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Let us consider the quantum dot (QD)

R

electrode L @ electrode R

with the metallic (conducting) external leads.
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Microscopic model

On-dot correlations

HQD = Zed dT —|— U ndT ndi

efficiently affect the transport via L-QD-R junction
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induced by the external voltage eV = up — ur.
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* the Kondo effect attemperatures T' < Tk.
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Application of the external voltage induces the current

Jp = —e(Ng) = — %({NL,ISIb

which can be expressed by

Using the Keldysh equation

GS-=014+GY) (1+32*G* + G"E2<G*

one obtains ...
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depends on the correlations through the QD spectral function
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2. The spin vs Kondo effect
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Perturbative treatment of the hybridization terms
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Situation with the negative U quantum dot
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Effective interactions: U < 0

The perturbative treatment of the hybridization terms formally
proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites
are more favorable and they give rise to the pair-hopping

TAPN
Zk,q,,@’g o’ JIB,q'B dT dT CkIB—O"chB’o-’ + h.c.

The low energy physics is effectively described by

~ Kondo

Hcharge — Z £k,36k,80'ck,30'+ 2 Z
k,3,0 k,q,3,8’

thus the Kondo effect can be formed in the pseudospin channel.
A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991).




Charge tunneling through U < 0 QD

J. Koch, M.E. Raikh, and F. von Oppen, PRL96, 056803 (2006).
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Pair tunneling

* thermoelectric power:
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Electron pair trapping

We propose the following molecular quantum dot (mQD)
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T. Domanski, Eur. Phys. J. B 33, 41 (2003).
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and Z is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the Ansatz
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* the middle peak: superradiant state,

* the side peaks:  subradiant states.
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ev/I

Superradiant line broadening is proportionalto 1!
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T.V. Shahbazyan and M.E. Raikh, PRB 49, 17123 (1994).
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-+ 2 tunneling via the quantum wire + magnetic field
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+ 3 tunneling via three quantum dots
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