Electron pair current through the correlated quantum dots

T. DOMAŃSKI

M. Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman

Introduction

/ correlation effects in quantum dots /

- * Introduction
 - / correlation effects in quantum dots /
- The spin vs charge Kondo effect

/ influence on the electron tunneling /

- * Introduction
 - / correlation effects in quantum dots /
- The spin vs charge Kondo effect
 / influence on the electron tunneling /
- The two-channel model
 / signatures of the Dicke-like behavior /

- * Introduction
 - / correlation effects in quantum dots /
- The spin vs charge Kondo effect
 / influence on the electron tunneling /
- The two-channel model
 / signatures of the Dicke-like behavior /
- **Summary**

1. Introduction

Physical situation

Let us consider the quantum dot (QD)

Physical situation

Let us consider the quantum dot (QD)

Physical situation

Let us consider the quantum dot (QD)

with the metallic (conducting) external leads.

On-dot correlations

On-dot correlations

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow}$$

On-dot correlations

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow}$$

efficiently affect the transport via L-QD-R junction

On-dot correlations

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow}$$

efficiently affect the transport via L-QD-R junction

$$egin{array}{lll} \hat{H} & = & \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow} + \hat{H}_{L} + \hat{H}_{R} \ & + & \sum_{\mathbf{k},\sigma} \sum_{eta = L,R} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{*} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

On-dot correlations

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow}$$

efficiently affect the transport via L-QD-R junction

$$egin{array}{lll} \hat{H} & = & \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow} + \hat{H}_{L} + \hat{H}_{R} \ & + & \sum_{\mathbf{k},\sigma} \sum_{eta = L,R} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

induced by the external voltage $eV=\mu_L-\mu_R$.

Correlations manifest themselves by:

Correlations manifest themselves by:

* the charging effect

Correlations manifest themselves by:

the charging effect and ...

Correlations manifest themselves by:

the charging effect and ...

Correlations manifest themselves by:

- the charging effect and
- \star the Kondo effect at temperatures $T < T_K$.

Correlations manifest themselves by:

- the charging effect and
- \star the Kondo effect at temperatures $T < T_K$.

Application of the external voltage induces the current

Application of the external voltage induces the current

$$J_L = -e \langle \hat{N}_L
angle$$

Application of the external voltage induces the current

$$J_L = -e \langle \hat{N}_L
angle = - rac{e}{i\hbar} \langle \left[\hat{N}_L, \hat{H}
ight]
angle,$$

Application of the external voltage induces the current

$$J_L = -e \langle \hat{N}_L
angle = - rac{e}{i\hbar} \langle \left[\hat{N}_L, \hat{H}
ight]
angle,$$

which can be expressed by

$$J_L = rac{ie}{\hbar} \sum_{{
m k},\sigma} V_{{
m k},L} \; \left(\langle \hat{c}^{\dagger}_{{
m k},L,\sigma} \hat{d}_{\sigma}
angle - \langle \hat{d}^{\dagger}_{\sigma} \hat{c}_{{
m k},L,\sigma}
angle
ight).$$

Application of the external voltage induces the current

$$J_L = -e \langle \hat{N}_L
angle = - rac{e}{i\hbar} \langle \left[\hat{N}_L, \hat{H}
ight]
angle,$$

which can be expressed by

$$J_L = rac{ie}{\hbar} \sum_{{f k},\sigma} V_{{f k},L} \, \left(\langle \hat{c}^\dagger_{{f k},L,\sigma} \hat{d}_\sigma
angle - \langle \hat{d}^\dagger_\sigma \hat{c}_{{f k},L,\sigma}
angle
ight).$$

Using the Keldysh equation

$$G^{<} = (1 + G^{r}\Sigma^{r}) (1 + \Sigma^{a}G^{a}) + G^{r}\Sigma^{<}G^{a}$$

Application of the external voltage induces the current

$$J_L = -e \langle \hat{N}_L
angle = - rac{e}{i\hbar} \langle \left[\hat{N}_L, \hat{H}
ight]
angle,$$

which can be expressed by

$$J_L = rac{ie}{\hbar} \sum_{{f k},\sigma} V_{{f k},L} \; \left(\langle \hat{c}^\dagger_{{f k},L,\sigma} \hat{d}_\sigma
angle - \langle \hat{d}^\dagger_\sigma \hat{c}_{{f k},L,\sigma}
angle
ight).$$

Using the Keldysh equation

$$G^{<} = (1 + G^r \Sigma^r) (1 + \Sigma^a G^a) + G^r \Sigma^{<} G^a$$

one obtains ...

steady current

steady current

$$J_L = -J_R$$

steady current

$$J_L=-J_R$$

given by the Landaer-type formula

$$J(V) = rac{2e}{h} \int d\omega \; m{T(\omega)} \left[f(\omega \! - \! \mu_L, T) \! - \! f(\omega \! - \! \mu_R, T)
ight]$$

steady current

$$J_L = -J_R$$

given by the Landaer-type formula

$$J(V) = rac{2e}{h} \int d\omega \; m{T(\omega)} \left[f(\omega \! - \! \mu_L, T) \! - \! f(\omega \! - \! \mu_R, T)
ight]$$

where the transmittance

$$m{T_{\sigma}(\omega)} = \sum_{\sigma} rac{\Gamma_L(\omega)\Gamma_R(\omega)}{\Gamma_L(\omega) + \Gamma_R(\omega)} \;
ho_{d,\sigma}(\omega)$$

steady current

$$J_L = -J_R$$

given by the Landaer-type formula

$$J(V) = rac{2e}{h} \int d\omega \; m{T(\omega)} \left[f(\omega \! - \! \mu_L, T) \! - \! f(\omega \! - \! \mu_R, T)
ight]$$

where the transmittance

$$egin{aligned} oldsymbol{T_{\sigma}(\omega)} &= \sum_{\sigma} rac{\Gamma_L(\omega)\Gamma_R(\omega)}{\Gamma_L(\omega) + \Gamma_R(\omega)} \;
ho_{d,\sigma}(\omega) \end{aligned}$$

depends on the correlations through the QD spectral function

$$ho_{d,\sigma}(\omega)\!=\!-\;rac{1}{\pi}{
m Imag}\left\{G_{d,\sigma}(\omega+i0^+)
ight\}$$

David Goldhaber-Gordon on (hbar): /data/users/davidg/kastner_backups/0797/11/ivmovie.56A.54

2. The spin vs Kondo effect

Perturbative treatment of the hybridization terms

Perturbative treatment of the hybridization terms

$$\hat{\tilde{H}} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$

Perturbative treatment of the hybridization terms

$$\hat{\tilde{H}} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$

J.R. Schrieffer and P.A. Wolf, Phys. Rev. **149**, 491 (1966).

Perturbative treatment of the hybridization terms

$$\hat{\tilde{H}} \; = \; e^{\hat{A}} \; \hat{H} \; e^{-\hat{A}}$$

J.R. Schrieffer and P.A. Wolf, Phys. Rev. 149, 491 (1966).

yields for a subspace of the relevant (singly occupied) states

$$\hat{ ilde{H}}_{spin}^{Kondo} = \sum_{ ext{k},eta,\sigma} oldsymbol{\xi}_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} - \sum_{ ext{k}, ext{q},eta,eta'} J_{ ext{k}, ext{q}}^{eta,eta'} \;\; \hat{ec{m{S}}}_{m{d}} \cdot \hat{ec{m{S}}}_{m{k}eta, ext{q}eta}$$

Perturbative treatment of the hybridization terms

$$\hat{\tilde{H}} = e^{\hat{A}} \hat{H} e^{-\hat{A}}$$

J.R. Schrieffer and P.A. Wolf, Phys. Rev. 149, 491 (1966).

yields for a subspace of the relevant (singly occupied) states

$$\hat{ ilde{H}}_{spin}^{Kondo} = \sum_{ ext{k},eta,\sigma} \xi_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} - \sum_{ ext{k}, ext{q},eta,eta'} J_{ ext{k}, ext{q}}^{eta,eta'} \; \hat{ec{S}}_{ ext{d}} \cdot \hat{ec{S}}_{ ext{k}eta, ext{q}eta}$$

$$\hat{m{S}}_{m{d}}^{+} = \hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\downarrow}, \; \; \hat{m{S}}_{m{d}}^{-} = \hat{d}_{\downarrow}^{\dagger} \hat{d}_{\uparrow} \; \; , \; \; \hat{m{S}}_{m{d}}^{m{z}} = rac{1}{2} (\hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\uparrow} \; - \hat{d}_{\downarrow}^{\dagger} \hat{d}_{\downarrow})$$

Perturbative treatment of the hybridization terms

$$\hat{\tilde{H}} \; = \; e^{\hat{A}} \; \hat{H} \; e^{-\hat{A}}$$

J.R. Schrieffer and P.A. Wolf, Phys. Rev. 149, 491 (1966).

yields for a subspace of the relevant (singly occupied) states

$$\hat{ ilde{H}}_{spin}^{Kondo} = \sum_{ ext{k},eta,\sigma} oldsymbol{\xi}_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} - \sum_{ ext{k}, ext{q},eta,eta'} oldsymbol{J}_{ ext{k}, ext{q}}^{eta,eta'} \ \hat{ar{oldsymbol{S}}}_{oldsymbol{d}} \cdot \hat{ar{oldsymbol{S}}}_{oldsymbol{d}} oldsymbol{\gamma}_{ ext{d}}$$

$$\hat{m{S}}_{m{d}}^{+} = \hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\downarrow}, \;\; \hat{m{S}}_{m{d}}^{-} = \hat{d}_{\downarrow}^{\dagger} \hat{d}_{\uparrow} \;\;, \;\; \hat{m{S}}_{m{d}}^{m{z}} = rac{1}{2} (\hat{d}_{\uparrow}^{\dagger} \;\; \hat{d}_{\uparrow} \;\; -\hat{d}_{\downarrow}^{\dagger} \hat{d}_{\downarrow})$$

The spin Kondo effect comes from the antiferromagnetic coupling

$$J_{{
m k}_F,{
m k}_F}^{eta,eta'}=rac{U}{arepsilon_d(arepsilon_d+U)}\;V_{{
m k}_Feta}V_{{
m k}_Feta'}^*$$

Situation with the negative $oldsymbol{U}$ quantum dot

The perturbative treatment of the hybridization terms formally proceeds along the same line as for U < 0 case.

The perturbative treatment of the hybridization terms formally proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to **the pair-hopping**

$$\sum_{\mathbf{k},\mathbf{q},eta,\sigma,\sigma'} J_{\mathbf{k},\mathbf{q}}^{eta,eta'} \; \hat{d}_{\sigma}^{\dagger} \hat{d}_{-\sigma}^{\dagger} \hat{c}_{\mathbf{k}eta-\sigma'} \hat{c}_{\mathbf{q}eta'\sigma'} + ext{h.c.}$$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to **the pair-hopping**

$$\sum\nolimits_{\mathbf{k},\mathbf{q},\beta,\sigma,\sigma'} J^{\beta,\beta'}_{\mathbf{k},\mathbf{q}} \; \hat{\boldsymbol{d}}^{\dagger}_{\sigma} \, \hat{\boldsymbol{d}}^{\dagger}_{-\sigma} \, \hat{\boldsymbol{c}}_{\mathbf{k}\beta-\sigma'} \hat{\boldsymbol{c}}_{\mathbf{q}\beta'\sigma'} + \text{h.c.}$$

The low energy physics is effectively described by

$$\hat{ ilde{H}}_{charge}^{Kondo} = \sum_{ ext{k},eta,\sigma} \xi_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} + \ 2 \sum_{ ext{k}, ext{q},eta,eta'} J_{ ext{k}, ext{q}}^{eta,eta'} \ \ \hat{ ilde{ ilde{T}}}_{ ext{d}} \cdot \hat{ ilde{ ilde{T}}}_{ ext{k}eta, ext{q}eta'}$$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to **the pair-hopping**

$$\sum\nolimits_{\mathbf{k},\mathbf{q},\beta,\sigma,\sigma'} J^{\beta,\beta'}_{\mathbf{k},\mathbf{q}} \; \hat{\boldsymbol{d}}^{\dagger}_{\sigma} \, \hat{\boldsymbol{d}}^{\dagger}_{-\sigma} \, \hat{\boldsymbol{c}}_{\mathbf{k}\beta-\sigma'} \hat{\boldsymbol{c}}_{\mathbf{q}\beta'\sigma'} + \text{h.c.}$$

The low energy physics is effectively described by

$$\hat{ ilde{H}}_{charge}^{Kondo} = \sum_{ ext{k},eta,\sigma} \xi_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} + \ 2 \sum_{ ext{k}, ext{q},eta,eta'} J_{ ext{k}, ext{q}}^{eta,eta'} \ \hat{ ilde{ ilde{T}}}_{m{d}} \cdot \hat{ar{ ilde{T}}}_{m{d}} \hat{c}_{ ext{k}eta, ext{q}eta'}$$

$$\hat{\mathcal{T}}_{m{d}}^{+}\hat{d}_{\uparrow}^{\dagger} \;\; \hat{d}_{\downarrow}^{\dagger} \;\; \hat{\mathcal{T}}_{m{d}}^{-} = \hat{d}_{\downarrow}\hat{d}_{\uparrow} \;\;,\;\; \hat{\mathcal{T}}_{m{d}}^{z} = rac{1}{2}(\hat{d}_{\uparrow}^{\dagger} \;\; \hat{d}_{\uparrow} \;\; + \hat{d}_{\downarrow}^{\dagger}\hat{d}_{\downarrow} - 1)$$

The perturbative treatment of the hybridization terms formally proceeds along the same line as for U < 0 case.

However, in the present case the empty/double occupied sites are more favorable and they give rise to **the pair-hopping**

$$\sum_{\mathbf{k},\mathbf{q},eta,\sigma,\sigma'} J_{\mathbf{k},\mathbf{q}}^{eta,eta'} \; \hat{d}_{\sigma}^{\dagger} \hat{d}_{-\sigma}^{\dagger} \hat{c}_{\mathbf{k}eta-\sigma'} \hat{c}_{\mathbf{q}eta'\sigma'} + ext{h.c.}$$

The low energy physics is effectively described by

$$\hat{ ilde{H}}_{charge}^{Kondo} = \sum_{ ext{k},eta,\sigma} \xi_{ ext{k}eta} \hat{c}_{ ext{k}eta\sigma}^{+} \hat{c}_{ ext{k}eta\sigma} + \ 2 \sum_{ ext{k}, ext{q},eta,eta'} J_{ ext{k}, ext{q}}^{eta,eta'} \ \hat{ ilde{ ilde{T}}}_{ ext{d}} \cdot \hat{ ilde{ ilde{T}}}_{ ext{k}eta, ext{q}eta'}$$

$$\hat{\mathcal{T}}_d^+ \hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\downarrow}^{\dagger} \; \hat{\mathcal{T}}_d^- = \hat{d}_{\downarrow} \hat{d}_{\uparrow} \; , \; \hat{\mathcal{T}}_d^z = rac{1}{2} (\hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\uparrow} \; + \hat{d}_{\downarrow}^{\dagger} \hat{d}_{\downarrow} - 1)$$

thus the Kondo effect can be formed in the pseudospin channel.

A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991).

Charge tunneling through $U < 0 \ \mathsf{QD}$

J. Koch, M.E. Raikh, and F. von Oppen, PRL96, 056803 (2006).

Pair tunneling

differential conductance:

J. Koch, M.E. Raikh, and F. von Oppen, PRL96, 056803 (2006).

Pair tunneling

thermoelectric power:

M. Gierczak, K.I. Wysokiński, J.Phys.Conf.Ser. 104, 012005 (2008).

3. The two-channel model

$$\hat{H}_L + \hat{V}_L + \hat{H}_{mQD} + \hat{V}_R + \hat{H}_R$$

$$\hat{H}_L + \hat{V}_L + \hat{H}_{mQD} + \hat{V}_R + \hat{H}_R$$

$$egin{array}{lll} \hat{H}_{mQD} &=& \sum_{\sigma} E_{d} \; \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + E_{pair} \; \hat{b}^{\dagger} \hat{b} \ &+& oldsymbol{g} \left(\hat{b}^{\dagger} \; \hat{d}_{\downarrow} \hat{d}_{\uparrow} \; + \hat{d}_{\uparrow}^{\dagger} \; \hat{d}_{\downarrow}^{\dagger} \; \hat{b}
ight) \end{array}$$

The charge Kondo effect requires a degeneracy of the states

The charge Kondo effect requires a degeneracy of the states

and

The charge Kondo effect requires a degeneracy of the states

and this aspect is well captured by \hat{H}_{mQD} model.

The charge Kondo effect requires a degeneracy of the states

and this aspect is well captured by \hat{H}_{mQD} model.

In the limit $V_{{f k},eta}\!=\!0$ the true eigenstates are given by

$$\begin{array}{lcl} |B\rangle & = & \sin(\varphi) \ |0\rangle_d \otimes |1)_b \ + \ \cos(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \\ |A\rangle & = & \cos(\varphi) \ |0\rangle_d \otimes |1)_b \ - \ \sin(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \end{array}$$

The charge Kondo effect requires a degeneracy of the states

$$|0
angle_d$$
 and $|\!\!\uparrow\downarrow\rangle_d$

and this aspect is well captured by \hat{H}_{mQD} model.

In the limit $V_{{f k},eta}\!=\!0$ the true eigenstates are given by

$$\begin{array}{lcl} |B\rangle & = & \sin(\varphi) \ |0\rangle_d \otimes |1)_b \ + \ \cos(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \\ |A\rangle & = & \cos(\varphi) \ |0\rangle_d \otimes |1)_b \ - \ \sin(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \end{array}$$

and the d-QD Green's function has a three-pole structure

$$\mathcal{G}_d^{V_{\mathrm{k}eta}=0}(\omega) = rac{\mathcal{Z}}{\omega\!-\!E_d} + (1\!-\!\mathcal{Z})\left[rac{u^2}{\omega\!-\!E_B} + rac{v^2}{\omega\!-\!E_A}
ight]$$

The charge Kondo effect requires a degeneracy of the states

$$|0
angle_d$$
 and $|\!\!\uparrow\downarrow\rangle_d$

and this aspect is well captured by \hat{H}_{mQD} model.

In the limit $V_{{f k},eta}\!=\!0$ the true eigenstates are given by

$$\begin{array}{lcl} |B\rangle & = & \sin(\varphi) \ |0\rangle_d \otimes |1)_b \ + \ \cos(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \\ |A\rangle & = & \cos(\varphi) \ |0\rangle_d \otimes |1)_b \ - \ \sin(\varphi) \ |\uparrow\downarrow\rangle_d \otimes |0)_b \end{array}$$

and the d-QD Green's function has a three-pole structure

$$\mathcal{G}_d^{V_{\mathrm{k}eta}=0}(\omega) = rac{\mathcal{Z}}{\omega\!-\!E_d} + (1\!-\!\mathcal{Z})\left[rac{u^2}{\omega\!-\!E_B} + rac{v^2}{\omega\!-\!E_A}
ight]$$

T. Domański, Eur. Phys. J. B 33, 41 (2003).

where

where

and Z is a strongly temperature-dependent coefficient.

where

and Z is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the **Ansatz**

where

and Z is a strongly temperature-dependent coefficient.

To account for a finite hybridization we employ the Ansatz

$$\mathcal{G}_d(\omega)^{-1} = \mathcal{G}_d^0(\omega)^{-1} - \sum_{\mathbf{k},\beta} \frac{|V_{\mathbf{k}\beta}|^2}{\omega - \xi_{\mathbf{k}\beta}}$$

the middle peak: superradiant state,

the middle peak: superradiant state,

the side peaks: subradiant states.

Differential conductance

Differential conductance

Superradiant line broadening is proportional to T!

1 tunneling via two quantum dots

1 tunneling via two quantum dots

T.V. Shahbazyan and M.E. Raikh, PRB 49, 17123 (1994).

2 tunneling via the quantum wire + magnetic field

2 tunneling via the quantum wire + magnetic field

T. Brandes, Phys. Rep. 408, 315 (2005).

3 tunneling via three quantum dots

3 tunneling via three quantum dots

P. Trocha and J. Barnaś, PRB 78, 075242 (2008).

4. Summary

• The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.

- The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.
- Kondo physics shows up in the charge channel for U < 0 near the symmetric case $\varepsilon_d + U/2 = 0$.

- The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.
- Kondo physics shows up in the charge channel for U < 0 near the symmetric case $\varepsilon_d + U/2 = 0$.
- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.

- The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.
- Kondo physics shows up in the charge channel for U < 0 near the symmetric case $\varepsilon_d + U/2 = 0$.
- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.
- Low energy physics is reminiscent of the Dicke effect with supperadiant line broadening $\sim k_B T$.

- The on-dot correlations can lead to appearance of either the *spin* or *charge Kondo effect*.
- Kondo physics shows up in the charge channel for U < 0 near the symmetric case $\varepsilon_d + U/2 = 0$.
- To account for the strong quantum fluctuations between the empty and doubly occupied states we have introduced the two-channel model.
- Low energy physics is reminiscent of the Dicke effect with supperadiant line broadening $\sim k_B T$.

http://kft.umcs.lublin.pl/doman