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Let us restrict to the subgap regime  |eV| < A of an applied bias V.
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Andreev reflections the main concept

Let us consider the process of electron tunneling from the no rmal
conductor N (e.g. metallic lead) to the superconducting electrode S

N S

8

hole Cooper pair

Such double-charge exchange is named the Andreev reflection (scattering).
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Andreev reflections historical remark

This anomalous transport channel allows for a finite subgap current across

the N-S interface even though the single-particle transmissi ons are forbidden.
Its original idea has been suggested by

A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
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Physical situation N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between

the external metallic (N) and superconducting (S) leads

V:IHN'HS

N s
QD

N

+ Vg
metallic lead @ superconductor

This setup can be thought of as a particular version of the SET
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Physical situation — energy spectrum

Components of the N-QD-S heterostructure have the following spe ctra

N

External bias eV = pun — s induces the current(s) through QD.
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Microscopic model

The correlation effects

HQD T Zéd dT —I— U ndT ndi

are expected to affect the transport properties of the syste

Z €qdl dy + U gy na, + Hn + Hs

S Y (Vs dbékes + Vi el pdo)
k,oc B=N,S

Hg = Zk,a (ek,s —1s) élzasékcs Dk (AckTsck¢S+h-C-)
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Hybridization of QD to the metallic lead is responsible for:
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* a broadening of QD levels and

* appearance of the Kondo resonance below Tk.
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Hybridizations 1I'pnr and I'g are thus effectively leading to

[ERi Kondo peak

/ interplay between the Kondo effect and superconductivity /
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Questions:

* What kind of interplay occurs between superconductivity
(transmitted onto the QD) and the Kondo effect ?

Do they cooperate or compete ?

* How do these effects show up in the charge current
through N-QD-S junction ?

Are there any particular features ?
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Formal aspects

To account for both, the proximity effect and the correlatio ns,
we have to deal with the Nambu (2 x2 matrix) Green’s function

Tr(dy (7)d} (1)) T (dr (7)d(7"))
L (d) (T)d] (7)) T (d] (r)d ("))

Gyg(m,7")=—

In equilibrium its Fourier transform obeys the Dyson equati

. W — &4 0
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The steady current Jy = —Jgr is found to consist of two contributions

‘ J(V) = Ju(V) + Ja(V) |

which can be expressed by the Landauer-type formula
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Transport channels

Qualitative features in the differential conductance G (V) =

8J(V)
vV
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~0.2

T. Domanski, A. Donabidowicz, K.I. Wysokinski, PRB 76, 104514 (2007).

We shall now focus on the subgap Andreev  conductance.
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w/ My

Superconductivity suppresses the Kondo resonance
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Kondo resonance slightly enhances  the zero-bias

Andreev conductance, especially for I's ~ I'n!
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Temperature dependence of G A (V') for:  REA—SLUNES
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T. Domanski and A. Donabidowicz, PRB 78, 073105 (2008).




Experimental setup / University of Tokyo /




Experimental setup / University of Tokyo /




Experimental setup / University of Tokyo /

QD : self-assembled InAs
diameter ~ 100 nm

backgate : Si-doped GaAs




Experimental setup / University of Tokyo /

T. ~ 1K

A ~ 152ueV

QD : self-assembled InAs
diameter ~ 100 nm

backgate : Si-doped GaAs




Experimental setup / University of Tokyo /

T. ~ 1K

A ~ 152ueV

QD : self-assembled InAs
diameter ~ 100 nm

backgate : Si-doped GaAs

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).
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InAs QD
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R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).
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Interplay with the Kondo effect

InAs QD

"The zero-bias
conductance peak
IS consistent with
Andreev transport
enhanced by the
Kondo singlet state”

"We note that

the feature exhibits
excellent qualitative
agreement with

a recent theoretical

—V/ =2.284 vli p Y
J/ |
00 02

treatment by

Domanski et al”
V_, (mV)

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).
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/ for the part 2 /

QD coupled between N and S electrodes:

—> absorbs the superconducting order / proximity effect /

—> is affected by the correlations /Kondo & charging effects /

Interplay between the proximity and correlation effects
IS manifested in the subgap Andreev transport by:

—> the particle-hole splitting /when €4~ ug/

—> the zero-bias enhancement /below T/
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Double QD —  between a metal and superconductor

€+U,

N

( T-shape configuration)
Relevant issues:

—> induced on-dot pairing (due to T'g)
—> Coulomb blockade & Kondo effect (via U7 and I' )

—> quantum interference (because of t)
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J. Baranski and T. Domanski, Phys. Rev. B (2012).
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J. Baranski and T. Domanski, Phys. Rev. B 84, 195424 (2011).
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J. Baranski and T. Domanski, Phys. Rev. B 84, 195424 (2011).




Double QD — decoherence effects

Floating lead (D) does not contribute any current but it serves as a source of decoherence.
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J. Baranski and T. Domanski, Phys. Rev. B (2012).




Quantum interference — influence of the decoherence

Andreev conductance T4 (w)
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J. Baranski and T. Domanski, Phys. Rev. B (2012).




Quantum interference — influence of the decoherence

Effect of Uy and the coupling I'p

P (@) Pgr(w) ——

P(W)
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J. Baranski and T. Domanski, Phys. Rev. B (2012).
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Effect of Uy and the coupling I'p
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J. Baranski and T. Domanski, Phys. Rev. B (2012).




Quantum interference — influence of the decoherence

Effect of Uy and the coupling I'p
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J. Baranski and T. Domanski, Phys. Rev. B (2012).
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for the 37 part

Double QD between the N and S electrodes:

—> Is affected by the quantum interference
| Fano-type lineshapes /

—> simultaneously in the particle and hole channels
/ particle-hole Fano structures /

Furthermore:

—> Fano structure can suppress the Kondo resonance [/ below T/

—> decoherence has a detrimental effect on the Fano lineshapes
/ already for a weak coupling /
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K.Y. Yang et al, Phys. Rev. Lett. 105, 167004 (2010).

For practical experimental realizations one can e.g. use an | nsulating barrier
sandwiched between the conducting (N) and the probed superco nductor (S).
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The subgap Andreev spectroscopy is also a valuable tool for s tudying
various superconducting compounds.

STMtip  O-orbital CuQ, plane
(constant DOS) (d-wave DOS)

S. Pilgram et al, Phys. Rev. Lett. 97, 117003 (2006).

®Cu O ©Bi @Sr ‘ [

Other experimental realizations are also possible in the ST M configuration,
where the apex oxygen atoms play a role similar to QD in the N-Q D-S setup.
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The subgap Andreev spectroscopy is also a valuable tool for s tudying
various superconducting compounds.
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G. Koren, T. Kirzner, Phys. Rev. Lett. 106, 017002 (2011).

Such Andreev spectroscopy has revealed the intriguing two- gap feature.
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Besides the specific Andreev-type spectroscopy we can, howe ver,

think of the Andreev scattering in a much broader perspective.
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We consider the strongly correlated fermion system
H = Tyip, + U [dF &1 (7) &1(7) ey (F) & (7)
In a basis of the coherent states and using the Grassmann fields
¢ly) =¥ |y) and (P|eh = (Y|
we can express the partition function by the path integral
Z=[D [&M e—Sv,v]

where the imaginary-time fermionic action

St ] = [¥ dr [ a7 [, b0 (7, 7) (8- + €) ¥ (7, 7)
— g Y1 (7P m) Y (7, 7) P (T, 7)1 (7, T)}

andéE—h2V2/2m—p,, g=-U.
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Hubbard-Stratonovich — continued

To eliminate the quartic term we can introduce the auxiliary p airing fields

Z = fD [A, A, QZ, ?,b} e—S[A,A,'I.ﬁ,@b]

simplifying the action to a bi-linear form

S=J5 dr [ dF [, $o (7, 7) (87 + &) o (7, 7) + 1AEDL

— A(F, ) Y (7, )by (7, 7) — A(F, 7) Yr (7, 7)Y (7, 7))

The mean field ( saddle point) solution usually relies on the assumption
of a static and uniform pairing field

A(r,T) = A A(F,T) = A .

We tried to go beyond this scheme treating the fermionic
and bosonic degrees of freedom on an equal footing !
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Boson-Fermion scenario [ in the lattice representation ]

A ~ ~ B A A
H = Z (t,,;j — K 5,,;,3') CIO,CJ'O- —|— Z (El( ) — 2,LL> bg‘bl
l

1,],0

+ D 9 [’3: Ci,1€j,1 +h-0-} _
i,J Ry = (75 + 75)/2

describes a two-component system consisting of:

(1)

c'i,a'

itinerant fermions (e.g. holes near the Mott insulator)

pD

local pairs (RVB defines them on the bonds)

interacting via:

A

b;f Ci,|Cj+ + h.c. (Andreev-type conversion)

derivation see for instance: Or Y. Yildirim and Wei Ku, Phys. Rev. X 1, 011011 (2011).
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For studying the quantum many-body feedback effects we cons truct
the continuous unitary transformation

H — H(l,) — H(l3) — ... — H(c0)

gradually decoupling the boson from fermion degrees of free dom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonianat I = oo
Hp(oo) + Hp(oo) + 0

T. Domanski and J. Ranninger, Phys. Rev. B 63, 134505 (2001).
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Beyond BCS approximation

We generalized the Bogoliubov-Valatin transformation, ta king into account
the non-condensed (preformed) pairs

&t (1) we@) &ep + ve(@) &y +

\/_Z uk,q (1) bl aCq+xt + vk q(1) ch —ki}
q7#0

el () —u (D) &+ u (D) ' kT

_Z —fuk,q(l) bl aCa+xt + uy q(l) bqéq ki]
q;ﬁO

with the boundary conditions
uk(()) —1 and ’Uk(O) = ’Uk,q(O) = ’U,k,q(O) =0

The corresponding fixed point values lim;_, o, uy (1) (and other parameters)
have to be determined from the set of coupled flow equations

(D) . Fpor@) . FeantaD) . Stk gDl
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The Bogoliubov-type quasiparticles survive above
responsible for a partial destruction of the Fermi surface.

Single particle spectrum above
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J. Campuzano group (Chicago, USA)
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A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).




Evidence for Bogoliubov QPs above T,

PSI group (Villigen, Switzerland)
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Andreev spectroscopy —  for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discus sed also
In a context of the superfluid ultracold fermion atom systems.

S A A -5,

/lcb gL<gR

A.J. Daley, P. Zoller, and B. Trauzettel, Phys. Rev. Lett. 100, 110404 (2008).

The wave packet propagating along the 1-dimensional optical lattice can
be scattered at an interaction boundary in the Andreev-type f ashion.




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:

&) (r) fermion atoms (open channel)




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:

&) (r) fermion atoms (open channel)

b (r) molecules (closed channel)




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:

&) (r) fermion atoms (open channel)

b (r) molecules (closed channel)

resonantly interacting via:




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:

&) (r) fermion atoms (open channel)

b (r) molecules (closed channel)

resonantly interacting via:

(Feshbach resonance)




Feshbach resonance [ local problem ]

Hioe(r) = 3 e(r) &l (1)eq(r) + B(r) b (r)b(r)

o

+9 (b1 (e @)er () +&l e )bw))

describes:

&) (r) fermion atoms (open channel)

b (r) molecules (closed channel)

resonantly interacting via:

(Feshbach resonance)

M.L. Chiofalo, S.J.J.M.F. Kokkelmans, J.N. Milstein, and M.J. Holland, Phys. Rev. Lett. 88, 090402 (2002).
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Local solution

gloc(iwn) — [1_Z(T)] (

energy of non-bonding state

the spectral weight

BCS-like excitation energies

u?,v? = BCS-like coefficients

T. Domanski, Eur. Phys. J. B 33, 41 (2003); T. Domanski et al, Sol. State Commun. 105, 473 (1998).
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A(Kg,w)

= _ =

T. Domanski, Phys. Rev. A 84, 023634 (2011).
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T. Domanski, Phys. Rev. A 84, 023634 (2011).
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