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Physical situation

Let us consider the quantum dot (QD)

electrode L QD electrode R

with the metallic (conducting) external leads.
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ĤQD =
∑

σ

ǫd d̂†
σ

d̂σ + U n̂d↑ n̂d↓



Microscopic model

On-dot correlations
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d̂σ + U n̂d↑ n̂d↓

efficiently affect the transport via L-QD-R junction

Ĥ =
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ǫdd̂†
σd̂σ + U n̂d↑ n̂d↓ + ĤL + ĤR

+
∑

k,σ

∑

β=L,R

(

Vkβ d̂†
σĉkσβ + V ∗

kβ ĉ†
kσ,βd̂σ

)

induced by the external voltage eV = µL − µR.



The underlying physics: U >0 case



The underlying physics: U >0 case

Correlations manifest themselves by:



The underlying physics: U >0 case

Correlations manifest themselves by:

 0.3

 0.2

 0.1

 0
 10 5 0-5

ρ d
(ω

) 
   

 [
  1

 / 
Γ L

 ]

ω / ΓL

 T / ΓL = 1

⋆ the charging effect



The underlying physics: U >0 case

Correlations manifest themselves by:

 0.3

 0.2

 0.1

 0
 10 5 0-5

ρ d
(ω

) 
   

 [
  1

 / 
Γ L

 ]

ω / ΓL

 T / ΓL = 10-1

⋆ the charging effect and ...



The underlying physics: U >0 case

Correlations manifest themselves by:

 0.3

 0.2

 0.1

 0
 10 5 0-5

ρ d
(ω

) 
   

 [
  1

 / 
Γ L

 ]

ω / ΓL

 T / ΓL = 10-2

⋆ the charging effect and ...



The underlying physics: U >0 case

Correlations manifest themselves by:

 0.3

 0.2

 0.1

 0
 10 5 0-5

ρ d
(ω

) 
   

 [
  1

 / 
Γ L

 ]

ω / ΓL

 T / ΓL = 10-3

⋆ the charging effect and

⋆ the Kondo effect at temperatures T < TK .



The underlying physics: U >0 case

Correlations manifest themselves by:

 0.3

 0.2

 0.1

 0
 10 5 0-5

ρ d
(ω

) 
   

 [
  1

 / 
Γ L

 ]

ω / ΓL

T / ΓL = 10-4

⋆ the charging effect and

⋆ the Kondo effect at temperatures T < TK .



Non-equilibrium phenomena



Non-equilibrium phenomena

Application of the external voltage induces the current



Non-equilibrium phenomena

Application of the external voltage induces the current

JL = −e〈N̂L〉



Non-equilibrium phenomena

Application of the external voltage induces the current

JL = −e〈N̂L〉 = − e
ih̄

〈
[

N̂L, Ĥ
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.

Using the Keldysh equation

G< = (1 + GrΣr) (1 + ΣaGa) + GrΣ<Ga

one obtains ...
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steady current
JL = −JR

given by the Landaer-type formula

J(V ) =
2e

h

∫

dω T (ω) [f(ω−µL, T )−f(ω−µR, T )]

where the transmittance

Tσ(ω) =
∑

σ

ΓL(ω)ΓR(ω)

ΓL(ω) + ΓR(ω)
ρd,σ(ω)

depends on the correlations through the QD spectral function

ρd,σ(ω)=−
1

π

Imag {

Gd,σ(ω + i0+)
}



Experimental data
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J.R. Schrieffer and P.A. Wolf, Phys. Rev. 149, 491 (1966).



Effective interactions: U > 0

Perturbative treatment of the hybridization terms

ˆ̃H = eÂ Ĥ e−Â
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The spin Kondo effect comes from the antiferromagnetic coupling

Jβ,β′

kF ,kF
=

U

εd(εd + U)
VkF βV ∗

kF β′
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kβσĉkβσ+ 2

∑

k,q,β,β′

Jβ,β′

k,q
~̂T d · ~̂T kβ,qβ′

T̂ +
d d̂†

↑ d̂†
↓ T̂ −

d = d̂↓d̂↑ , T̂ z
d =

1

2
(d̂†

↑ d̂↑ + d̂†
↓d̂↓ − 1)



Effective interactions: U < 0

The perturbative treatment of the hybridization terms formally

proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites

are more favorable and they give rise to the pair-hopping
∑

k,q,β,σ,σ′
J

β,β′

k,q
d̂

†
σ d̂

†

−σ
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thus the Kondo effect can be formed in the pseudospin channel.

A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991).



Charge tunneling through U < 0 QD

J. Koch, M.E. Raikh, and F. von Oppen, PRL96, 056803 (2006).
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We propose the following molecular quantum dot (mQD)

ĤL + V̂L + ĤmQD + V̂R + ĤR

ĤmQD =
∑

σ

Ed d̂†
σ
d̂σ + Epair b̂†b̂

+ g
(

b̂† d̂↓d̂↑ + d̂†
↑ d̂†

↓ b̂
)
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where

EA, EB =
1

2
[Epair ∓ γ(2Ed − Epair)]

v2, u2 =
1

2

(

1 ∓
1

γ

)

γ2 = 1 +

(

2g

2Ed − Epair

)2

and Z is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the Ansatz

Gd(ω)−1 = G0
d(ω)−1 −

∑

k,β

|Vkβ|2

ω − ξkβ
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T.V. Shahbazyan and M.E. Raikh, PRB 49, 17123 (1994).
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# 2 tunneling via the quantum wire + magnetic field
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# 3 tunneling via three quantum dots
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