superfluid ultracold fermion atom systems.

Andreev spectroscopy

for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discussed also in a context of the superfluid ultracold fermion atom systems.



A.J. Daley, P. Zoller, and B. Trauzettel, Phys. Rev. Lett. 100, 110404 (2008).

The wave packet propagating along the 1-dimensional optical lattice can be scattered at an interaction boundary in the Andreev-type fashion.

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

resonantly interacting via:

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

resonantly interacting via:

 \hat{b}^{\dagger} $\hat{c}_{\downarrow}\hat{c}_{\uparrow}$ + h.c.(Feshbach resonance)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

resonantly interacting via:

 \hat{b}^{\dagger} $\hat{c}_{\downarrow}\hat{c}_{\uparrow}$ + h.c.(Feshbach resonance)

M.L. Chiofalo, S.J.J.M.F. Kokkelmans, J.N. Milstein, and M.J. Holland, Phys. Rev. Lett. 88, 090402 (2002).

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1\!-\!Z(T)] \left(rac{u^2}{i\omega_n\!-\!arepsilon_+} + rac{v^2}{i\omega_n\!-\!arepsilon_-}
ight) + rac{Z(T)}{i\omega_n\!-\!arepsilon_-}$$

where

arepsilon energy of non-bonding state

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1\!-\!Z(T)] \left(rac{u^2}{i\omega_n\!-\!arepsilon_+} + rac{v^2}{i\omega_n\!-\!arepsilon_-}
ight) + rac{Z(T)}{i\omega_n\!-\!arepsilon_-}$$

where

arepsilon energy of non-bonding state

 $oldsymbol{Z(T)}$ the spectral weight

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm} = E/2 \pm \sqrt{(arepsilon - E/2)^2 + g^2}$ BCS-like excitation energies

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm}=E/2\pm\sqrt{(arepsilon-E/2)^2+g^2}$ BCS-like excitation energies

 $u^2,v^2=rac{1}{2}\left[1\pm(arepsilon-E/2)/\sqrt{(arepsilon-E/2)^2+g^2}
ight]$ BCS-like coefficients

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm} = E/2 \pm \sqrt{(arepsilon - E/2)^2 + g^2}$ BCS-like excitation energies

$$u^2,v^2=rac{1}{2}\left[1\pm(arepsilon-E/2)/\sqrt{(arepsilon-E/2)^2+g^2}
ight]$$
BCS-like coefficients

T. Domański, Eur. Phys. J. B 33, 41 (2003);

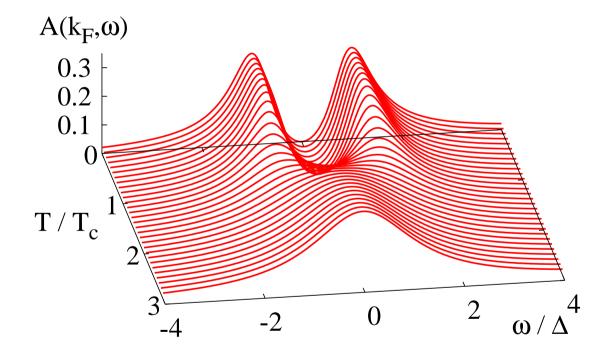
T. Domański et al, Sol. State Commun. 105, 473 (1998).

[near the unitary limit]

$$\hat{H} = \int d ext{r} \left(\hat{T}_{m{kin}}(ext{r}) + \hat{H}_{m{loc}}(ext{r})
ight)$$

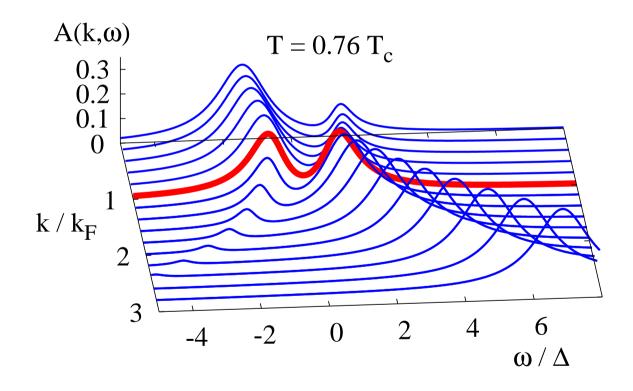
[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$



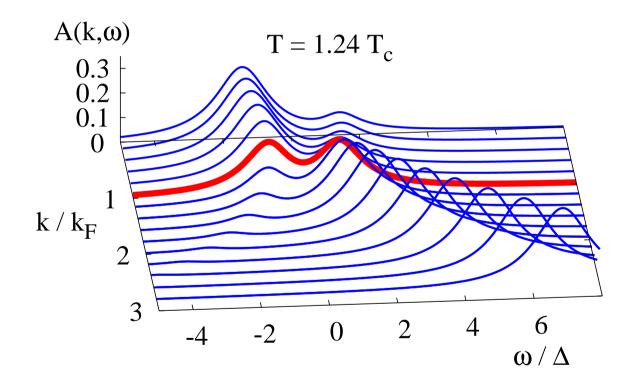
[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$



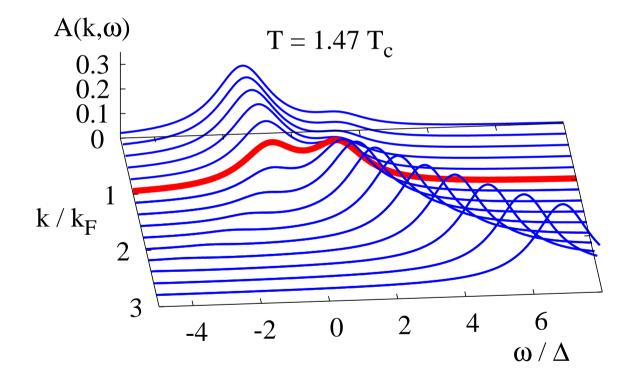
[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$



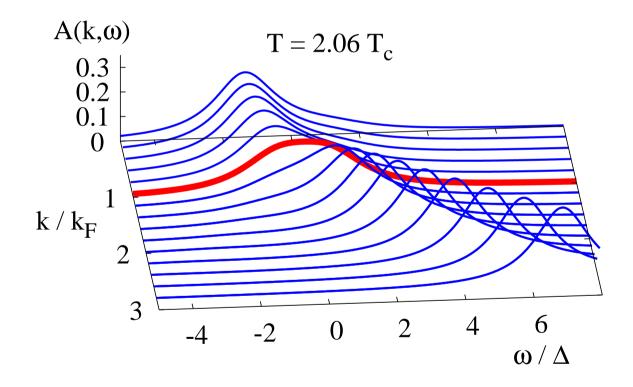
[near the unitary limit]

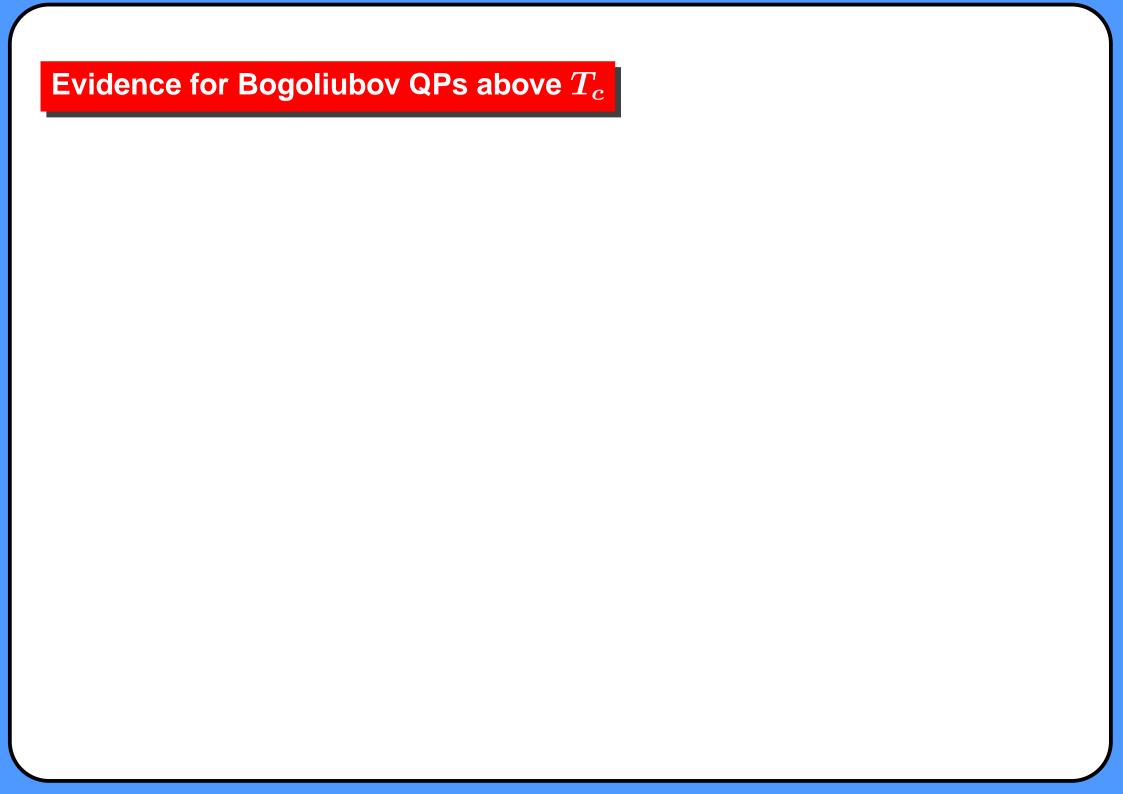
$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$



[near the unitary limit]

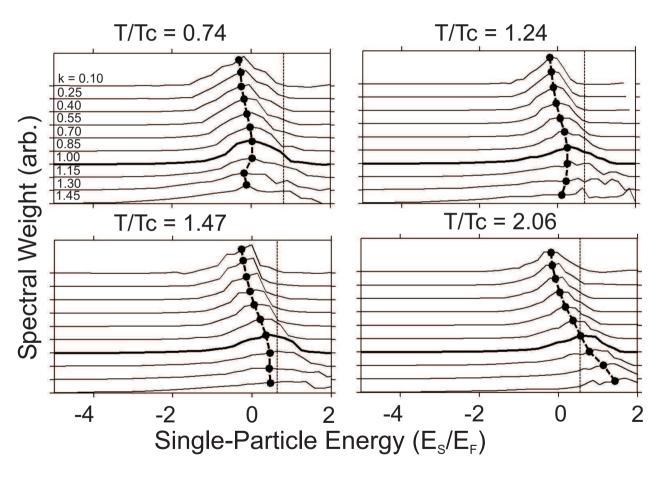
$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$





Evidence for Bogoliubov QPs above T_c

D. Jin group (Boulder, USA)



Results for the ultracold $^{40}\mathrm{K}$ atoms

J.P. Gaebler et al, Nature Phys. 6, 569 (2010).

/ for parts 4 & 5 /

Andreev-type scattering on the (preformed) pairs

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features
- \Rightarrow manifested even above T_c / in absence of the ODLRO /

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features
- \Rightarrow manifested even above T_c / in absence of the ODLRO /
 - This fact is indeed observed experimentally by:

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features
- \Rightarrow manifested even above T_c / in absence of the ODLRO /
 - This fact is indeed observed experimentally by:
- → the Bogoliubov-type quasiparticles
 / ARPES, FT-STM, Josephson effect /

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features
- \Rightarrow manifested even above T_c / in absence of the ODLRO /
 - This fact is indeed observed experimentally by:
- the Bogoliubov-type quasiparticles
 / ARPES, FT-STM, Josephson effect /
- the residual diamagnetism
 / torque magnetometry, proximity induced Meissner state /

/ for parts 4 & 5 /

- Andreev-type scattering on the (preformed) pairs
- ⇒ can lead to the superconducting features
- \Rightarrow manifested even above T_c / in absence of the ODLRO /
 - This fact is indeed observed experimentally by:
- → the Bogoliubov-type quasiparticles
 / ARPES, FT-STM, Josephson effect /
- the residual diamagnetism
 / torque magnetometry, proximity induced Meissner state /

http://kft.umcs.lublin.pl/doman/lectures