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Superconducting state – of bulk materials

⇒ ideal d.c. conductance (vanishing resistance)

⇒ ideal diamagnetism (Meissner effect)

are caused by the superfluid electron pairs

ns(T ) ∝ 1/λ2

that move coherently over macroscopic distances.
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2. magnon-exchange
/ heavy fermion compounds /

3. strong correlations

/ spin exchange
2t2

ij

U
in the high Tc superconductors /

.. other exotic processes
/ ultracold atoms, nuclei, gluon-quark plasma /

Onset of the fermion pairing often goes hand in hand with appe arance

of the superconductivity/superfluidity , but it doesn’t have to be a rule.
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Proximity effect – induced superconductivity

⋆ Any material brought in contact with superconductor

absorbs the paired electrons up to distances ∼ ξn.

⋆ Spatial size L of nanoscopic objects is L ≪ ξn !
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Superconductivity in nanosystems – specific issues

1. Quantum Size Effect −→ discrete energy spectrum

normal state superconductor

Anderson criterion: superconductivity only for ∆ > εi+1−εi
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2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualit ative role !

Coulomb potential UC is usually much smaller than ∆, therefore

its influence can be in practice observed only indirectly, via :

|↑〉 ⇐⇒ u |0〉 − v |↑↓〉

( quantum phase transition )

Physical consequences:

⇒ inversion of the Josephson current (in S-QD-S junctions)

⇒ activation/blocking of the Kondo effect (in N-QD-S junctions)
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R. Maurand, Ch. Schönenberger, Physics 6, 75 (2013).



Superconductivity in nanosystems – specific issues

3. Pairing vs Kondo state (’to screen or not to screen’)

R. Maurand, Ch. Schönenberger, Physics 6, 75 (2013).

⇒ states near the Fermi level are depleted

⇒ electron pairing vs the Kondo state (nontrivial relation)
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Theory and experiment on 0 − π transition

D. Luitz, F.F. Assad, T. Novotný, C. Karasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).



Josephson junctions / 0 − π transition /

Phase boundaries obtained by several methods

M. Žonda, V. Pokorný, V. Janiš, and T. Novotný, Sci. Rep. 5, 8821 (2015).



3. Nano-superconductivity:

⇒ some practical aspects
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Schematic illustration of the Andreev-type scattering
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Andreev reflections – possible applications

Andreev-type scattering can be also considered in more comp lex junctions

P. Cadden-Zimansky, Ph.D. thesis, Northwestern University (2008).

incident electron

elastic tunelling

crossed Andreev refl.
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Non-local transport – planar junctions

These ET/CAR processes have first considered in the planar ju nctions

A, B – normal electrodes, S – superconducting material

G. Falci, D. Feinberg, F. Hekking, Europhys. Lett. 54, 255 (2001).



Non-local transport – planar junctions

Experimental realization (Delft group)

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005).
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Experimental

realization

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005).
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Experimental realization (Karlsruhe group)

J. Brauer, F. Hübler, M. Smetanin, D. Beckman, D. & H. von Löhneysen, Phys. Rev. B 81, 024515 (2010).
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3-terminal junctions – with quantum dots

Cooper pairs are split, preserving entanglement of individual electrons.

L. Hofstetter, S. Csonka, J. Nygård, C. Schönenberger, Nature 461, 960 (2009).

J. Schindele, A. Baumgartner, C. Schönenberger, Phys. Rev. Lett. 109, 157002 (2012).

... and many other groups.



3-terminal junctions – with quantum dots

Possible channels of the Cooper pair splitting

L.G. Herrmann et al, Phys. Rev. Lett. 104, 026801 (2010).



3-terminal junctions – with quantum dots

These processes are similar to the crossed Andreev scattering

and cause the strong non-local transport properties.
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Non-local transport – crossed Andreev refelections

Quantum impurity in the 3-terminal configuration

 

L, R – normal electrodes, S – superconducting reservoir, QD – quantum dot

G. Michałek, T. Domański, B.R. Bułka & K.I. Wysokiński, Scientific Reports 5, 14572 (2015).



Non-local transport – crossed Andreev refelections

Transmittance of the non-local transport channels
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Non-local transport – crossed Andreev refelections

Non-local resistance in the linear response limit.
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Transmittance of the non-local transport channels
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Non-local transport – crossed Andreev refelections

Non-local resistance in the linear response limit.
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Non-local transport – crossed Andreev refelections

Beyond the linear response regime.
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Andreev reflections – other perspectives

Crossed Andreev reflections enable the separation of charge from heat currents

F. Mazza, S. Valentini, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio and F. Tadddei, Phys. Rev. B 91, 245435 (2015).



Andreev reflections – other perspectives

On-chip nanoscopic thermometer operating down to 7 mK.

A.V. Feshchenko, L. Casparis, ..., J.P. Pekola & D.M. Zumbühl, Phys. Rev. Appl. 4, 034001 (2015).

T. Faivre, D.S. Golubev and J.P. Pekola, Appl. Phys. Lett. 106, 182602 (2015).

Virtues of a device: ⇒ is almost free of any self-heating

⇒ operates at cryogenic temperatures

⇒ can thermally-monitor the qubits
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Nanoscopic superconductors:

⇒ can be induced by the proximity effect

⇒ are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

⇒ strong non-local properties (e.g. negative resistance)

⇒ separation of the charge from heat currents

⇒ realization of exotic quasiparticles (e.g. Majorana-type)
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