Electron pair current through the correlated quantum dots

T. DOMAŃSKI
M. Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman
Outline
Outline

🌟 Introduction

/ correlation effects in quantum dots /
Outline

★ Introduction
/ correlation effects in quantum dots /

★ The spin vs charge Kondo effect
/ influence on the electron tunneling /
Outline

★ Introduction
 / correlation effects in quantum dots /

★ The spin vs charge Kondo effect
 / influence on the electron tunneling /

★ The two-channel model
 / signatures of the Dicke-like behavior /
Outline

★ Introduction
/ correlation effects in quantum dots /

★ The spin vs charge Kondo effect
/ influence on the electron tunneling /

★ The two-channel model
/ signatures of the Dicke-like behavior /

★ Summary
1. Introduction
Physical situation

Let us consider the quantum dot (QD)
Let us consider the quantum dot (QD)
Let us consider the quantum dot (QD)

with the metallic (conducting) external leads.
Microscopic model

On-dot correlations
Microscopic model

On-dot correlations

\[\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \hat{d}^\dagger_{\sigma} \hat{d}_{\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \]
On-dot correlations

\[\hat{H}_{QD} = \sum_\sigma \epsilon_d \, \hat{d}_\sigma^\dagger \, \hat{d}_\sigma + U \, \hat{n}_{d\uparrow} \, \hat{n}_{d\downarrow} \]

efficiently aeffect the transport via L-QD-R junction
Microscopic model

On-dot correlations

\[\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \hat{d}_{\sigma}^\dagger \hat{d}_{\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \]

efficiently affect the transport via L-QD-R junction

\[\hat{H} = \sum_{\sigma} \epsilon_d \hat{d}_{\sigma}^\dagger \hat{d}_{\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} + \hat{H}_L + \hat{H}_R
+ \sum_{k,\sigma} \sum_{\beta=L,R} \left(V_{k\beta} \hat{d}_{\sigma}^\dagger \hat{c}_{k\sigma\beta} + V_{k\beta}^* \hat{c}_{k\sigma,\beta}^\dagger \hat{d}_{\sigma} \right) \]
Microscopic model

On-dot correlations

\[\hat{H}_{QD} = \sum_\sigma \epsilon_d \, \hat{d}_\sigma^\dagger \, \hat{d}_\sigma + U \, \hat{n}_{d\uparrow} \, \hat{n}_{d\downarrow} \]

efficiently affect the transport via L-QD-R junction

\[\hat{H} = \sum_\sigma \epsilon_d \hat{d}_\sigma^\dagger \hat{d}_\sigma + U \, \hat{n}_{d\uparrow} \, \hat{n}_{d\downarrow} + \hat{H}_L + \hat{H}_R \]
\[+ \sum_{k,\sigma} \sum_{\beta=L,R} \left(V_{k\beta} \, \hat{d}_\sigma^\dagger \hat{c}_{k\sigma\beta} + V_{k\beta}^* \, \hat{c}_{k\sigma,\beta}^\dagger \hat{d}_\sigma \right) \]

induced by the external voltage \(eV = \mu_L - \mu_R \).
The underlying physics: \(U > 0 \) case
The underlying physics: $U > 0$ case

Correlations manifest themselves by:
The underlying physics: $U > 0$ case

Correlations manifest themselves by:

$\frac{\rho_d(\omega)}{1/\Gamma_L} = 1$

$T/\Gamma_L = 1$

the charging effect
The underlying physics: \(U > 0 \) case

Correlations manifest themselves by:

\[\rho_d(\omega) = \frac{1}{\Gamma_L} \]

\[\frac{T}{\Gamma_L} = 10^{-1} \]

\[\omega / \Gamma_L \]

the charging effect and ...
The underlying physics: $U > 0$ case

Correlations manifest themselves by:

$\rho_d(\omega) \propto \frac{1}{\Gamma_L}$

$\frac{T}{\Gamma_L} = 10^{-2}$

\star the charging effect and ...
The underlying physics: \(U > 0 \) case

Correlations manifest themselves by:

\[\rho_d(\omega) = \frac{1}{\Gamma_L} \]

\(\frac{T}{\Gamma_L} = 10^{-3} \)

- the charging effect
- the Kondo effect

at temperatures \(T < T_K \).
Correlations manifest themselves by:

\[\rho_d(\omega) \left[\frac{1}{\Gamma_L} \right] \]

at temperatures \(T < T_K \).
Non-equilibrium phenomena
Non-equilibrium phenomena

Application of the external voltage induces the current
Non-equilibrium phenomena

Application of the external voltage induces the current

\[J_L = -e \langle \hat{N}_L \rangle \]
Non-equilibrium phenomena

Application of the external voltage induces the current

\[J_L = -e \langle \hat{N}_L \rangle = - \frac{e}{i\hbar} \langle [\hat{N}_L, \hat{H}] \rangle, \]
Non-equilibrium phenomena

Application of the external voltage induces the current

\[J_L = -e \langle \hat{N}_L \rangle = - \frac{e}{i\hbar} \langle [\hat{N}_L, \hat{H}] \rangle, \]

which can be expressed by

\[J_L = \frac{ie}{\hbar} \sum_{k, \sigma} V_{k, L} \left(\langle \hat{c}_{k, L, \sigma}^\dagger \hat{d}_\sigma \rangle - \langle \hat{d}_\sigma^\dagger \hat{c}_{k, L, \sigma} \rangle \right). \]
Non-equilibrium phenomena

Application of the external voltage induces the current

\[J_L = -e\langle \hat{N}_L \rangle = -\frac{e}{i\hbar}\langle [\hat{N}_L, \hat{H}] \rangle, \]

which can be expressed by

\[J_L = \frac{ie}{\hbar} \sum_{k,\sigma} V_{k,L} \left(\langle \hat{c}^\dagger_{k,L,\sigma} \hat{d}_\sigma \rangle - \langle \hat{d}^\dagger_\sigma \hat{c}_{k,L,\sigma} \rangle \right). \]

Using the Keldysh equation

\[G^< = (1 + G^r \Sigma^r) \left(1 + \Sigma^a G^a \right) + G^r \Sigma^< G^a. \]
Non-equilibrium phenomena

Application of the external voltage induces the current

\[J_L = -e\langle \hat{N}_L \rangle = -\frac{e}{\hbar} \langle [\hat{N}_L, \hat{H}] \rangle, \]

which can be expressed by

\[J_L = \frac{ie}{\hbar} \sum_{k,\sigma} V_{k,L} \left(\langle \hat{c}_{k,L,\sigma}^\dagger \hat{d}_\sigma \rangle - \langle \hat{d}_{\sigma}^\dagger \hat{c}_{k,L,\sigma} \rangle \right). \]

Using the Keldysh equation

\[G^\leq = (1 + G^r \Sigma^r) (1 + \Sigma^a G^a) + G^r \Sigma^\leq G^a \]

one obtains ...
Non-equilibrium phenomena
Non-equilibrium phenomena

steady current
Non-equilibrium phenomena

steady current

\[J_L = -J_R \]
Non-equilibrium phenomena

steady current

\[J_L = -J_R \]

given by the Landaer-type formula

\[J(V) = \frac{2e}{\hbar} \int d\omega \ T(\omega) \ [f(\omega - \mu_L, T) - f(\omega - \mu_R, T)] \]
Non-equilibrium phenomena

steady current

\[J_L = -J_R \]

given by the Landaer-type formula

\[J(V) = \frac{2e}{h} \int d\omega \ T(\omega) \left[f(\omega - \mu_L, T) - f(\omega - \mu_R, T) \right] \]

where the transmittance

\[T_\sigma(\omega) = \sum_\sigma \frac{\Gamma_L(\omega)\Gamma_R(\omega)}{\Gamma_L(\omega) + \Gamma_R(\omega)} \rho_{d,\sigma}(\omega) \]
Non-equilibrium phenomena

steady current

\[J_L = -J_R \]

given by the Landaeर-type formula

\[J(V) = \frac{2e}{\hbar} \int d\omega \ T(\omega) \ [f(\omega - \mu_L, T) - f(\omega - \mu_R, T)] \]

where the transmittance

\[T_{\sigma}(\omega) = \sum_{\sigma} \frac{\Gamma_L(\omega)\Gamma_R(\omega)}{\Gamma_L(\omega) + \Gamma_R(\omega)} \rho_{d,\sigma}(\omega) \]

depends on the correlations through the QD spectral function

\[\rho_{d,\sigma}(\omega) = -\frac{1}{\pi} \text{Imag} \{ G_{d,\sigma}(\omega + i0^+) \} \]
Experimental data

Zero-bias peak in differential conductance

\[\frac{dI}{dV_{ds}} \ (e^2/h) \]

\[
\begin{array}{c|c}
90 \text{ mK} & 90 \text{ mK} \\ 0 \text{ T} & 4 \text{ T} \\
\hline
300 \text{ mK} & 90 \text{ mK} \\ 0 \text{ T} & 6 \text{ T} \\
\hline
600 \text{ mK} & 90 \text{ mK} \\ 0 \text{ T} & 7.5 \text{ T} \\
\end{array}
\]

\[V_{ds} \ (\text{mV}) \]

0 - 0.4 - 0.2 0 0.2 0.4 -0.2 0 0.2 0.4
2. The spin vs Kondo effect
Effective interactions: $U > 0$
Effective interactions: $U > 0$

Perturbative treatment of the hybridization terms
Effective interactions: $U > 0$

Perturbative treatment of the hybridization terms

$$\hat{H} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$
Effective interactions: $U > 0$

Perturbative treatment of the hybridization terms

$$\hat{H} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$

Effective interactions: $U > 0$

Perturbative treatment of the hybridization terms

$$\hat{H} = e^{\hat{A}^{\dagger}} \hat{H} e^{-\hat{A}}$$

yields for a subspace of the relevant (singly occupied) states

$$\hat{H}^{Kondo}_{spin} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}^{+}_{k\beta\sigma} \hat{c}_{k\beta\sigma} - \sum_{k,q,\beta,\beta'} J^{\beta,\beta'}_{k,q} \hat{S}_{d} \cdot \hat{S}_{k\beta,q\beta'}$$
Effective interactions: \(U > 0 \)

Perturbative treatment of the hybridization terms

\[
\hat{H} = e^{\hat{A}} \hat{H} e^{-\hat{A}}
\]

yields for a subspace of the relevant (singly occupied) states

\[
\hat{H}_{\text{spin}}^{Kondo} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}_{k\beta\sigma}^+ \hat{c}_{k\beta\sigma} - \sum_{k,q,\beta,\beta'} J_{k,q}^{\beta,\beta'} \hat{S}_d \cdot \hat{S}_{k\beta,q\beta'}
\]

\[
\hat{S}_d^+ = \hat{d}_\uparrow \hat{d}_\downarrow, \quad \hat{S}_d^- = \hat{d}_\downarrow \hat{d}_\uparrow, \quad \hat{S}_d^z = \frac{1}{2}(\hat{d}_\uparrow \hat{d}_\uparrow - \hat{d}_\downarrow \hat{d}_\downarrow)
\]
Effective interactions: $U > 0$

Perturbative treatment of the hybridization terms

$$\hat{H} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$

yields for a subspace of the relevant (singly occupied) states

$$\hat{H}_{\text{spin}}^{Kondo} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}_{k\beta\sigma}^{+} \hat{c}_{k\beta\sigma} - \sum_{k,q,\beta,\beta'} J_{k,q}^{\beta,\beta'} \hat{S}_d \cdot \hat{S}_{k\beta,q\beta'}$$

$$\hat{S}_d^+ = \hat{d}_\uparrow \hat{d}_\downarrow, \quad \hat{S}_d^- = \hat{d}_\downarrow \hat{d}_\uparrow, \quad \hat{S}_d^z = \frac{1}{2} (\hat{d}_\uparrow \hat{d}_\uparrow - \hat{d}_\downarrow \hat{d}_\downarrow)$$

The spin Kondo effect comes from the antiferromagnetic coupling

$$J_{k_F,k_F}^{\beta,\beta'} = \frac{U}{\varepsilon_d (\varepsilon_d + U)} V_{k_F\beta} V_{k_F\beta'}^*$$
Situation with the negative U quantum dot
Effective interactions: $U < 0$
Effective interactions: $U < 0$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for $U < 0$ case.
Effective interactions: $U < 0$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for $U < 0$ case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to the pair-hopping

$$
\sum_{k,q,\beta,\sigma,\sigma'} J_{k,q}^{\beta,\beta'} \hat{d}_{\sigma}^{\dagger} \hat{d}_{-\sigma} \hat{c}_{k\beta-\sigma'} \hat{c}_{q\beta',\sigma'} + \text{h.c.}
$$
Effective interactions: $U < 0$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for $U < 0$ case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to the pair-hopping

$$\sum_{k,q,\beta,\sigma,\sigma'} J_{k,q}^{\beta,\beta'} \hat{d}^\dagger_\sigma \hat{d}^\dagger_{-\sigma} \hat{c}_{k\beta-\sigma'} \hat{c}_{q\beta'\sigma'} + \text{h.c.}$$

The low energy physics is effectively described by

$$\hat{H}^{Kondo}_{\text{charge}} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}^{+}_{k\beta\sigma} \hat{c}_{k\beta\sigma} + 2 \sum_{k,q,\beta,\beta'} J_{k,q}^{\beta,\beta'} \hat{T}_d \cdot \hat{T}_{k\beta,q\beta'}$$
Effective interactions: $U < 0$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for $U < 0$ case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to the pair-hopping

$$
\sum_{k,q,\beta,\sigma,\sigma'} J_{k,q}^{\beta,\beta'} \hat{d}_{\sigma} \hat{d}^\dagger_{-\sigma} \hat{c}_{k\beta-\sigma'} \hat{c}_{q\beta'} + \text{h.c.}
$$

The low energy physics is effectively described by

$$
\hat{H}_{\text{charge}}^{Kondo} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}^+_k \hat{c}_{k\beta\sigma} + 2 \sum_{k,q,\beta,\beta'} J_{k,q}^{\beta,\beta'} \hat{T}_{d} \cdot \hat{T}_{k\beta,q\beta'}
$$

$$
\hat{T}_d^+ \hat{d}^\dagger_\uparrow \hat{d}^\dagger_\downarrow \hat{T}_d^- = \hat{d}_\downarrow \hat{d}_\uparrow, \quad \hat{T}_d^z = \frac{1}{2} (\hat{d}^\dagger_\uparrow \hat{d}_\uparrow + \hat{d}^\dagger_\downarrow \hat{d}_\downarrow - 1)
$$
Effective interactions: $U < 0$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for $U < 0$ case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to the pair-hopping

$$\sum_{k,q,\beta,\sigma,\sigma'} J_{k,q}^{\beta,\beta'} \hat{d}_\sigma^\dagger \hat{d}_{-\sigma}^\dagger \hat{c}_{k\beta} \hat{c}_{q\beta'} + \text{h.c.}$$

The low energy physics is effectively described by

$$\hat{H}_{\text{charge}}^{Kondo} = \sum_{k,\beta,\sigma} \xi_{k\beta} \hat{c}_{k\beta}^+ \hat{c}_{k\beta} + 2 \sum_{k,q,\beta,\beta'} J_{k,q}^{\beta,\beta'} \hat{T}_d \cdot \hat{T}_{k\beta,q\beta'}$$

thus the Kondo effect can be formed in the pseudospin channel.

Charge tunneling through $U < 0$ QD

Pair tunneling
Pair tunneling

\(\frac{G}{2e^2 \Gamma_L \Gamma_R / U^2 h} \)
\(\frac{\partial I}{\partial V} (2e^2 / U^2 h) \)

Pair tunneling

thermoelectric power:

\[
\frac{S_{\text{Mott}}}{S_0}
\]

\[2\varepsilon_d + U\]

3. The two-channel model
Electron pair trapping

We propose the following molecular quantum dot (mQD)
Electron pair trapping

We propose the following molecular quantum dot (mQD)
Electron pair trapping

We propose the following molecular quantum dot (mQD)

\[\hat{H}_L + \hat{V}_L + \hat{H}_{mQD} + \hat{V}_R + \hat{H}_R \]
Electron pair trapping

We propose the following molecular quantum dot (mQD)

\[
\hat{H}_L + \hat{V}_L + \hat{H}_{mQD} + \hat{V}_R + \hat{H}_R
\]

\[
\hat{H}_{mQD} = \sum_{\sigma} E_d \ \hat{d}^{\dagger}_{\sigma} \hat{d}_{\sigma} + E_{pair} \ \hat{b}^{\dagger} \hat{b} + g \left(\hat{b}^{\dagger} \hat{d}_{\downarrow} \hat{d}_{\uparrow} + \hat{d}_{\uparrow}^{\dagger} \hat{d}_{\downarrow}^{\dagger} \hat{b} \right)
\]
Quantum fluctuations
Quantum fluctuations

The charge Kondo effect requires a degeneracy of the states
Quantum fluctuations

The charge Kondo effect requires a degeneracy of the states $|0\rangle_d$ and $|↑↓\rangle_d$.
The charge Kondo effect requires a degeneracy of the states $|0\rangle_d$ and $|\uparrow\downarrow\rangle_d$ and this aspect is well captured by \hat{H}_{mQD} model.
Quantum fluctuations

The charge Kondo effect requires a degeneracy of the states $|0\rangle_d$ and $|↑↓\rangle_d$ and this aspect is well captured by \hat{H}_{mQD} model.

In the limit $V_{k,\beta} = 0$ the true eigenstates are given by

$$|B\rangle = \sin(\varphi) \; |0\rangle_d \otimes |1\rangle_b + \cos(\varphi) \; |↑↓\rangle_d \otimes |0\rangle_b$$

$$|A\rangle = \cos(\varphi) \; |0\rangle_d \otimes |1\rangle_b - \sin(\varphi) \; |↑↓\rangle_d \otimes |0\rangle_b$$
Quantum fluctuations

The charge Kondo effect requires a degeneracy of the states

\[|0\rangle_d \quad \text{and} \quad |\uparrow\downarrow\rangle_d \]

and this aspect is well captured by \(\hat{H}_{mQD} \) model.

In the limit \(V_{k,\beta} = 0 \) the true eigenstates are given by

\[
|B\rangle = \sin(\varphi) |0\rangle_d \otimes |1\rangle_b + \cos(\varphi) |\uparrow\downarrow\rangle_d \otimes |0\rangle_b
\]

\[
|A\rangle = \cos(\varphi) |0\rangle_d \otimes |1\rangle_b - \sin(\varphi) |\uparrow\downarrow\rangle_d \otimes |0\rangle_b
\]

and the d-QD Green's function has a three-pole structure

\[
G^V_{k\beta=0}_d(\omega) = \frac{Z}{\omega-E_d} + (1-Z) \left[\frac{u^2}{\omega-E_B} + \frac{v^2}{\omega-E_A} \right]
\]
Quantum fluctuations

The charge Kondo effect requires a degeneracy of the states $|0\rangle_d$ and $|\uparrow\downarrow\rangle_d$ and this aspect is well captured by \hat{H}_{mQD} model.

In the limit $V_{k,\beta} = 0$ the true eigenstates are given by

$$|B\rangle = \sin(\varphi) |0\rangle_d \otimes |1\rangle_b + \cos(\varphi) |\uparrow\downarrow\rangle_d \otimes |0\rangle_b$$
$$|A\rangle = \cos(\varphi) |0\rangle_d \otimes |1\rangle_b - \sin(\varphi) |\uparrow\downarrow\rangle_d \otimes |0\rangle_b$$

and the d-QD Green’s function has a three-pole structure

$$G_{d}^{V_{k\beta}=0}(\omega) = \frac{Z}{\omega-E_d} + (1-Z) \left[\frac{u^2}{\omega-E_B} + \frac{v^2}{\omega-E_A} \right]$$

Quantum fluctuations (c.d.)
Quantum fluctuations (c.d.)

where

\[
E_A, E_B = \frac{1}{2} [E_{pair} \mp \gamma (2E_d - E_{pair})]
\]

\[
v^2, u^2 = \frac{1}{2} \left(1 \mp \frac{1}{\gamma} \right)
\]

\[
\gamma^2 = 1 + \left(\frac{2g}{2E_d - E_{pair}} \right)^2
\]
Quantum fluctuations (c.d.)

where

\[
E_A, E_B = \frac{1}{2} [E_{pair} \mp \gamma(2E_d - E_{pair})]
\]

\[
v^2, u^2 = \frac{1}{2} \left(1 \mp \frac{1}{\gamma} \right)
\]

\[
\gamma^2 = 1 + \left(\frac{2g}{2E_d - E_{pair}} \right)^2
\]

and \(Z \) is a strongly temperature-dependent coefficient.
Quantum fluctuations (c.d.)

where

\[
\begin{align*}
E_A, E_B &= \frac{1}{2} \left[E_{\text{pair}} \mp \gamma (2E_d - E_{\text{pair}}) \right] \\
v^2, u^2 &= \frac{1}{2} \left(1 \mp \frac{1}{\gamma} \right) \\
\gamma^2 &= 1 + \left(\frac{2g}{2E_d - E_{\text{pair}}} \right)^2
\end{align*}
\]

and \(\mathcal{Z} \) is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the Ansatz
Quantum fluctuations (c.d.)

where

\[
E_A, E_B = \frac{1}{2}[E_{pair} \mp \gamma(2E_d - E_{pair})]
\]

\[
v^2, u^2 = \frac{1}{2} \left(1 \mp \frac{1}{\gamma} \right)
\]

\[
\gamma^2 = 1 + \left(\frac{2g}{2E_d - E_{pair}} \right)^2
\]

and Z is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the Ansatz

\[
G_d(\omega)^{-1} = G_d^0(\omega)^{-1} - \sum_{k,\beta} \frac{|V_{k\beta}|^2}{\omega - \xi_{k\beta}}
\]
Spectrum of the d-QD
Spectrum of the d-QD

\[\rho_d(\omega) = \frac{1}{\Gamma_L} \]

\[\frac{\Gamma_R}{\Gamma_L} = 0.3 \]

\[g = 2\Gamma_L \]

\[\frac{T}{\Gamma_L} = 0.3 \]
Spectrum of the d-QD

\[\rho_d(\omega) = \frac{1}{\Gamma_L} \]

\[\Gamma_R = \Gamma_L \]

\[g = 2\Gamma_L \]

\[T / \Gamma_L = 0.2 \]
Spectrum of the d-QD

\[\rho_d(\omega) \left[\frac{1}{\Gamma_L} \right] \]

\[\frac{\Gamma_R}{\Gamma_L} = \frac{g}{2\Gamma_L} \]

\[T / \Gamma_L = 0.1 \]
Spectrum of the d-QD

\[\rho_d(\omega) \left[\frac{1}{\Gamma_L} \right] \]

\[\frac{\Gamma_R}{\Gamma_L} = g = 2\Gamma_L \]

\[T / \Gamma_L = 0.1 \]

The middle peak: superradiant state,
Spectrum of the d-QD

\[\rho_d(\omega) \equiv \frac{1}{\Gamma_L} \]

\[\frac{\omega}{\Gamma_L} = \frac{T}{\Gamma_L} = 0.1 \]

- the middle peak: superradiant state,
- the side peaks: subradiant states.
Differential conductance
Differential conductance

\[G(V) \sim \frac{2e^2}{h} \]

\[eV / \Gamma_L \]

\[2g \]

\[k_B T \]
Superradiant line broadening is proportional to T!
Dicke effect in mesoscopic physics
Dicke effect in mesoscopic physics

1 tunneling via two quantum dots
Dicke effect in mesoscopic physics

1 tunneling via two quantum dots

Dicke effect in mesoscopic physics

2 tunneling via the quantum wire + magnetic field

Diagram showing inter-subband scattering, energy levels ε_{nk}, Fermi level ε_F, and impurity with $n = 0, 1, 2$.
Dicke effect in mesoscopic physics

2 tunneling via the quantum wire + magnetic field

\[\text{Re} \sigma(\omega)/\sigma_0 \]

Dicke effect in mesoscopic physics

3 tunneling via three quantum dots

\[\Gamma^L_\sigma \quad t_{12\sigma} \quad \Gamma^R_\sigma \]

QD1 QD2 QD3 L R
Dicke effect in mesoscopic physics

3 tunneling via three quantum dots

4. Summary
Summary:

- The on-dot correlations can lead to appearance of either the spin or charge Kondo effect.
Summary:

- The on-dot correlations can lead to appearance of either the spin or charge Kondo effect.

- Kondo physics shows up in the charge channel for $U < 0$ near the symmetric case $\varepsilon_d + U/2 = 0$.
Summary:

- The on-dot correlations can lead to appearance of either the spin or charge Kondo effect.

- Kondo physics shows up in the charge channel for $U < 0$ near the symmetric case $\varepsilon_d + U/2 = 0$.

- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.
Summary:

- The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.
- Kondo physics shows up in the charge channel for $U < 0$ near the symmetric case $\varepsilon_d + U/2 = 0$.
- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.
- Low energy physics is reminiscent of the Dicke effect with supperadiant line broadening $\sim k_B T$.
Summary:

- The on-dot correlations can lead to appearance of either the spin or charge Kondo effect.
- Kondo physics shows up in the charge channel for $U < 0$ near the symmetric case $\varepsilon_d + U/2 = 0$.
- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.
- Low energy physics is reminiscent of the Dicke effect with superradiant line broadening $\sim k_B T$.

http://kft.umcs.lublin.pl/doman