Subgap current through the strongly correlated quantum dot hybridized with the normal and superconducting leads

T. DOMAŃSKI
M. Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman
A short title:

Kondo effect vs superconductivity in quantum dots

T. DOMAŃSKI
M. Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman
Outline

🌟 Introduction

effects of correlations in the N - QD - S setup
Outline

🌟 Introduction

effects of correlations in the N - QD - S setup

🌟 Procedure

Keldysh formalism & approximations
Outline

🌟 **Introduction**

 effects of correlations in the N - QD - S setup

🌟 **Procedure**

 Keldysh formalism & approximations

🌟 **Results**

 *a) Kondo effect vs superconductivity,
 b) signatures in the Andreev conductance*
Outline

Introduction

effects of correlations in the N - QD - S setup

Procedure

Keldysh formalism & approximations

Results

a) Kondo effect vs superconductivity,

b) signatures in the Andreev conductance

Summary
1. Introduction
Let us consider the quantum dot (QD) in the following setup
Let us consider the quantum dot (QD) in the following setup:

- Metallic lead (N)
- Quantum dot (dot)
- Superconductor (S)
Let us consider the quantum dot (QD) in the following setup:

Physical situation

which is a particular version of SET.
Microscopic model

Since the correlations on the QD are very efficient
Since the correlations on the QD are very efficient

\[
\hat{H}_{QD} = \sum_\sigma \epsilon_d \hat{d}^\dagger \hat{d}_\sigma + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}
\]
Microscopic model

Since the correlations on the QD are very efficient

\[\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \, \hat{d}_\sigma^\dagger \, \hat{d}_\sigma + U \, \hat{n}_{d\uparrow} \, \hat{n}_{d\downarrow} \]

they are expected to affect the transport via N-QD-S junction
Since the correlations on the QD are very efficient

\[\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \]

they are expected to affect the transport via N-QD-S junction

\[\hat{H} = \sum_{\sigma} \epsilon_d \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} + \hat{H}_N + \hat{H}_S \]

\[+ \sum_{k,\sigma} \sum_{\beta=N,S} \left(V_{k\beta} \hat{d}_{\sigma}^{\dagger} \hat{c}_{k\sigma\beta} + V_{k\beta}^* \hat{c}_{k\sigma,\beta}^{\dagger} \hat{d}_{\sigma} \right) \]
Microscopic model

Since the correlations on the QD are very efficient

$$\hat{H}_{QD} = \sum_\sigma \epsilon_d \hat{d}_\sigma^\dagger \hat{d}_\sigma + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}$$

they are expected to affect the transport via N-QD-S junction

$$\hat{H} = \sum_\sigma \epsilon_d \hat{d}_\sigma^\dagger \hat{d}_\sigma + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} + \hat{H}_N + \hat{H}_S$$

$$+ \sum_{k,\sigma} \sum_{\beta=N,S} \left(V_{k\beta} \hat{d}_\sigma^\dagger \hat{c}_{k\sigma\beta} + V_{k\beta}^* \hat{c}_{k\sigma,\beta}^\dagger \hat{d}_\sigma \right)$$

induced by the external voltage $eV = \mu_N - \mu_S$.
The underlying physics – part 1
Hybridization of the QD to the metallic lead shows up:
The underlying physics – part 1

Hybridization of the QD to the metallic lead shows up:

\[
\rho_d(\omega) \left[\frac{1}{\Gamma_N} \right]
\]

\[
\frac{\omega}{\Gamma_N} = 0 \quad \text{Γ}_S = 0 \quad \frac{T}{\Gamma_N} = 1
\]

the charging effect
Hybridization of the QD to the metallic lead shows up:

\[
\rho_d(\omega) \quad \left[\frac{1}{\Gamma_N} \right]
\]

\[
\Gamma_S = 0 \quad \text{and} \quad \frac{T}{\Gamma_N} = 10^{-1}
\]

the charging effect and ...
Hybridization of the QD to the metallic lead shows up:

\[\rho_d(\omega) \left[\frac{1}{\Gamma_N} \right] \]

\[\frac{\omega}{\Gamma_N} = 0 \]

\[\frac{T}{\Gamma_N} = 10^{-2} \]

\[\Gamma_S = 0 \]

The charging effect and ...
The underlying physics – part 1

Hybridization of the QD to the metallic lead shows up:

\[\rho_d(\omega) \propto \frac{1}{\Gamma_N} \]

\[\frac{\omega}{\Gamma_N} = \frac{\Gamma_S}{0} = 10^{-3} \]

- the charging effect
- the Kondo effect

at temperatures \(T < T_K \).
Hybridization of the QD to the metallic lead shows up:

\[
\frac{\rho_d(\omega)}{\Gamma_N} = \frac{1}{\Gamma_N} \frac{\Gamma_S = 0}{\Gamma_N = 10^{-4}}
\]

\[\frac{\omega}{\Gamma_N} = \frac{10^{-4}}{10^{-4}}\]

\[\Gamma_S = 0\]

\[T < T_K\]

\[T / \Gamma_N = 10^{-4}\]

\[\Gamma_N / \Gamma_N = 10^{-4}\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]

\[\omega / \Gamma_N\]

\[\Gamma_N / \Gamma_N\]

\[\Gamma_S = 0\]

\[\omega / \Gamma_N\]

\[\rho_d(\omega)\]

\[1 / \Gamma_N\]
The underlying physics – part 2
On the other hand, QD coupling to the superconducting electrode
On the other hand, QD coupling to the superconducting electrode induces the **on-dot pairing** i.e. *the proximity effect.*
The underlying physics – part 2

On the other hand, QD coupling to the superconducting electrode induces the on-dot pairing i.e. the proximity effect.

Such induced paring is responsible for the particle-hole splitting.
On the other hand, QD coupling to the superconducting electrode induces the **on-dot pairing** i.e. *the proximity effect.*

Such induced paring is responsible for the particle-hole splitting.
On the other hand, QD coupling to the superconducting electrode induces the **on-dot pairing** i.e. *the proximity effect*.

Such induced paring is responsible for the particle-hole splitting.

Effective QD spectrum obtained for $U = 0$, $\varepsilon_d = 0$.
The relevant questions
a) What kind of interplay occurs between the induced superconductivity and the Kondo effects?
The relevant questions

a) What kind of interplay occurs between the induced superconductivity and the Kondo effects?

Do they cooperate or rather compete?
The relevant questions

a) What kind of interplay occurs between the induced superconductivity and the Kondo effects?

Do they cooperate or rather compete?

b) What is their influence on measurable charge current through the N-QD-S junction?
The relevant questions

a) What kind of interplay occurs between the induced superconductivity and the Kondo effects?

Do they cooperate or rather compete?

b) What is their influence on measurable charge current through the N-QD-S junction?

Are there any particular features?
2. Procedure

/ Keldysh formalism & approximations /
Correlations on the QD
Correlations on the QD

To account for the proximity effect and for correlations we use the matrix Green’s function
To account for the proximity effect and for correlations we use the matrix Green’s function

\[
G_d(\tau) = - \begin{pmatrix}
\hat{T}_\tau \langle \hat{d}_\uparrow(\tau)\hat{d}_\uparrow \rangle & \hat{T}_\tau \langle \hat{d}_\uparrow(\tau)\hat{d}_\downarrow \rangle \\
\hat{T}_\tau \langle \hat{d}_\downarrow(\tau)\hat{d}_\uparrow \rangle & \hat{T}_\tau \langle \hat{d}_\downarrow(\tau)\hat{d}_\downarrow \rangle
\end{pmatrix}
\]
Correlations on the QD

To account for the proximity effect and for correlations, we use the matrix Green’s function

\[
G_d(\tau) = -\left(\begin{array}{ll}
\hat{T}_\tau \langle \hat{d}^\uparrow(\tau)\hat{d}^\dagger \rangle & \hat{T}_\tau \langle \hat{d}^\uparrow(\tau)\hat{d} \rangle \\
\hat{T}_\tau \langle \hat{d}^\dagger(\tau)\hat{d}^\dagger \rangle & \hat{T}_\tau \langle \hat{d}^\dagger(\tau)\hat{d} \rangle
\end{array} \right)
\]

whose Fourier transform obeys the following Dyson equation
Correlations on the QD

To account for the proximity effect and for correlations we use the matrix Green’s function

\[
G_d(\tau) = -\begin{pmatrix}
\hat{T}_\tau \langle \hat{d}^\uparrow(\tau) \hat{d}^\uparrow \rangle & \hat{T}_\tau \langle \hat{d}^\uparrow(\tau) \hat{d} \downarrow \rangle \\
\hat{T}_\tau \langle \hat{d} \downarrow(\tau) \hat{d}^\uparrow \rangle & \hat{T}_\tau \langle \hat{d} \downarrow(\tau) \hat{d} \downarrow \rangle
\end{pmatrix}
\]

whose Fourier transform obeys the following Dyson equation

\[
G_d(\omega)^{-1} = \begin{pmatrix}
\omega - \varepsilon_d & 0 \\
0 & \omega + \varepsilon_d
\end{pmatrix} - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)
\]
Correlations on the QD

To account for the proximity effect and for correlations we use the matrix Green’s function

\[
G_d(\tau) = -\begin{pmatrix}
\hat{T}_\tau \langle \hat{d}^\uparrow(\tau) \hat{d}^\dagger \uparrow \rangle & \hat{T}_\tau \langle \hat{d}^\uparrow(\tau) \hat{d}^\dagger \downarrow \rangle \\
\hat{T}_\tau \langle \hat{d}^\dagger \downarrow(\tau) \hat{d}^\dagger \uparrow \rangle & \hat{T}_\tau \langle \hat{d}^\dagger \downarrow(\tau) \hat{d}^\dagger \downarrow \rangle
\end{pmatrix}
\]

whose Fourier transform obeys the following Dyson equation

\[
G_d(\omega)^{-1} = \begin{pmatrix}
\omega - \epsilon_d & 0 \\
0 & \omega + \epsilon_d
\end{pmatrix} - \Sigma_0^d(\omega) - \Sigma_U^d(\omega)
\]

where

\[
\Sigma_0^d(\omega) - \text{the selfenergy for } U = 0
\]
Correlations on the QD

To account for the proximity effect and for correlations we use the matrix Green’s function

\[
G_d(\tau) = - \left(\begin{array}{cc}
\hat{T}_\tau \langle \hat{d}_\uparrow (\tau) \hat{d}_\uparrow \rangle & \hat{T}_\tau \langle \hat{d}_\uparrow (\tau) \hat{d}_\downarrow \rangle \\
\hat{T}_\tau \langle \hat{d}_\downarrow (\tau) \hat{d}_\uparrow \rangle & \hat{T}_\tau \langle \hat{d}_\downarrow (\tau) \hat{d}_\downarrow \rangle
\end{array} \right)
\]

whose Fourier transform obeys the following Dyson equation

\[
G_d(\omega)^{-1} = \left(\begin{array}{cc}
\omega - \varepsilon_d & 0 \\
0 & \omega + \varepsilon_d
\end{array} \right) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)
\]

where

\[
\Sigma_d^U(\omega) — \text{correction due to } U \neq 0.
\]
Non-equilibrium phenomena
Non-equilibrium phenomena

Application of external voltage induces the charge current
Application of external voltage induces the charge current

\[J_N = -e \langle \hat{N}_N \rangle \]
Non-equilibrium phenomena

Application of external voltage induces the charge current

\[J_{N(S)} = -e\langle \hat{N}_{N(S)} \rangle = - \frac{e}{i\hbar} \langle [\hat{N}_{N(S)}, \hat{H}] \rangle \]
Non-equilibrium phenomena

Application of external voltage induces the charge current

\[
J_{N(S)} = -e\langle \hat{N}_{N(S)} \rangle = - \frac{e}{i\hbar} \langle [\hat{N}_{N(S)}, \hat{H}] \rangle
\]

The current is then expressed by

\[
J_{N(S)} = \frac{ie}{\hbar} \sum_{k,\sigma} V_{k,N} \left(\langle \hat{c}^\dagger_{k,\sigma} \hat{d}_\sigma \rangle - \langle \hat{d}^\dagger_\sigma \hat{c}_{k,\sigma} \rangle \right)
\]
Non-equilibrium phenomena

Application of external voltage induces the charge current

\[J_{N(S)} = -e \langle \hat{N}_{N(S)} \rangle = - \frac{e}{i\hbar} \langle \left[\hat{N}_{N(S)}, \hat{H} \right] \rangle \]

The current is then expressed by

\[J_{N(S)} = \frac{ie}{\hbar} \sum_{k,\sigma} V_{k,N} \left(\langle \hat{c}_{k,\sigma}^{\dagger} \hat{d}_\sigma \rangle - \langle \hat{d}_\sigma^{\dagger} \hat{c}_{k,\sigma} \rangle \right) \]

Using the Keldysh equation

\[G^{<} = (1 + G^{r} \Sigma^{r}) (1 + \Sigma^{a} G^{a}) + G^{r} \Sigma^{<} G^{a} \]
Non-equilibrium phenomena

Application of external voltage induces the charge current

\[J_{N(S)} = -e \langle \hat{N}_{N(S)} \rangle = - \frac{e}{i\hbar} \langle [\hat{N}_{N(S)}, \hat{H}] \rangle \]

The current is then expressed by

\[J_{N(S)} = \frac{ie}{\hbar} \sum_{k,\sigma} V_{k,N} \left(\langle \hat{c}^\dagger_{k,\sigma} \hat{d}_\sigma \rangle - \langle \hat{d}^\dagger_\sigma \hat{c}_{k,\sigma} \rangle \right) \]

Using the Keldysh equation

\[G^< = (1 + G^r \Sigma^r) (1 + \Sigma^a G^a) + G^r \Sigma^< G^a \]

we obtain ...
Non-equilibrium phenomena
Non-equilibrium phenomena

... we obtain that for a small voltage
Non-equilibrium phenomena

... we obtain that for a small voltage

\[|eV| \ll \Delta \]
Non-equilibrium phenomena

... we obtain that for a small voltage

\[|eV| \ll \Delta \]

(subgap) current can be expressed by the Landaer-type formula

\[J(V) = \frac{2e}{\hbar} \int d\omega \ T(\omega) \ [f(\omega + eV, T) - f(\omega - eV, T)] \]
Non-equilibrium phenomena

... we obtain that for a small voltage

$$|eV| \ll \Delta$$

(subgap) current can be expressed by the Landaer-type formula

$$J(V) = \frac{2e}{h} \int d\omega \ T(\omega) \ [f(\omega+eV, T) - f(\omega-eV, T)]$$

where the transmittance

$$T(\omega) = \frac{\Gamma_N^2}{|G_{12}(\omega)|^2}$$
Non-equilibrium phenomena

... we obtain that for a small voltage

\[|eV| \ll \Delta \]

(subgap) current can be expressed by the Landaer-type formula

\[
J(V) = \frac{2e}{h} \int d\omega \ T(\omega) \ [f(\omega + eV, T) - f(\omega - eV, T)]
\]

where the transmittance

\[
T(\omega) = \Gamma^2_N \ |G_{12}(\omega)|^2
\]

depends on the off-diagonal part of \(G(\omega) \).
Schematic illustration

Charge current between the N and S electrodes
We assume the external bias V to be small $|eV| \ll \Delta$.
Schematic illustration

Charge current between the N and S electrodes

electron
Schematic illustration

Charge current between the N and S electrodes

electron
Schematic illustration

Charge current between the N and S electrodes

electron
Schematic illustration

Charge current between the N and S electrodes

N

S

hole

Cooper pair
Schematic illustration

Charge current between the N and S electrodes

N

S

hole

Cooper pair
Schematic illustration

Charge current between the N and S electrodes

This process is called Andreev reflection.
3. Results
Uncorrelated QD
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$

$\varepsilon_d = 0 \quad \Gamma_S/\Gamma_N = 0.5$
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$

$\varepsilon_d = 0$

$\Gamma_S/\Gamma_N = 1.0$
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$

- $\varepsilon_d = 0$
- $\Gamma_S/\Gamma_N = 2.0$
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$

$\epsilon_d = 0$ $\Gamma_S/\Gamma_N = 5.0$
Uncorrelated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 0$

$\varepsilon_d = 0$ $\Gamma_S/\Gamma_N = 10.0$
The particle-hole splitting is due to superconductivity!
Uncorrelated QD

Andreev conductance $G_A(V)$
Uncorrelated QD

Andreev conductance $G_A(V)$

The case $U = 0$ with $\epsilon_d = 0$
Uncorrelated QD

Andreev conductance $G_A(V)$

The case $U = 0$ with $\epsilon_d = 0$
Uncorrelated QD

Andreev conductance $G_A(V)$

The case $U = 0$ with $\varepsilon_d = 0$

$\Gamma_S/\Gamma_N = 2$
Uncorrelated QD

Andreev conductance $G_A(V)$

The case $U = 0$ with $\epsilon_d = 0$
Uncorrelated QD

Andreev conductance $G_A(V)$

The case $U = 0$ with $\epsilon_d = 0$
The zero-bias conductance is optimal near $\Gamma_S \sim \Gamma_N$!
Strongly correlated QD
Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

$\Gamma_S/\Gamma_N = 0$

$T = 10^{-3}\Gamma_N$

$\epsilon_d = -1.5\Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

\[\frac{\rho_d(\omega)}{\Gamma_N} = \frac{10^{-3} \Gamma_N}{\Gamma_N} \quad \text{for} \quad \frac{\epsilon_d}{\Gamma_N} = -1.5 \Gamma_N \]

$\Gamma_S/\Gamma_N = 1$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

\[
\frac{\Gamma}{\Gamma_N} = \frac{\Gamma_S}{\Gamma_N} = 2
\]

$T = 10^{-3} \Gamma_N$

$\varepsilon_d = -1.5 \Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

$\Gamma_S/\Gamma_N = 3$

$T = 10^{-3} \Gamma_N$
$\varepsilon_d = -1.5 \Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

$\rho_d(\omega) \left[\frac{1}{\Gamma_N} \right]$

ω / Γ_N

$\Gamma_S / \Gamma_N = 4$

$T = 10^{-3} \Gamma_N$

$\epsilon_d = -1.5 \Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

\begin{align*}
\Gamma_S / \Gamma_N &= 5 \\
T &= 10^{-3} \Gamma_N \\
\epsilon_d &= -1.5 \Gamma_N
\end{align*}
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

\[\frac{\omega}{\Gamma_N} \]

$T = 10^{-3} \Gamma_N$

$\varepsilon_d = -1.5 \Gamma_N$

$\Gamma_S/\Gamma_N = 6$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10 \Gamma_N$

$\rho_d(\omega)$ [1/Γ_N]

ω / Γ_N

$\Gamma_S / \Gamma_N = 8$

$T = 10^{-3} \Gamma_N$

$\varepsilon_d = -1.5 \Gamma_N$
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

\[\frac{\Gamma_S}{\Gamma_N} = 10\]
Strongly correlated QD

Spectral function $\rho_d(\omega)$ obtained for $U = 10\Gamma_N$

Superconductivity competes with the Kondo effect
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10 \Gamma_N$

Notice enhancement of the zero-bias Andreev conductance for $\Gamma_S \sim \Gamma_N$!
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10 \Gamma_N$.
Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$.

$T = 10^0 \Gamma_N$
Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$.

$T = 10^{-1}\Gamma_N$
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$.

$T = 10^{-1}\Gamma_N$
Strongly correlated QD

Andreev conductance $G_A(V)$ for: $U = 10\Gamma_N$.

$G_A(V) \ [4e^2/h]\ eV / \Gamma_N$

$T = 10^{-3} \Gamma_N$
4. Summary
Summary

- QD in a contact with the superconducting lead is converted into the superconducting grain.
Summary

- QD in a contact with the superconducting lead is converted into the superconducting grain.
- Coupling of the QD to the metallic leads to formation of the Kondo resonance at \(\omega = 0 \).
Summary

- QD in a contact with the superconducting lead is converted into the superconducting grain.
- Coupling of the QD to the metallic leads to formation of the Kondo resonance at $\omega = 0$.
- Superconductivity and the Kondo effect compete with one another in quantum dots.
Summary

- QD in a contact with the superconducting lead is converted into the superconducting grain.
- Coupling of the QD to the metallic leads to formation of the Kondo resonance at $\omega = 0$.
- Superconductivity and the Kondo effect compete with one another in quantum dots.
- Subgap current arises for $|eV| < \Delta$ solely from the mechanism of Andreev reflections.
Summary

- QD in a contact with the superconducting lead is converted into the superconducting grain.

- Coupling of the QD to the metallic leads to formation of the Kondo resonance at $\omega = 0$.

- Superconductivity and the Kondo effect compete with one another in quantum dots.

- Subgap current arises for $|eV| < \Delta$ solely from the mechanism of Andreev reflections.

- Kondo effect slightly enhances the zero-bias Andreev conductance when $\Gamma_S \sim \Gamma_N$.